
Matchmaking Support for Dynamic Workflow Composition∗

Neil Chapman1, Simone A. Ludwig1, William Naylor2, Julian Padget2 and Omer F. Rana1

1School of Computer Science/Welsh eScience Centre, Cardiff University
2Department of Computer Science, University of Bath

Abstract

Service description and discovery offer complementary
challenges, but in both cases, the problem is finding the
right trade-off between accuracy and generality that will
result in a positive service identification. Discovery systems
have historically tended to focus on domain-specific tech-
niques using single sources of knowledge to help classify
queries against services, making both maintenance and ex-
tension difficult. The primary contribution of this paper is
the presentation of a generic brokerage framework based
on the use of plug-in components, that are themselves web
services. The framework has been developed in the con-
text of the KNOOGLE project, where the focus has been on
demonstrating support for (i) the discovery of Grid services
for the GridSAM job submission system and (ii) integration
with the Taverna workflow enactment system. However, the
broker itself is domain independent and it is the multiple
user-specified matchmaker plug-ins that act as sources of
domain-specific knowledge. The broker collects the results
of the matchmakers’ comparison of the query and service
and then applies a user-specified selection policy to deter-
mine the final choice of service. Thus a range of comprehen-
sive packaging of brokerage functionality becomes possible
through the use of supplied and user-defined matchers and
supplied or user-defined selection policies.

1 Introduction

Matchmaking and brokerage have been a topic of re-

search for some 10–15 years now although it is probably

the case that only in the latter half of this period has the is-

sue of the description of the semantics of the service come

to the fore through the uptake of XML (as a document struc-

turing mechanism) and OWL (as an ontology language). It

is notable that in all this time, few if any of the brokers

have seen use outside the domain or project in which they

∗A preliminary version of this paper appeared in the proceedings of the
UK eScience All Hands Meeting, Nottingham, September 2006 – under the
title “Service-Oriented Matchmaking and Brokerage”.

were developed. What this seems to indicate is that bro-

kers are typically domain-specific at least, and quite pos-

sibly project-specific as well, making them too fragile for

redeployment in new problem domains. Furthermore, most

of the literature (see section 6) focusses on how just one

matching technique may be used to identify candidate ser-

vices and rank them as meet the query criteria. These obser-

vations led us to the conclusion that it should be possible to

separate out brokerage function from brokerage operation

and that it would be valuable to enable clients to combine

the results of several matching schemes and then apply a

policy stated in terms of rules to determine a preferred ser-

vice.

Thus, we are in a position to describe a brokerage archi-

tecture that makes use of bespoke matchmakers and a high-

level selection policy, and that can be used stand-alone or in

the context of workflow enactment engines. Given a service

description, the broker is able to interact with a registry to

find suitable services, apply a range of matchers to compute

the degree of match between query and service and subse-

quently process the service match metrics using a selection

policy. The flexibility of the brokerage framework stems

from the fact that its architecture involves a component-

based approach, which allows the integration of capabili-

ties through the use of Web Services. Thus constructing

a new broker becomes a matter of composing a workflow

involving: (i) a range of sources of service descriptions;

(ii) a range of matching services that will accept a service

request and a service description and output a measure of

the relationship between the two; (iii) a selection policy that

uses the service match result information to determine the

best fit; (iv) a service to invoke the selected service and de-

liver the results. We demonstrate the broker functionality

through integration with the GridSAM job submission sys-

tem. The selection policy is used to determine which of the

services meet most closely some specified criteria. How-

ever, to include a human in the process, it is also possible

for such a decision to be taken by the user. Identifying tech-

niques for describing service properties and queries now be-

comes significant. Although keywords might help narrow

down the search, they do not offer the capability to describe

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.27

371

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.27

371

requirements such as the inputs/outputs wanted. Further-

more a service interface says little about its actual function;

for that we require a statement of the relationships between

the inputs and outputs, or more generally, statements of pre-

and post-conditions. We can therefore observe that each

service will have a functional interface (describing the in-

put/outputs needed to interact with it and their types) and

a non-functional interface (which identifies annotations re-

lated to the service made by other users and performance

data associated with the service). Being able to support se-

lection on both of these two interfaces provides a useful ba-

sis to distinguish between services.

