
1Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
Abstraction

- The concept of abstraction is fundamental in
 programming

- Nearly all programming languages support
 process abstraction with subprograms

- Nearly all programming languages designed since
 1980 have supported data abstraction with some
 kind of module

Encapsulation

- Original motivation :
 - Large programs have two special needs:
 1. Some means of organization, other than
 simply division into subprograms
 2. Some means of partial compilation
 (compilation units that are smaller than the
 whole program)

- Obvious solution : a grouping of subprograms
 that are logically related into a unit that can be
 separately compiled
 - These are called encapsulations

2Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
Examples of Encapsulation
 Mechanisms

1. Nested subprograms in some ALGOL-like
 languages (e.g., Pascal)

2. FORTRAN 77 and C - Files containing one or
 more subprograms can be independently
 compiled

3. FORTRAN 90, C++, Ada (and other contemporary
 languages) - separately compilable modules

Def: An abstract data type is a user-defined data
 type that satisfies the following two conditions:

 1. The representation of and operations on
 objects of the type are defined in a single
 syntactic unit; also, other units can create
 objects of the type.

 2. The representation of objects of the type is
 hidden from the program units that use these
 objects, so the only operations possible are
 those provided in the type's definition.

3Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
Advantage of Restriction 1:

 - Same as those for encapsulation: program
 organization, modifiability (everything
 associated with a data structure is together),
 and separate compilation

Advantage of Restriction 2:

 - Reliability --by hiding the data representations,
 user code cannot directly access objects of the
 type. User code cannot depend on the
 representation, allowing the representation to be
 changed without affecting user code.

Built-in types are abstract data types

e.g. int type in C
 - The representation is hidden
 - Operations are all built-in
 - User programs can define objects of int type

- User-defined abstract data types must have the
 same characteristics as built-in abstract data
 types

4Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
Language Requirements for
 Data Abstraction:

1. A syntactic unit in which to encapsulate the
 type definition.

2. A method of making type names and subprogram
 headers visible to clients, while hiding actual
 definitions.

3. Some primitive operations must be built into the
 language processor (usually just assignment and
 comparisons for equality and inequality)
 - Some operations are commonly needed, but
 must be defined by the type designer
 - e.g., iterators, constructors, destructors

Language Design Issues:

1. Encapsulate a single type, or something more?
2. What types can be abstract?
3. Can abstract types be parameterized?
4. What access controls are provided?

5Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
Language Examples:

1. Simula 67

 - Provided encapsulation, but no information
 hiding

2. Ada
 - The encapsulation construct is the package

 - Packages usually have two parts:

 1. Specification package (the interface)
 2. Body package (implementation of the entities
 named in the specification

 - Any type can be exported

 - Information Hiding

 - Hidden types are named in the spec package in,
 as in:

 type NODE_TYPE is private;

6Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10

 - Representation of an exported hidden type is
 specified in a special invisible (to clients) part
 of the spec package (the private clause), as in:

 package … is
 type NODE_TYPE is private;
 …
 type NODE_TYPE is
 record
 …
 end record;
 …

 - A spec package can also define unhidden types
 simply by providing the representation outside
 a private clause

 - The reasons for the two-part type definition are:

 1. The compiler must be able to see the
 representation after seeing only the spec
 package (the compiler can see the private
 clause)
 2. Clients must see the type name, but not the
 representation (clients cannot see the
 private clause)

7Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
- Private types have built-in operations for
 assignment and comparison with = and /=

 - Limited private types have no built-in operations

---> SHOW specification and body packages
 (pp. 422-423) and the procedure that uses
 them (p. 423)

Evaluation of Ada Abstract Data Types

 1. Lack of restriction to pointers is better
 - Cost is recompilation of clients when the
 representation is changed

 2. Cannot import specific entities from other
 packages

8Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
4. C++

 - Based on C struct type and Simula 67 classes
 - The class is the encapsulation device
 - All of the class instances of a class share a
 single copy of the member functions
 - Each instance of a class has its own copy of
 the class data members
 - Instances can be static, stack dynamic, or
 heap dynamic

 - Information Hiding:
 - Private clause for hidden entities
 - Public clause for interface entities
 - Protected clause - for inheritance (see Ch. 11)

 - Constructors:
 - Functions to initialize the data members of
 instances (they DO NOT create the objects)
 - May also allocate storage if part of the object is
 heap-dynamic
 - Can include parameters to provide
 parameterization of the objects
 - Implicitly called when an instance is created
 - Can be explicitly called
 - Name is the same as the class name

9Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
- Destructors
 - Functions to cleanup after an instance is
 destroyed; usually just to reclaim heap storage
 - Implicitly called when the object’s lifetime ends
 - Can be explicitly called
 - Name is the class name, preceded by a tilda (~)

---> SHOW class definition for stack (p. 425-426
 and the example program that uses it (p. 426)

- Friend functions or classes - to provide access
 to private members to some unrelated units or
 functions (NECESSARY in C++)

 Evaluation of C++ Support for
 Abstract Data Types

 - Classes are similar to Ada packages for
 providing abstract data type

 - Difference: packages are encapsulations,
 whereas classes are types

10Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
A Related Language: Java

- Similar to C++, except:

 - All user-defined types are classes

 - All objects are allocated from the heap and
 accessed through reference variables

 - Individual entities in classes have access
 control modifiers (private or public), rather
 than clauses

 - Java has a second scoping mechanism,
 package scope, which can be used in place of
 friends

 - All entities in all classes in a package that do
 not have access control modifiers are visible
 throughout the package

--> SHOW Java class definition for stacks (p. 428)
 and the class that uses it (p. 429

11Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10

Parameterized Abstract Data Types

1. Ada Generic Packages

 - Make the stack type more flexible by making the
 element type and the size of the stack generic

---> SHOW GENERIC_STACK package and two
 instantiations (p. 430)

2. C++ Templated Classes

 - Classes can be somewhat generic by writing
 parameterized constructor functions

 e.g.

 stack (int size) {
 stk_ptr = new int [size];
 max_len = size - 1;
 top = -1;
 }
 stack (100) stk;

12Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 10
- The stack element type can be parameterized by
 making the class a templated class

---> SHOW the templated class stack (p. 431)

- Java does not support generic abstract data types

