
Copyright © 1998 by Addison Wesley Longman, Inc. 1

Chapter 7

Levels of Control Flow:

1. Within expressions
2. Among program units
3. Among program statements

Evolution:

 - FORTRAN I control statements were based
 directly on IBM 704 hardware

 - Much research and argument in the1960s about
 the issue
 - One important result: It was proven that all
 flowcharts can be coded with only two-way
 selection and pretest logical loops

Def: A control structure is a control statement and
 the statements whose execution it controls

Overall Design Question:

 What control statements should a language have,
 beyond selection and pretest logical loops?

Copyright © 1998 by Addison Wesley Longman, Inc. 2

Chapter 7
Compound statements - introduced by ALGOL 60
 in the form of begin...end

A block is a compound statement that can define a
 new scope (with local variables)

Selection Statements

Design Issues:

1. What is the form and type of the control
 expression?
2. What is the selectable segment form (single
 statement, statement sequence, compound
 statement)?
3. How should the meaning of nested selectors
 be specified?

Single-Way Examples

 FORTRAN IF : IF (boolean_expr) statement

 Problem: can select only a single statement; to
 select more, a goto must be used, as in the
 following example

Copyright © 1998 by Addison Wesley Longman, Inc. 3

Chapter 7

 FORTRAN example:

 IF (.NOT. condition) GOTO 20
 ...
 ...
 20 CONTINUE

ALGOL 60 if:

 if (boolean_expr) then
 begin
 ...
 end

Two-way Selector Examples

 ALGOL 60 if :

 if (boolean_expr)
 then statement (the then clause)
 else statement (the else clause)

 - The statements could be single or compound

Copyright © 1998 by Addison Wesley Longman, Inc. 4

Chapter 7
Nested Selectors

 e.g. (Pascal) if ... then
 if ... then
 ...
 else ...

 Which then gets the else ?

 Pascal's rule: else goes with the nearest then

 ALGOL 60's solution - disallow direct nesting

 if ... then if ... then
 begin begin
 if ... if ... then ...
 then ... end
 else ... else ...
 end

Copyright © 1998 by Addison Wesley Longman, Inc. 5

Chapter 7

FORTRAN 77, Ada, Modula-2 solution - closing
 special words

e.g. (Ada)

 if ... then if ... then
 if ... then if ... then

 else end if
 ... else
 end if ...
 end if end if

Advantage: flexibility and readability

Modula-2 uses the same closing special word for
 for all control structures (END)

 - This results in poor readability

Copyright © 1998 by Addison Wesley Longman, Inc. 6

Chapter 7
Multiple Selection Constructs

Design Issues:

1. What is the form and type of the control
 expression?
2. What segments are selectable (single,
 compound, sequential)?
3. Is the entire construct encapsulated?
4. Is execution flow through the structure restricted
 to include just a single selectable segment?
5. What is done about unrepresented expression
 values?

Early Multiple Selectors :

 1. FORTRAN arithmetic IF (a three-way selector)
 IF (arithmetic expression) N1, N2, N3

 Bad aspects:
 - Not encapsulated (selectable segments could
 be anywhere)
 - Segments require GOTOs

2. FORTRAN computed GOTO and assigned GOTO

Copyright © 1998 by Addison Wesley Longman, Inc. 7

Chapter 7
Modern Multiple Selectors

1. Pascal case (from Hoare's contribution to
 ALGOL W)

 case expression of
 constant_list_1 : statement_1;
 ...
 constant_list_n : statement_n
 end

 Design choices:
 1. Expression is any ordinal type
 (int , boolean , char , enum)
 2. Segments can be single or compound
 3. Construct is encapsulated
 4. Only one segment can be executed per
 execution of the construct
 5. In Wirth's Pascal, result of an unrepresented
 control expression value is undefined
 (In 1984 ISO Standard, it is a runtime error)

 - Many dialects now have otherwise or else

 clause

Copyright © 1998 by Addison Wesley Longman, Inc. 8

Chapter 7
2. The C and C++ switch

 switch (expression) {

 constant_expression_1 : statement_1;
 ...
 constant_expression_n : statement_n;
 [default : statement_n+1]
 }

Design Choices: (for switch)

 1. Control expression can be only an integer type
 2. Selectable segments can be statement
 sequences, blocks, or compound statements
 3. Construct is encapsulated
 4. Any number of segments can be executed in
 one execution of the construct (there is no
 implicit branch at the end of selectable
 segments)
 5. default clause is for unrepresented values (if
 there is no default , the whole statement does
 nothing)

- Design choice 4 is a trade-off between
 reliability and flexibility (convenience)
 - To avoid it, the programmer must supply a
 break statement for each segment

Copyright © 1998 by Addison Wesley Longman, Inc. 9

Chapter 7
3. Ada's case is similar to Pascal's case , except:

 1. Constant lists can include:
 - Subranges e.g., 10..15

 - Boolean OR operators
 e.g., 1..5 | 7 | 15..20

 2. Lists of constants must be exhaustive
 - Often accomplished with others clause
 - This makes it more reliable

Multiple Selectors can appear as direct extensions
 to two-way selectors, using else-if clauses
 (ALGOL 68, FORTRAN 77, Modula-2, Ada)
 Ada:
 if ...
 then ...

elsif ...
 then ...
elsif ...
 then ...
 else ...
end if

- Far more readable than deeply nested if 's
- Allows a boolean gate on every selectable group

Copyright © 1998 by Addison Wesley Longman, Inc. 10

Chapter 7
Iterative Statements
 - The repeated execution of a statement or
 compound statement is accomplished either by
 iteration or recursion; here we look at iteration,
 because recursion is unit-level control

General design Issues for iteration control
 statements:
 1. How is iteration controlled?
 2. Where is the control mechanism in the loop?

Counter-Controlled Loops

Design Issues:

 1. What is the type and scope of the loop var?
 2. What is the value of the loop var at loop
 termination?
 3. Should it be legal for the loop var or loop
 parameters to be changed in the loop body,
 and if so, does the change affect loop control?
 4. Should the loop parameters be evaluated only
 once, or once for every iteration?

Copyright © 1998 by Addison Wesley Longman, Inc. 11

Chapter 7
1. FORTRAN 77 and 90

 - Syntax: DO label var = start, finish [, stepsize]

 - Stepsize can be any value but zero
 - Parameters can be expressions

 - Design choices:
 1. Loop var can be INTEGER, REAL, or DOUBLE

 2. Loop var always has its last value
 3. The loop var cannot be changed in the loop, but
 the parameters can; because they are evaluated
 only once, it does not affect loop control
 4. Loop parameters are evaluated only once

 FORTRAN 90’s Other DO

 - Syntax:
 [name:] DO variable = initial, terminal [, stepsize]
 …
 END DO [name]

 - Loop var must be an INTEGER

Copyright © 1998 by Addison Wesley Longman, Inc. 12

Chapter 7
2. ALGOL 60

- Syntax: for var := <list_of_stuff> do statement
 where <list_of_stuff> can have:
 - list of expressions
 - expression step expression until expression
 - expression while boolean_expression

 for index := 1 step 2 until 50,
 60, 70, 80,
 index + 1 until 100 do

 (index = 1, 3, 5, 7, ..., 49, 60, 70, 80,
 81, 82, ..., 100)

- ALGOL 60 Design choices:
 1. Control expression can be int or real ; its
 scope is whatever it is declared to be
 2. Control var has its last assigned value after
 loop termination
 3. The loop var cannot be changed in the loop,
 but the parameters can, and when they are, it
 affects loop control
 4. Parameters are evaluated with every iteration,
 making it very complex and difficult to read

Copyright © 1998 by Addison Wesley Longman, Inc. 13

Chapter 7
 3. Pascal

 - Syntax:
 for variable := initial (to | downto) final do
 statement

 - Design Choices:
 1. Loop var must be an ordinal type of usual scope
 2. After normal termination, loop var is undefined
 3. The loop var cannot be changed in the loop; the
 loop parameters can be changed, but they are
 evaluated just once, so it does not affect loop
 control
 4. Just once

4. Ada

 - Syntax:

 for var in [reverse] discrete_range loop
 ...
 end loop

Copyright © 1998 by Addison Wesley Longman, Inc. 14

Chapter 7

 Ada Design choices:

 1. Type of the loop var is that of the discrete range;
 its scope is the loop body (it is implicitly
 declared)
 2. The loop var does not exist outside the loop
 3. The loop var cannot be changed in the loop,
 but the discrete range can; it does not affect
 loop control
 4. The discrete range is evaluated just once

5. C

 - Syntax:
 for ([expr_1] ; [expr_2] ; [expr_3]) statement

 - The expressions can be whole statements, or even
 statement sequences, with the statements
 separated by commas
 - The value of a multiple-statement expression is
 the value of the last statement in the expression
 e.g.,
 for (i = 0, j = 10; j == i; i++) ...

Copyright © 1998 by Addison Wesley Longman, Inc. 15

Chapter 7
- If the second expression is absent, it is an infinite
 loop

 C Design Choices:

 1. There is no explicit loop var
 2. Irrelevant
 3. Everything can be changed in the loop
 4. Pretest
 5. The first expression is evaluated once, but the
 other two are evaluated with each iteration

 - This loop statement is the most flexible

6. C++
 - Differs from C in two ways:
 1. The control expression can also be Boolean
 2. The initial expression can include variable
 definitions (scope is from the definition to
 the end of the function in which it is defined)

7. Java
 - Differs from C++ in two ways:
 1. Control expression must be Boolean
 2. Scope of variables defined in the initial
 expression is only the loop body

Copyright © 1998 by Addison Wesley Longman, Inc. 16

Chapter 7

Logically-Controlled Loops

 - Design Issues:
 1. Pretest or postest?
 2. Should this be a special case of the counting
 loop statement (or a separate statement)?