Even when a service (or a composition of a set of ser-

vices) has been selected, it is quite likely that their inter-

faces are not entirely compatible. Hence, one service may

have more parameters than another, making it difficult to

undertake an exact comparison based just on their inter-

faces. Similarly, data types used within the interface of one

service may not fully match those of another. In such in-

stances, it would be necessary to identify mapping between

data types to determine a “degree” of match between the

services. Although the selection or even the on-the-fly con-

struction of shim services is something that could be ad-

dressed from the matchmaking perspective [5], we do not

discuss this issue further in this paper.

The essence of the contribution in this paper lies in ex-

posing and discussing the design choices that have been

made and considering whether there are any lessons more

generally for the architecture of (grid) middleware. The

novelty of the architecture described here is that by factor-

ing out a range of control and orchestration issues and plac-

ing them in a single customizable component, attention can

be focussed on specific and generic matching techniques,

with the assurance that the result can be plugged into a

brokerage framework, for both standalone use and within

workflow enactment systems. The development of the bro-

ker software is essentially completed and is now being inte-

grated into the OMII [23] software distribution. We briefly

reprise the requirements for brokerage that have driven this

work in section 2, then describe in detail the architecture

and design of the KNOOGLE broker [22] in section 3. We

follow this (section 5 with a description of the main func-

tionality of the broker and an illustration of its integration

into the Taverna workflow engine. The paper concludes

with some performance results (section 7) and a summary

of related work (section 6).

2 Broker Requirements

In two earlier projects, MONET [2] and GENSS [8], the

focus was on the discovery and selection of mathematical

web services based on semantic matching of the functional

relationships between inputs and outputs. One lesson from

this work was the potential importance of combining com-

plementary matching technologies in order to reach a better-

informed decision about the applicability of a given service.

This lead to the implementation (in GENSS) of a match-

maker that utilized several matchers and choose a particu-

lar service by combining the match scores from each of the

matchers [8]. In KNOOGLE, we have refined and general-

ized this approach by characterizing the matchmaking and

brokerage process in terms of three essential actions:

1. Where to find descriptions of entities to match against

— repositories

2. How to match the query against a description — match

services

3. How to choose between the matched descriptions —

selection policy

To support matchmaking, sufficient input information

about the task is needed to satisfy the desired capability,

while the outputs of the matched service should contain at

least as much information as the task is seeking. Addition-

ally, the task pre-conditions should at least satisfy the capa-

bility pre-conditions, while the post-conditions of the capa-

bility should at least satisfy the post-conditions of the task.

These constraints reflect work in component-based software

engineering [15]. Furthermore, given the nature of the prob-

lem, it is only very rarely that a task description will match

exactly a capability description and so a range of reasoning

mechanisms must be applied to identify candidate matches,

essentially constructing a proximity profile. This results in:

Requirement 1: A plug-in architecture support-

ing the deployment and utilization of an arbitrary

number of matchers.

The second requirement is a consequence of the first: there

will potentially be several candidate matches and choosing

between them on the basis of several matching schemes —

rather than just one, where a simple ranking would suffice

— some of which may generate conflicting information.

This leads to:

Requirement 2: A selection mechanism is re-

quired that takes into account all of pure tech-

nical, quantitative and qualitative aspects — and

user preferences in respect of a service

The user preferences might cover inclusion or exclusion of

services with particular properties. See, for example the

blacklisting policy in section 4.

372372

· · ·

Grid Services

BROKER WORK-FLOW

match
service

user
query

match
service

selection
policy

match
service

GRIMOIRES REGISTRY
Grid service descriptions

GRIMOIRES REGISTRY
Grid service descriptions

· · ·

Grid Services

Figure 1. A high-level view of the KNOOGLE architecture

3 Broker Architecture

An outline of the KNOOGLE brokerage architecture is

given in Figure 1 and comprises the following three compo-

nents:

1. Repositories: that contain all the necessary informa-

tion about the services that are to be evaluated against

the query,

2. Match Services: that implement the various mecha-

nisms to be used to compute the proximity of the match

between the query and a service,

3. Selection Policy: that implements the (multi-

dimensional) ranking mechanism for determining the

most appropriate service as a result of all the match

information collected.

Initially, a user may choose to use pre-packaged brokerage

services, where repositories, match services and even selec-

tion policy have been fixed a priori at broker deployment.

