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Chapter 3
Syntax  - the form or structure of the expressions,
               statements, and program units

Semantics  - the meaning of the expressions, 
                     statements, and program units

Who must use language definitions?
   1. Other language designers
   2. Implementors
   3. Programmers (the users of the language)

A sentence  is a string of characters over some 
  alphabet
A language  is a set of sentences
A lexeme  is the lowest level syntactic unit of a 
  language (e.g., *, sum , begin )
A token  is a category of lexemes (e.g., identifier)

Formal approaches to describing 
  syntax:

     1. Recognizers - used in compilers
     2. Generators - what we'll study
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Context-Free Grammars
  - Developed by Noam Chomsky in the mid-1950s
   - Language generators, meant to describe the 
      syntax of natural languages

  - Define a class of languages called context-free
      languages

Backus Normal Form (1959)
   - Invented by John Backus to describe Algol 58
   - BNF is equivalent to context-free grammars 

A metalanguage  is a language used to describe
 another language.

In BNF,  abstractions  are used to represent classes 
 of syntactic structures--they act like syntactic 
 variables (also called nonterminal symbols )

e.g.

<while_stmt> -> while <logic_expr> do <stmt>

This is a rule ; it describes the structure of a while  
 statement
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A rule has a left-hand side (LHS) and a right-hand
  side (RHS), and consists of terminal  and 
  nonterminal  symbols

A grammar  is a finite nonempty set of rules

An abstraction (or nonterminal symbol) can have 
  more than one RHS

<stmt> -> <single_stmt> 
         | begin <stmt_list> end

Syntactic lists are described in BNF using recursion

<ident_list> -> ident
               | ident, <ident_list>

A derivation  is a repeated application of rules, 
starting with the start symbol and ending with a 
sentence (all terminal symbols)
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An example grammar:

<program> -> <stmts>
<stmts> -> <stmt> | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

An example derivation:

<program> => <stmts> => <stmt> 
          => <var> = <expr> => a = <expr> 
          => a = <term> + <term>
          => a = <var> + <term> 
          => a = b + <term>
          => a = b + const

 

Every string of symbols in the derivation is a 
  sentential form
A sentence  is a sentential form that has only
  terminal symbols
A leftmost derivation  is one in which the leftmost
  nonterminal in each sentential form is the one that
  is expanded
A derivation may be neither leftmost nor rightmost
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               <program>

             
                <stmts>

                 <stmt>

            <var>  =     <expr>

             a      <term>  +   <term>

                            
                    <var>       const

                      b    

A grammar is  ambiguous  iff it generates a
 sentential form that has two or more distinct parse
 trees

A parse tree is a hierarchical representation of
 a derivation
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An ambiguous expression grammar:
<expr> -> <expr> <op> <expr>  |  const
<op> -> /  |  -

      <expr>                     <expr>

<expr>  <op> <expr>       <expr> <op>   <expr>

<expr><op><expr>                      <expr><op><expr>     

const  -  const       /  const   const - const / const  

If we use the parse tree to indicate precedence 
levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term>  |  <term>
<term> -> <term> / const  |  const

                        <expr>

               <expr>     -          <term>

               <term>         <term>   /      const

               const          const

     !
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<expr> => <expr> - <term> => <term> - <term>
       => const - <term> 
       => const - <term> / const
       => const - const / const

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr>  |  const  (ambiguous)

<expr> -> <expr> + const  |  const  (unambiguous)

                  <expr>

       <expr>        +     const

   <expr> +  const

   const

Extended BNF (just abbreviations):
1. Optional parts are placed in brackets ( [] )
     <proc_call> -> ident [ ( <expr_list>)]

2. Put alternative parts of RHSs in parentheses and
    separate them with vertical bars 
    <term> -> <term> (+ | -) const
3. Put repetitions (0 or more) in braces ( {} )
     <ident> -> letter {letter | digit}
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BNF:

<expr> -> <expr> + <term>
         | <expr> - <term>
         | <term>
<term> -> <term> * <factor>
         | <term> / <factor>
         | <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>}

Syntax Graphs - put the terminals in circles or 
ellipses and put the nonterminals in rectangles; 
connect with lines with arrowheads
    e.g., Pascal type declarations

                            type_identifier

            (        identifier          )
 
                          ,

       constant          ..        constant
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Recursive Descent Parsing

  - Parsing is the process of tracing or constructing
     a parse tree for a given input string
 
 - Parsers usually do not analyze lexemes; that is
     done by a lexical analyzer, which is called by the
     parser
 
 - A recursive descent parser traces out a parse 
     tree in top-down order; it is a top-down parser
 
 - Each nonterminal in the grammar has a 
     subprogram associated with it; the subprogram
     parses all sentential forms that the nonterminal
     can generate
 
 - The recursive descent parsing subprograms are
     built directly from the grammar rules
 
 - Recursive descent parsers, like other top-down
     parsers, cannot be built from left-recursive
     grammars
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Example: For the grammar:

   <term> -> <factor> {(* | /) <factor>}

  We could use the following recursive  descent
   parsing subprogram (this one is written in C)

  void term() { 
    factor();  /* parse the first factor*/
    while (next_token == ast_code || 
          next_token == slash_code) {
      lexical();  /* get next token */
      factor();  /* parse the next factor */
    }
  } 

Static semantics   ( have nothing to do with
                                         meaning)
    Categories:

      1. Context-free but cumbersome (e.g. type 
           checking)
      2. Noncontext-free (e.g. variables must be 
           declared before they are used)
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Attribute Grammars  (AGs) (Knuth, 1968)

   - Cfgs cannot describe all of the syntax of
      programming languages
  
 - Additions to cfgs to carry some semantic info
      along through parse trees

 Primary value of AGs:
   1. Static semantics specification
   2. Compiler design(static semantics checking)

Def: An attribute grammar is a cfg G = (S, N, T, P)
  with the following additions:

  1. For each grammar symbol x there is a set A(x) of
      attribute values

   2. Each rule has a set of functions that define
       certain attributes of the nonterminals in the rule

   3. Each rule has a (possibly empty) set of
       predicates to check for attribute consistency  
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Let   X0 -> X1 ... Xn  be a rule.

Functions of the form S(X 0) = f(A(X1), ... A(Xn))
 define synthesized attributes

Functions of the form I(X j) = f(A(X0), ... , A(Xn)), for
  i <= j <= n, define inherited attributes

Initially, there are intrinsic attributes on the leaves

Example:  expressions of the form  id + id

   - id 's can be either int_type or real_type
   - types of the two  id 's must be the same
   - type of the expression must match it's expected
     type

BNF:

         <expr> -> <var> + <var>
     <var> -> id

Attributes:

  actual_type - synthesized for <var> and <expr>

  expected_type - inherited for <expr>   
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Attribute Grammar:

1. Syntax rule:  <expr> -> <var>[1] + <var>[2]

    Semantic rules: 
     <var>[1]. env ← <expr>. env
    <var>[2]. env ← <expr>. env
    <expr>. actual_type ← <var>[1]. actual_type
  Predicate: 
     <var>[1]. actual_type = <var>[2]. actual_type
    <expr>. expected_type = <expr>. actual_type

2. Syntax rule:   <var> -> id

   Semantic rule:
    <var>. actual_type <- lookup ( id, <var>. env)

How are attribute values computed?

1. If all attributes were inherited, the tree could be
    decorated in top-down order.
2. If all attributes were synthesized, the tree could be
    decorated in bottom-up order.
3. In many cases, both kinds of attributes are used,
    and it is some combination of top-down and
    bottom-up that must be used.
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1. <expr>. env  ← inherited from parent
   <expr>. expected_type ← inherited from parent

2. <var>[1]. env ← <expr>. env
  <var>[2]. env ← <expr>. env

3. <var>[1]. actual_type ← lookup ( A, <var>[1]. env)
  <var>[2]. actual_type ← lookup ( B, <var>[2]. env)
  <var>[1]. actual_type =? <var>[2]. actual_type

4. <expr>. actual_type ← <var>[1]. actual_type
   <expr>. actual_type =? <expr>. expected_type

Dynamic Semantics

 - No single widely acceptable notation or formalism
    for describing semantics

I. Operational Semantics
   - Describe the meaning of a program by executing
     its statements on a machine, either simulated or 
     actual.  The change in the state of the machine 
     (memory, registers, etc.) defines the meaning of 
     the statement
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- To use operational semantics for a high-level 
   language,  a virtual machine in needed

- A hardware  pure interpreter would be too expensive

- A software  pure interpreter also has problems:
 
  1. The detailed characteristics of the particular
       computer would make actions difficult to 
       understand
  2. Such a semantic definition would be machine-
       dependent

- A better alternative : A complete computer 
                                      simulation

- The process:
   1. Build a translator (translates source code to the
       machine code of an idealized computer)
   2. Build a simulator for the idealized computer

- Evaluation of operational semantics:
   - Good if used informally
   - Extremely complex if used formally (e.g., VDL)
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Axiomatic Semantics

- Based on formal logic (first order predicate
                                           calculus)
- Original purpose:  formal program verification
- Approach:  Define axioms or inference rules for
                      each statement type in the language
                      (to allow transformations of expressions 
                      to other expressions)

- The expressions are called assertions

- An assertion before a statement (a precondition )
    states the relationships and constraints among 
    variables that are true at that point in execution

- An assertion following a statement is a 
    postcondition
- A weakest precondition is the least restrictive
    precondition that will guarantee the postcondition

- Pre-post form:  {P} statement {Q}

- An example:  a := b + 1  {a > 1}
      One possible precondition: {b > 10}
      Weakest precondition:         {b > 0}
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Program proof process:  The postcondition for the
  whole program is the desired results.  Work back
  through the program to the first statement.  If the
  precondition on the first statement is the same as
  the program spec, the program is correct.

