
Copyright © 1998 by Addison Wesley Longman, Inc. 1

Chapter 3
Syntax - the form or structure of the expressions,
 statements, and program units

Semantics - the meaning of the expressions,
 statements, and program units

Who must use language definitions?
 1. Other language designers
 2. Implementors
 3. Programmers (the users of the language)

A sentence is a string of characters over some
 alphabet
A language is a set of sentences
A lexeme is the lowest level syntactic unit of a
 language (e.g., *, sum , begin)
A token is a category of lexemes (e.g., identifier)

Formal approaches to describing
 syntax:

 1. Recognizers - used in compilers
 2. Generators - what we'll study

Copyright © 1998 by Addison Wesley Longman, Inc. 2

Chapter 3
Context-Free Grammars
 - Developed by Noam Chomsky in the mid-1950s
 - Language generators, meant to describe the
 syntax of natural languages

 - Define a class of languages called context-free
 languages

Backus Normal Form (1959)
 - Invented by John Backus to describe Algol 58
 - BNF is equivalent to context-free grammars

A metalanguage is a language used to describe
 another language.

In BNF, abstractions are used to represent classes
 of syntactic structures--they act like syntactic
 variables (also called nonterminal symbols)

e.g.

<while_stmt> -> while <logic_expr> do <stmt>

This is a rule ; it describes the structure of a while
 statement

Copyright © 1998 by Addison Wesley Longman, Inc. 3

Chapter 3
A rule has a left-hand side (LHS) and a right-hand
 side (RHS), and consists of terminal and
 nonterminal symbols

A grammar is a finite nonempty set of rules

An abstraction (or nonterminal symbol) can have
 more than one RHS

<stmt> -> <single_stmt>
 | begin <stmt_list> end

Syntactic lists are described in BNF using recursion

<ident_list> -> ident
 | ident, <ident_list>

A derivation is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)

Copyright © 1998 by Addison Wesley Longman, Inc. 4

Chapter 3
An example grammar:

<program> -> <stmts>
<stmts> -> <stmt> | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

An example derivation:

<program> => <stmts> => <stmt>
 => <var> = <expr> => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

Every string of symbols in the derivation is a
 sentential form
A sentence is a sentential form that has only
 terminal symbols
A leftmost derivation is one in which the leftmost
 nonterminal in each sentential form is the one that
 is expanded
A derivation may be neither leftmost nor rightmost

Copyright © 1998 by Addison Wesley Longman, Inc. 5

Chapter 3

 <program>

 <stmts>

 <stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b

A grammar is ambiguous iff it generates a
 sentential form that has two or more distinct parse
 trees

A parse tree is a hierarchical representation of
 a derivation

Copyright © 1998 by Addison Wesley Longman, Inc. 6

Chapter 3
An ambiguous expression grammar:
<expr> -> <expr> <op> <expr> | const
<op> -> / | -

 <expr> <expr>

<expr> <op> <expr> <expr> <op> <expr>

<expr><op><expr> <expr><op><expr>

const - const / const const - const / const

If we use the parse tree to indicate precedence
levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

 <expr>

 <expr> - <term>

 <term> <term> / const

 const const

 !

Copyright © 1998 by Addison Wesley Longman, Inc. 7

Chapter 3
<expr> => <expr> - <term> => <term> - <term>
 => const - <term>
 => const - <term> / const
 => const - const / const

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

 <expr>

 <expr> + const

 <expr> + const

 const

Extended BNF (just abbreviations):
1. Optional parts are placed in brackets ([])
 <proc_call> -> ident [(<expr_list>)]

2. Put alternative parts of RHSs in parentheses and
 separate them with vertical bars
 <term> -> <term> (+ | -) const
3. Put repetitions (0 or more) in braces ({})
 <ident> -> letter {letter | digit}

Copyright © 1998 by Addison Wesley Longman, Inc. 8

Chapter 3
BNF:

<expr> -> <expr> + <term>
 | <expr> - <term>
 | <term>
<term> -> <term> * <factor>
 | <term> / <factor>
 | <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}
<term> -> <factor> {(* | /) <factor>}

Syntax Graphs - put the terminals in circles or
ellipses and put the nonterminals in rectangles;
connect with lines with arrowheads
 e.g., Pascal type declarations

 type_identifier

 (identifier)

 ,

 constant .. constant

Copyright © 1998 by Addison Wesley Longman, Inc. 9

Chapter 3
Recursive Descent Parsing

 - Parsing is the process of tracing or constructing
 a parse tree for a given input string

 - Parsers usually do not analyze lexemes; that is
 done by a lexical analyzer, which is called by the
 parser

 - A recursive descent parser traces out a parse
 tree in top-down order; it is a top-down parser

 - Each nonterminal in the grammar has a
 subprogram associated with it; the subprogram
 parses all sentential forms that the nonterminal
 can generate

 - The recursive descent parsing subprograms are
 built directly from the grammar rules

 - Recursive descent parsers, like other top-down
 parsers, cannot be built from left-recursive
 grammars

Copyright © 1998 by Addison Wesley Longman, Inc. 10

Chapter 3
Example: For the grammar:

 <term> -> <factor> {(* | /) <factor>}

 We could use the following recursive descent
 parsing subprogram (this one is written in C)

 void term() {
 factor(); /* parse the first factor*/
 while (next_token == ast_code ||
 next_token == slash_code) {
 lexical(); /* get next token */
 factor(); /* parse the next factor */
 }
 }

Static semantics (have nothing to do with
 meaning)
 Categories:

 1. Context-free but cumbersome (e.g. type
 checking)
 2. Noncontext-free (e.g. variables must be
 declared before they are used)

Copyright © 1998 by Addison Wesley Longman, Inc. 11

Chapter 3

Attribute Grammars (AGs) (Knuth, 1968)

 - Cfgs cannot describe all of the syntax of
 programming languages

 - Additions to cfgs to carry some semantic info
 along through parse trees

 Primary value of AGs:
 1. Static semantics specification
 2. Compiler design(static semantics checking)

Def: An attribute grammar is a cfg G = (S, N, T, P)
 with the following additions:

 1. For each grammar symbol x there is a set A(x) of
 attribute values

 2. Each rule has a set of functions that define
 certain attributes of the nonterminals in the rule

 3. Each rule has a (possibly empty) set of
 predicates to check for attribute consistency

Copyright © 1998 by Addison Wesley Longman, Inc. 12

Chapter 3

Let X0 -> X1 ... Xn be a rule.

Functions of the form S(X 0) = f(A(X1), ... A(Xn))
 define synthesized attributes

Functions of the form I(X j) = f(A(X0), ... , A(Xn)), for
 i <= j <= n, define inherited attributes

Initially, there are intrinsic attributes on the leaves

Example: expressions of the form id + id

 - id 's can be either int_type or real_type
 - types of the two id 's must be the same
 - type of the expression must match it's expected
 type

BNF:

 <expr> -> <var> + <var>
 <var> -> id

Attributes:

 actual_type - synthesized for <var> and <expr>

 expected_type - inherited for <expr>

Copyright © 1998 by Addison Wesley Longman, Inc. 13

Chapter 3
Attribute Grammar:

1. Syntax rule: <expr> -> <var>[1] + <var>[2]

 Semantic rules:
 <var>[1]. env ← <expr>. env
 <var>[2]. env ← <expr>. env
 <expr>. actual_type ← <var>[1]. actual_type
 Predicate:
 <var>[1]. actual_type = <var>[2]. actual_type
 <expr>. expected_type = <expr>. actual_type

2. Syntax rule: <var> -> id

 Semantic rule:
 <var>. actual_type <- lookup (id, <var>. env)

How are attribute values computed?

1. If all attributes were inherited, the tree could be
 decorated in top-down order.
2. If all attributes were synthesized, the tree could be
 decorated in bottom-up order.
3. In many cases, both kinds of attributes are used,
 and it is some combination of top-down and
 bottom-up that must be used.

Copyright © 1998 by Addison Wesley Longman, Inc. 14

Chapter 3
1. <expr>. env ← inherited from parent
 <expr>. expected_type ← inherited from parent

2. <var>[1]. env ← <expr>. env
 <var>[2]. env ← <expr>. env

3. <var>[1]. actual_type ← lookup (A, <var>[1]. env)
 <var>[2]. actual_type ← lookup (B, <var>[2]. env)
 <var>[1]. actual_type =? <var>[2]. actual_type

4. <expr>. actual_type ← <var>[1]. actual_type
 <expr>. actual_type =? <expr>. expected_type

Dynamic Semantics

 - No single widely acceptable notation or formalism
 for describing semantics

I. Operational Semantics
 - Describe the meaning of a program by executing
 its statements on a machine, either simulated or
 actual. The change in the state of the machine
 (memory, registers, etc.) defines the meaning of
 the statement

Copyright © 1998 by Addison Wesley Longman, Inc. 15

Chapter 3

- To use operational semantics for a high-level
 language, a virtual machine in needed

- A hardware pure interpreter would be too expensive

- A software pure interpreter also has problems:

 1. The detailed characteristics of the particular
 computer would make actions difficult to
 understand
 2. Such a semantic definition would be machine-
 dependent

- A better alternative : A complete computer
 simulation

- The process:
 1. Build a translator (translates source code to the
 machine code of an idealized computer)
 2. Build a simulator for the idealized computer

- Evaluation of operational semantics:
 - Good if used informally
 - Extremely complex if used formally (e.g., VDL)

Copyright © 1998 by Addison Wesley Longman, Inc. 16

Chapter 3
Axiomatic Semantics

- Based on formal logic (first order predicate
 calculus)
- Original purpose: formal program verification
- Approach: Define axioms or inference rules for
 each statement type in the language
 (to allow transformations of expressions
 to other expressions)

- The expressions are called assertions

- An assertion before a statement (a precondition)
 states the relationships and constraints among
 variables that are true at that point in execution

- An assertion following a statement is a
 postcondition
- A weakest precondition is the least restrictive
 precondition that will guarantee the postcondition

- Pre-post form: {P} statement {Q}

- An example: a := b + 1 {a > 1}
 One possible precondition: {b > 10}
 Weakest precondition: {b > 0}

Copyright © 1998 by Addison Wesley Longman, Inc. 17

Chapter 3
Program proof process: The postcondition for the
 whole program is the desired results. Work back
 through the program to the first statement. If the
 precondition on the first statement is the same as
 the program spec, the program is correct.