However, later users may want greater flexibility and con-

trol and be prepared to specify part or all of these elements

themselves, either in the query (see later) or by deploying

their own bespoke brokers — that are web services them-

selves. Indeed, eventually users may also choose to author

their own matchers and selection policies and then deploy

them in their own workflows as well as contributing them to

the wider community.

Use Case 1: Matchmaking with client selection A client

program sends a query to the broker. The broker fetches

all the available service descriptions from the repositories

registered with the broker. It then invokes each matcher on

the query and each service description resulting in a set of

(RDF) triples associating query, service and match-value.

Finally, the set of triples — including the service details

— is returned to the client for interpretation directly by the

client application.

Use Case 2: Brokerage In this case, a client delegates

service selection via a policy statement. This proceeds es-

sentially as above except that the candidate set of services

is then analyzed according to the client-specified policy and

one service is selected and invoked.

4 Broker Operation and Selection Policy

At its most primitive, the broker is in fact just a skele-

ton, in which there is no repository, no match service and

no selection policy. For it to do anything useful it must be

supplied with at least one repository (this is assumed to be

a UDDI-compliant repository: in our case we use the Gri-

moires [17] system), at least one matcher and a selection

policy. While these would normally be specified at bro-

ker deployment, it is also possible to control these attributes

dynamically through the query document. Thus the query

document comprises a sequence of repositories (given as

URLs), a sequence of matchers (given as service endpoints),

a selection policy and the actual query as described by the

pseudo-schema in figure 2.

The broker itself is a multi-threaded web service that

deploys a pre-defined number of (internal) threads to pro-

cess incoming queries, with further queries being held on

373373

<querySubmission>
<!-- the query document -->
<query>
<repositories>?
<!-- the repositories to be used -->
<repository>* <!-- repository URL -->

<matchers>?
<!-- the matchers to be used -->
<matcher>* <!-- match service URL -->

<!-- the selection policy script to use -->
<selectionPolicy>?
<!-- selection policy script language -->
<selectionPolicyLanguage>?

Figure 2. A pseudo schema for the broker in-
put document

a queue until a thread becomes available. The system is

currently limited to a request-response model for the invo-

cation of matchers because that is what Axis 1.0 supports.

RDF triples are used to represent the relationship between

a matcher and a service. These triples are inserted into a

triple store — currently using the Sesame system [21] —

while the selection policy may be stated in any of the three

query languages supported by Sesame: RDQL (Resource

Description Query Language), RQL (Resource Query Lan-

guage) or SeRQL (Sesame RQL). In this way, we obtain a

general-purpose representation of the match score data and

a high-level language for specifying queries over the data,

for example we give a query (in SeRQL) that selects the

service that got the highest match score:

CONSTRUCT {serviceEndpoint} matcher {highestValue}
FROM
{serviceEndpoint} matcher {highestValue}
WHERE
highestValue >= ALL (
SELECT value

FROM {} matcher {value})

As another example, we show how to implement a black-

list as part of the selection policy:

SELECT serviceEndpoint
FROM {serviceEndpoint} matcher
{highestValue}
WHERE highestValue >= ALL (

SELECT value
FROM {} matcher {value})

AND NOT (matcher LIKE "*Matcher2")

And finally (in RDQL), we show how to make a selection

involving a numerical comparison of the two match scores,

where the policy weights the results of basicMatcher2
by a factor of three.

SELECT ?serviceEndpoint2
WHERE (?serviceEndpoint1
<http://localhost:8080/axis/services/Matcher2>
? value1),

(?serviceEndpoint2
<http://alis:9050/axis/services/basicMatcher2>
?value2) AND ?value1 < ?value2 * 3

While these examples are artificial, they demonstrate

both the power and the flexibility available to broker clients

and to brokerage service providers. Furthermore, they sug-

gest how a policy may be stated that combines match score

information from several matchers to identify a preferred

service.