- An axiom for assignment statements:

   {Qx->E} x := E {Q}
 
- The Rule of Consequence:

   {P} S {Q}, P' => P, Q => Q'

{P'} S {Q'}

- An inference rule for sequences
  - For a sequence S1;S2:
        

{P1} S1 {P2}
{P2} S2 {P3}

     the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}

        {P1} S1; S2 {P3}



Copyright © 1998 by Addison Wesley Longman, Inc.  18

Chapter 3
- An inference rule for logical pretest loops
    For the loop construct:

  {P} while B do S end {Q}

      the inference rule is:

(I and B) S {I}

{I} while B do S {I and (not B)}

where I is the loop invariant.

Characteristics of the loop invariant

   I must meet the following conditions:

   1. P => I    (the loop invariant must be true initially)
   2. {I} B {I}    (evaluation of the Boolean must not
                        change the validity of I)
   3. {I and B} S {I}    (I is not changed by executing 
                                    the body of the loop)
   4. (I and (not B)) => Q     (if I is true and B is false, 
                                             Q is implied)
   5. The loop terminates     (this can be difficult to
                                               prove)
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- The loop invariant I is a weakened version of the
   loop postcondition, and it is also a precondition.

- I must be weak enough to be satisfied prior to the
   beginning of the loop, but when combined with the
   loop exit condition, it must be strong enough to 
   force the truth of the postcondition

- Evaluation of axiomatic semantics:

   1. Developing axioms or inference rules for all of
       the statements in a language is difficult

   2. It is a good tool for correctness proofs, and an
       excellent framework for reasoning about 
       programs, but it is not as useful for language
       users and compiler writers

Denotational Semantics

- Based on recursive function theory
- The most abstract semantics description method
- Originally developed by Scott and Strachey (1970)
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- The process of building a denotational spec for a
  language:
   1. Define a mathematical object for each language
       entity
   2. Define a function that maps instances of the
       language entities onto instances of the
       corresponding mathematical objects

- The meaning of language constructs are defined
   by only the values of the program's variables

- The difference between denotational and
   operational semantics: In operational semantics,
   the state changes are defined by coded
   algorithms; in denotational semantics, they are
   defined by rigorous mathematical functions

- The state  of a program is the values of all its
   current variables
          s = {<i 1, v1>, <i2, v2>, …, <in, vn>}

- Let VARMAP be a function that, when given a 
  variable name and a state, returns the current 
  value of the variable
         VARMAP(i j, s) = v j
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1. Decimal Numbers

    <dec_num> →  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
                              | <dec_num> (0 | 1 | 2 | 3 | 4 |
                                              5 | 6 | 7 | 8 | 9)

    Mdec('0') = 0,  Mdec ('1') = 1, …,  Mdec ('9') = 9
    Mdec (<dec_num> '0') = 10 * M dec (<dec_num>)
    Mdec (<dec_num> '1’) = 10 * M dec (<dec_num>) + 1
    …
    Mdec (<dec_num> '9') = 10 * M dec (<dec_num>) + 9
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2. Expressions

  Me(<expr>, s) ∆=
    case <expr> of
      <dec_num> => M dec(<dec_num>, s)
      <var> => 
           if VARMAP(<var>, s) = undef
                then error
                else VARMAP(<var>, s)
     <binary_expr> => 
          if (Me(<binary_expr>.<left_expr>, s) = undef
                OR Me(<binary_expr>.<right_expr>, s) =
                              undef)
               then error

else
   if (<binary_expr>.<operator> = ë+í then
      Me(<binary_expr>.<left_expr>, s) + 
             Me(<binary_expr>.<right_expr>, s)
    else Me(<binary_expr>.<left_expr>, s) * 
       Me(<binary_expr>.<right_expr>, s)
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3 Assignment Statements

  Ma(x := E, s) ∆=
      if Me(E, s) = error
         then error
         else s’ = {<i 1’,v1’>,<i2’,v2’>,...,<i n’,vn’>},
                 where for j = 1, 2, ..., n,
                     vj’ = VARMAP(i j, s) if i j <> x
                          = Me(E, s) if i j = x

4 Logical Pretest Loops

   Ml(while B do L, s) ∆= 
     if Mb(B, s) = undef
       then error
       else if M b(B, s) = false
                  then s
                  else if M sl(L, s) = error
                              then error
                              else M l(while B do L, M sl(L, s))
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- The meaning of the loop is the value of the
   program variables after the statements in the loop
   have been executed the prescribed number of 
   times, assuming there have been no errors

- In essence, the loop has been converted from 
  iteration to recursion, where the recursive control 
  is mathematically defined by other recursive state
  mapping functions

   - Recursion, when compared to iteration, is easier
     to describe with mathematical rigor

Evaluation of denotational semantics:

- Can be used to prove the correctness of programs

- Provides a rigorous way to think about programs

- Can be an aid to language design

- Has been used in compiler generation systems 