- An axiom for assignment statements:

 {Qx->E} x := E {Q}

- The Rule of Consequence:

 {P} S {Q}, P' => P, Q => Q'

{P'} S {Q'}

- An inference rule for sequences
 - For a sequence S1;S2:

{P1} S1 {P2}
{P2} S2 {P3}

 the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}

 {P1} S1; S2 {P3}

Copyright © 1998 by Addison Wesley Longman, Inc. 18

Chapter 3
- An inference rule for logical pretest loops
 For the loop construct:

 {P} while B do S end {Q}

 the inference rule is:

(I and B) S {I}

{I} while B do S {I and (not B)}

where I is the loop invariant.

Characteristics of the loop invariant

 I must meet the following conditions:

 1. P => I (the loop invariant must be true initially)
 2. {I} B {I} (evaluation of the Boolean must not
 change the validity of I)
 3. {I and B} S {I} (I is not changed by executing
 the body of the loop)
 4. (I and (not B)) => Q (if I is true and B is false,
 Q is implied)
 5. The loop terminates (this can be difficult to
 prove)

Copyright © 1998 by Addison Wesley Longman, Inc. 19

Chapter 3
- The loop invariant I is a weakened version of the
 loop postcondition, and it is also a precondition.

- I must be weak enough to be satisfied prior to the
 beginning of the loop, but when combined with the
 loop exit condition, it must be strong enough to
 force the truth of the postcondition

- Evaluation of axiomatic semantics:

 1. Developing axioms or inference rules for all of
 the statements in a language is difficult

 2. It is a good tool for correctness proofs, and an
 excellent framework for reasoning about
 programs, but it is not as useful for language
 users and compiler writers

Denotational Semantics

- Based on recursive function theory
- The most abstract semantics description method
- Originally developed by Scott and Strachey (1970)

Copyright © 1998 by Addison Wesley Longman, Inc. 20

Chapter 3
- The process of building a denotational spec for a
 language:
 1. Define a mathematical object for each language
 entity
 2. Define a function that maps instances of the
 language entities onto instances of the
 corresponding mathematical objects

- The meaning of language constructs are defined
 by only the values of the program's variables

- The difference between denotational and
 operational semantics: In operational semantics,
 the state changes are defined by coded
 algorithms; in denotational semantics, they are
 defined by rigorous mathematical functions

- The state of a program is the values of all its
 current variables
 s = {<i 1, v1>, <i2, v2>, …, <in, vn>}

- Let VARMAP be a function that, when given a
 variable name and a state, returns the current
 value of the variable
 VARMAP(i j, s) = v j

Copyright © 1998 by Addison Wesley Longman, Inc. 21

Chapter 3
1. Decimal Numbers

 <dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 | <dec_num> (0 | 1 | 2 | 3 | 4 |
 5 | 6 | 7 | 8 | 9)

 Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9
 Mdec (<dec_num> '0') = 10 * M dec (<dec_num>)
 Mdec (<dec_num> '1’) = 10 * M dec (<dec_num>) + 1
 …
 Mdec (<dec_num> '9') = 10 * M dec (<dec_num>) + 9

Copyright © 1998 by Addison Wesley Longman, Inc. 22

Chapter 3
2. Expressions

 Me(<expr>, s) ∆=
 case <expr> of
 <dec_num> => M dec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) = undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) = undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

else
 if (<binary_expr>.<operator> = ë+í then
 Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr>.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)

Copyright © 1998 by Addison Wesley Longman, Inc. 23

Chapter 3
3 Assignment Statements

 Ma(x := E, s) ∆=
 if Me(E, s) = error
 then error
 else s’ = {<i 1’,v1’>,<i2’,v2’>,...,<i n’,vn’>},
 where for j = 1, 2, ..., n,
 vj’ = VARMAP(i j, s) if i j <> x
 = Me(E, s) if i j = x

4 Logical Pretest Loops

 Ml(while B do L, s) ∆=
 if Mb(B, s) = undef
 then error
 else if M b(B, s) = false
 then s
 else if M sl(L, s) = error
 then error
 else M l(while B do L, M sl(L, s))

Copyright © 1998 by Addison Wesley Longman, Inc. 24

Chapter 3
- The meaning of the loop is the value of the
 program variables after the statements in the loop
 have been executed the prescribed number of
 times, assuming there have been no errors

- In essence, the loop has been converted from
 iteration to recursion, where the recursive control
 is mathematically defined by other recursive state
 mapping functions

 - Recursion, when compared to iteration, is easier
 to describe with mathematical rigor

Evaluation of denotational semantics:

- Can be used to prove the correctness of programs

- Provides a rigorous way to think about programs

- Can be an aid to language design

- Has been used in compiler generation systems