5 Broker Usage

Since the broker is a web service, interaction is mediated

by web service invocation. However, clients also have the

option of a command-line interface where a simple wrapper

program takes a broker command followed by arguments

and options. Alternatively, the broker may be used as a ser-

vice within a workflow engine such as Taverna (see sec-

tion 5.1). In the instance of command-line invocation the

arguments are typically: (i) a URL identifying the broker

itself, (ii) a query string (iii) a selection policy (iv) the se-

lection policy language (RDQL, RQL or SeRQL) identifier

(v) a matcher endpoint and (vi) a repository. The broker

functions as a request/response service, so the outcome of

this invocation is a notification. This key may subsequently

be used by the client to poll the broker for the status of the

match request as well as asking for more detailed informa-

tion about the match process such as the set of match results

received prior to the application of the selection policy.

5.1 Brokerage in Workflow Enactment

The Taverna workbench is a tool for creating and edit-

ing Simple Conceptual Unified Flow Language (SCUFL)

scripts, that define workflows as a network of processors

and links. SCUFL itself is interpreted by the Freefluo work-

flow enactment engine. The SCUFL language is primarily

aimed at users who currently use web forms or scripting

languages to interact with web resources [18]. The broker

described above has been integrated as a service within the

Taverna workflow, primarily by providing the broker as a

standard Taverna service which then acts as a proxy for a

particular service instance.

The novelty of this mechanism is that it now becomes

possible to construct a form of abstract workflow. That is to

say, conventional workflows in Taverna comprise concrete

service endpoints that fulfill a particular task and have been

identified and fixed at workflow design time. With the intro-

duction of the broker described here, a workflow may now

also contain broker instances that can be supplied with a

query at the time of workflow enactment, thus deferring ac-

tual service identification until the time it is needed. While

such flexibility may not always be necessary or desirable it

means that: 1. workflow re-use need not depend on specific

web services, but on a web service that satisfies a given task

specification and 2. workflows can be constructed that de-

termine the appropriate service at the time of need, which

374374

may be dependent on results established earlier in the work-

flow — a behaviour that was not previously possible.

Integration with Taverna is demonstrated in the context

of GridSAM [19]: a system for managing the allocation of

jobs to a pool of processors. The GridSAM system takes as

input job descriptions in JSDL [16] and client-provided ex-

ecutables. It then distributes the jobs over the available pro-

cessors that perform the processing, GridSAM then returns

the results to the clients. GridSAM is conceived as a system

in which clients know precisely which services they wish

to invoke. Thus, the KNOOGLE broker provides an impor-

tant complementary function such that clients may specify

service properties that can be used to identify suitable Grid-

SAM instances, given an appropriate match service. Using

Taverna, we have developed a scenario to support job sub-

mission using the KNOOGLE broker and a special-purpose

GridSAM matcher: see figure 3.

To demonstrate the generality of the approach, the broker

has also been used for service discovery based on the Web

Services Description Language (WSDL) – as illustrated in

figure 3. In the screenshot of the Taverna window there are

three panes: top left: displays the details of the workflow

components comprising the workflow in the bottom pane

top right: displays the list of available services that Taverna

has found for the client and bottom: renders the workflow

as a graph and permits the client to connect components

one to another. On the left, the Knoogle broker is an el-

ement of the workflow that will be activated when control

reaches this component, initiating the search for a suitable

service and its subsequent invocation. On the right, the user

specifies a service to discover, using terms in the WSDL

schema – such as OperationName or PortType. This

is then used as a basis to search through a UDDI registry

service to find services of interest. As illustrated in fig-

ure, an OperationName and the location of the input

data to pass to the service is submitted to the Broker, which

searches through a collection of registries to undertake a

syntax match on the advertised OperationName. The

Broker returns the URL pointing to the location of the ser-

vice and any other output information that can be found in

the registry.

6 Related Work

Matchmaking has quite a significant body of associated

literature. A broad categorizations of matchmaking and

brokerage research seem possible using criteria such as do-

main, reasoning mechanisms and adaptability. Much of the

published literature has described generic brokerage mecha-

nisms using syntactic or semantic, or a combination of both,

techniques. Some of the earliest systems, enabled by the de-

velopment of KIF (Knowledge Interchange Format) [4] and

KQML (Knowledge Query and Manipulation Language)