 - Language Examples:

 1. Pascal has separate pretest and posttest
 logical loop statements (while -do and
 repeat -until)

 2. C and C++ also have both, but the control
 expression for the posttest version is treated
 just like in the pretest case (while - do and
 do - while)

 3 Java is like C, except the control expression
 must be Boolean (and the body can only be
 entered at the beginning--Java has no goto)

 4. Ada has a pretest version, but no posttest

 5. FORTRAN 77 and 90 have neither

Copyright © 1998 by Addison Wesley Longman, Inc. 17

Chapter 7

User-Located Loop Control Mechanisms

- Design issues:

 1. Should the conditional be part of the exit?
 2. Should the mechanism be allowed in an already
 controlled loop?
 3. Should control be transferable out of more than
 one loop?

 Examples:

 1. Ada - conditional or unconditional; for any loop;
 any number of levels

 for ... loop LOOP1:
 ... while ... loop
 exit when
 ... LOOP2:
 end loop for ... loop
 ...
 exit LOOP1 when ..
 ...
 end loop LOOP2;
 ...
 end loop LOOP1;

Copyright © 1998 by Addison Wesley Longman, Inc. 18

Chapter 7
 2. C , C++, and Java - break

 Unconditional; for any loop or switch ;
 one level only (Java’s can have a label)

 There is also has a continue statement for
 loops; it skips the remainder of this iteration,
 but does not exit the loop

 3. FORTRAN 90 - EXIT

 Unconditional; for any loop, any number of
 levels

 FORTRAN 90 also has CYCLE, which has the
 same semantics as C's continue

Iteration Based on Data Structures
 - Concept: use order and number of elements
 of some data structure to control iteration

 - Control mechanism is a call to a function that
 returns the next element in some chosen order,
 if there is one; else exit loop

 C's for can be used to build a user-defined
 iterator
 e.g. for (p=hdr; p; p=next(p)) { ... }

Copyright © 1998 by Addison Wesley Longman, Inc. 19

Chapter 7

 - Perl has a built-in iterator for arrays and hashes
 e.g.,
 foreach $name (@names) { print $name }

Unconditional Branching

 Problem: readability

 - Some languages do not have them:e.g., Modula-2
 and Java

Label forms:

 1. Unsigned int constants: Pascal (with colon)
 FORTRAN (no colon)
 2. Identifiers with colons: ALGOL 60, C
 3. Identifiers in << ... >> : Ada
 4. Variables as labels: PL/I
 - Can be assigned values and passed as
 parameters
 - Highly flexible, but make programs impossible
 to read and difficult to implement

Copyright © 1998 by Addison Wesley Longman, Inc. 20

Chapter 7

Restrictions on Pascal's gotos:

 A statement group is either a compound statement
 or the body of a repeat-until

The target of a goto cannot be a statement in a
 statement group that is not active

 - Means the target can never be in a statement
 group that is at the same level or is nested more
 deeply than the one with the goto

 - An important remaining problem: the target can
 be in any enclosing subprogram scope, as long
 as the statement is not in a statement group

 - This means that a goto can terminate any
 number of subprograms

Copyright © 1998 by Addison Wesley Longman, Inc. 21

Chapter 7
Guarded Commands (Dijkstra, 1975)

 Purpose: to support a new programming
 methodology (verification during program
 development)

1. Selection: if <boolean> -> <statement>
 [] <boolean> -> <statement>
 ...
 [] <boolean> -> <statement>
 fi

 -Semantics: when this construct is reached,
 - Evaluate all boolean expressions
 - If more than one are true, choose one
 nondeterministically
 - If none are true, it is a runtime error

 Idea: if the order of evaluation is not important,
 the program should not specify one

 See book examples (p. 319)!

Copyright © 1998 by Addison Wesley Longman, Inc. 22

Chapter 7
2. Loops do <boolean> -> <statement>
 [] <boolean> -> <statement>
 ...
 [] <boolean> -> <statement>
 od

 Semantics: For each iteration:
 - Evaluate all boolean expressions
 - If more than one are true, choose one
 nondeterministically; then start loop again
 - If none are true, exit loop

 See book example (p. 320)

 Connection between control statements and
 program verification is intimate
 - Verification is impossible with gotos
 - Verification is possible with only selection and
 logical pretest loops
 - Verification is relatively simple with only
 guarded commands

Chapter Conclusion: Choice of control statements
 beyond selection and logical pretest loops is a
 trade-off between language size and writability