[13], are SHADE [6] operating over logic-based and struc-

tured text languages and the complementary COINS [6] that

operates over free text using well-known term-first index-

first information retrieval techniques. Subsequent devel-

opments such as InfoSleuth [9] applied reasoning technol-

ogy to the advertised syntax and semantics of a service de-

scription, while the RETSINA system [12] had its own spe-

cialized language influenced by DAML-S (the pre-cursor

to OWL-S) and used a belief-weighted associative network

representation of the relationships between ontological con-

cepts as a central element of the matching process. While

technically sophisticated, a particular problem with the lat-

ter was how to make the initial assignment of weights with-

out biasing the system inappropriately. A distinguishing

feature of all these systems is their monolithic architecture,

in sharp contrast to GRAPPA [14] (Generic Request Ar-

chitecture for Passive Provider Agents) which allows for

the use of multiple matchmaking mechanisms. Otherwise

GRAPPA essentially employs fairly conventional multi-

attribute clustering technology to reduce attribute vectors

to a single value. Finally, a notable contribution is the

MathBroker architecture, that like the domain-specific plug-

ins of our brokerage scheme, works with semantic descrip-

tions of mathematical services using the same MSDL lan-

guage. However, current publications [1] seem to indi-

cate that matching is limited to processing taxonomies and

the functional issues raised by pre- and post-conditions are

not considered. The MONET broker [3], in conjunction

with the RACER reasoner and the Instance Store demon-

strated one of the earliest uses of a description logic rea-

soner to identify services based on taxonomic descriptions

coming closest to the objective of the plug-ins developed

for GENSS in attempting to provide functional matching of

task and capability.

In contrast, matching and brokerage in the Grid comput-

ing domain has been relatively unsophisticated, primarily

using syntactic techniques, such as in the ClassAds system

[11] used in the Condor system and RedLine [7] which ex-

tends ClassAds, where match criteria may be expressed as

ranges and hence are a simple constraint language. In the

Condor system, the use of ClassAds is to enable computa-

tional jobs find suitable resources, generally using dynamic

attributes such as available physical and virtual memory,

CPU type and speed, current load average, and other static

attributes such as operating system type, job manager etc. A

resource also has a simple policy associated with it, which

identifies when it is willing to accept new job requests. The

approach is therefore particular focused to work for manag-

ing job execution on a Condor pool, and configured for such

a system only. It would be difficult to deploy this approach

(without significant changes) within another job execution

system, or one that makes use of a different resource model.

The RedLine system allows matching of job requests with

375375

Figure 3. Integrating GridSAM with Taverna workflow enactment (left) and A Taverna workflow using
a discovered Web Service using its WSDL description (right)

resource capabilities based on constraints – in particular the

ability to also search based on resource policy (i.e. when a

resource is able to accept new jobs, in addition to job and

resource attributes). The RedLine description language pro-

vides functions such as Forany and Forall to be able to find

multiple items that match. The RedLine system is however

still constrained by the type of match mechanisms that it

supports—provided through its description language. Sim-

ilar to Condor, it is also very difficult to modify it for a

different resource model. Our approach is more general,

and can allow plug-ins to be provided for both RedLine and

Condor as part of the matchmaker configuration. In our

model, therefore, as the resource model is late-bound, we

can specify a specialist resource model and allow multiple

such models to co-exist, each implemented in a different

configuration of the matchmaker.

7 Performance indicators

Performance evaluation is necessarily dominated by net-

work latency and overheads and so we consider immate-

rial the details of individual machines involved. Some in-

dicative tests have been carried out over the Joint Aca-

demic NETwork (JANET) infrastructure in the UK, where

the main inter-university links are 2Mb/s. Performance in-

dicators are based on an “end-to-end” test, with a collec-

tion of combinations of client, matchers and registries, both

local and remote. Not surprisingly, delays are quite signif-

icant given the general-purpose network being used, such

that with a client in Bath and a registry in Cardiff, we ob-

served wall-clock round-trip time of 6–8 seconds. The re-

sults presented here apply equally to workflows, in that the

same overheads will apply when the broker is embedded in

a workflow as when it is run stand-alone. A soak test in

which we repeatedly ran the same search (client/matching

process – as a Web Service – on a machine in Bath with

registry in Cardiff) produced the following results:

Structural matcher

Iterations real user sys

1 0m14.495s 0m4.362s 0m0.172s

10 1m2.898s 0m5.766s 0m0.318s

100 9m59.015s 0m12.173s 0m1.566s

Indicating that amortized elapsed time/query is around

6 seconds using the structural matcher. A further test using

a different matcher produced the following results:

Ontological matcher

Iterations real user sys

1 0m22.089s 0m4.786s 0m0.173s

10 1m49.031s 0m5.882s 0m0.299s

100 17m13.894s 0m12.682s 0m1.203s

Indicating that amortized elapsed time/query is just over

10 seconds using the ontological matcher. Performing the

same test as above, but where a command line Java appli-

cation was used to search the service registry, Linux system

376376

monitoring tools report that on the machine carrying out the

search process that program used approximately 25.4MB

and 36.06% CPU.

To evaluate the cost of using reasoning in the matchmak-

ing chain, we have measured the performance of the OWL-

JessKB rule engine using the ontologies developed in the

MONET project [10]. The MONET ontologies consist of

2031 classes, 78 slots and 10 facets. This leads to a heap

size of 109Mb. As expected there is a linear relationship

between the size of the ontology and the heap size. How-

ever, query costs are essentially flat with respect to ontol-

ogy size. More importantly, the scalability with respect to

the number of services is linear: measurements were taken

populating the registry with an increasing number of ser-

vices, while using the above MONET ontology, operating

the JVM in a maximum heap size of 1 GB. The registry was

populated with differing numbers of services (see below)

and query performance is linear from a level in the noise of

10-20ms up to 500 services up to between 2000-20000ms

for 100,000 services, depending on the type of query:

The query types were:

1. Simple assertion: Find all instances of a class x

2. Simple assertion: Verify whether instance x exists

3. Assertion individual: Confirm if constraint y is satis-

fied by a single object

4. Assertion aggregate: Confirm if constraint y is satis-

fied for a group of objects.

This indicate that for foreseeable registry sizes over a range

of queries, rule-based reasoning should not constitute a ma-

jor part of the cost.

8 Conclusion

The requirements for a generic, re-targettable match-

maker and broker have been set out and a novel architec-

ture that satisfies them has been outlined. We have built

such a broker that may be populated by a mixture of generic

and domain-specific plug-ins. Furthermore, these plug-ins

may also be composed and deployed with low overhead,

especially with the help of workflow tools, to create be-

spoke matchmakers/brokers. The plug-ins are implemented

as web services and a mechanism has been provided to in-

tegrate them into the architecture. This provide a basis from

which to explore the definition of policies for the combina-

tion of results from multiple match techniques. The broker

has been integrated as a proxy service within the Taverna

workflow engine, enabling the construction of a form of ab-

stract workflow. By separating broker knowledge from bro-

ker operation, we hope this will enable developers to con-

centrate on the creation of rich service descriptions and the

matchers that can take advantage of that knowledge, while

ensuring such efforts can readily be deployed and re-used,

by building on the web services infrastructure.

9 Acknowledgments

In its initial phases, the work reported here was partially

supported by the Engineering and Physical Sciences Re-

search Council (UK) under the Semantic Grids call of the

e-Science program (grant reference GR/S44723/01). The

development of the broker middleware itself has subse-

quently been supported by the Open Middleware Infrastruc-

ture Institute managed program as project KNOOGLE. The

software is currently undergoing integration with the OMII

client/server distribution and should form part of a forth-

coming release (BSD licence).

References

[1] Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner,

“A Web Registry for Publishing and Discovering

Mathematical Services.” In EEE, pages 190–193.

IEEE Computer Society, 2005.

[2] Olga Caprotti, Michael Dewar, James Davenport, and

Julian Padget. Mathematics on the (Semantic) Net.

In Christoph Bussler, John Davies, Dieter Fensel, and

Rudi Studer, editors, Proceedings of the European
Symposium on the Semantic Web, volume 3053 of

LNCS, pages 213–224. Springer Verlag, 2004. ISBN

3-540-21999-4.

[3] Olga Caprotti, Mike Dewar, and Daniele Turi, “Math-

ematical Service Matching Using Description Logic

and OWL.”, In Andrea Asperti, Grzegorz Bancerek,

and Andrzej Trybulec, editors, MKM, volume 3119

of Lecture Notes in Computer Science, pages 73–87.

Springer, 2004.

377377

[4] M. Genesereth and R. Fikes, “Knowledge In-

terchange Format, Version 3.0 Reference Man-

ual”. Technical report, Computer Science De-

partment, Stanford University, 1992. Available

from http://www-ksl.stanford.edu/
knowledge-sharing/papers/kif.ps.

[5] Duncan Hull, Robert Stevens, Phillip Lord, Chris

Wroe, and Carole Goble. “Treating ‘shimantic web’

syndrome with ontologies”. First Advanced Knowl-
edge Technologies workshop on Semantic Web Ser-
vices (AKT-SWS04), volume 122. KMi, The Open

University, Milton Keynes, UK, 2004.

[6] D. Kuokka and L. Harada, “Integrating information

via matchmaking”. Intelligent Information Systems
6(2-3), pp. 261-279, 1996.

[7] Chuang Liu and Ian T. Foster. A Constraint Language

Approach to Matchmaking. In RIDE, pages 7–14.

IEEE Computer Society, 2004.

[8] Simone Ludwig, Omer Rana, William Naylor,

and Julian Padget. Matchmaking Framework for

Mathematical Web Services. Journal of Grid
Computing, 4(1):33–48, March 2006. Avail-

able via http://dx.doi.org/10.1007/
s10723-005-9019-z. ISSN: 1570-7873 (Paper)

1572-9814 (Online).

[9] W. Bohrer M. Nodine and A.H. Ngu. Semantic broker-

ing over dynamic heterogenous data sources in InfoS-

leuth. In Proceedings of the 15th International Con-
ference on Data Engineering, pp. 358-365, 1999.

[10] Mathematics on the Net - MONET. http://
monet.nag.co.uk.

[11] Rajesh Raman, Miron Livny, and Marvin H. Solomon.

Matchmaking: Distributed Resource Management for

High Throughput Computing. In HPDC, pages 140–,

1998.

[12] Katia P. Sycara, Massimo Paolucci, Martin Van

Velsen, and Joseph A. Giampapa. The RETSINA

MAS Infrastructure. Autonomous Agents and Multi-
Agent Systems, 7(1-2):29–48, 2003.

[13] D. McKay T. Finin, R. Fritzson and R. McEntire,

“KQML as an agent communication language”. Pro-
ceedings of 3rd International Conference on Informa-
tion and Knowledge Management, pp. 456-463, 1994.

[14] D. Veit, “Matchmaking in Electronic Markets”,

LNCS2882, Springer, 2003. Hot Topics.

[15] Amy Moormann Zaremski and Jeannette M. Wing,

“Specification Matching of Software Components”.

ACM Transactions on Software Engineering and
Methodology, 6(4):333–369, October 1997.

[16] Job Submission Description Lan-

guage Specification v1.0. Available at:

http://www.gridforum.org/documents/GFD.56.pdf.

Last accessed: February 2007.

[17] Luc Moreau, “GRIMOIRES: Grid RegIstry with

Metadata Oriented Interface: Robustness, Efficiency,

Security”. http://twiki.grimoires.org/
bin/view/Grimoires/. Last accessed: January

2007.

[18] Tom Oinn, Matthew Addis, Justin Ferris, Darren Mar-

vin, Anil Wipat, Peter Li and Tim Carver, “Delivering

Web Service Coordination Capability to Users. Pro-
ceeding of the WWW conference, 2004, May 17–22,
New York, USA.

[19] GridSAM - Grid Job Submission and Moni-

toring Web Service. Available at: http:
//gridsam.sourceforge.net/2.0.0/.

Last accessed: February 2007.

[20] Tom Goodale, Simone Ludwig, William Naylor, Ju-

lian Padget, Omer Rana, “Service-Orientated Match-

making and Brokerage”, Proceedings of AHM 2006,

Nottingham, UK, Aug./Sept. 2006.

[21] Sesame: RDF Schema Querying and Storage. Avail-

able at: www.openrdf.org/. Last accessed:

February 2007.

[22] KNOOGLE: Matchmaking and Broker-

age Framework. OMII Project: 2006–2007.

http://www.omii.ac.uk/downloads/
project.jsp?projectid=77. Last accessed:

September 2007.

[23] The Open Middleware Infrastructure Institute (OMII-

UK) program. http://www.omii.ac.uk. Last

accessed: September 2007.

378378

