
QoS-Aware Service Selection for Abstract Workflows using Provenance
Data and Fuzzy Constraint Satisfaction Modeling

Mahsa Naseri and Simone A. Ludwig
Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

{naseri,ludwig}@cs.usask.ca

Abstract

Service-oriented applications are using services

that most accurately meet their requirements; as a
result Quality of Service (QoS)-based service selection
mechanisms play an essential role in service-oriented
architectures. In service-oriented environments such
as the Grid, we usually define abstract workflows to
enable the binding of services at runtime. Using
service discovery techniques to discover services that
functionally match tasks of the abstract workflow,
enables to differentiate services in order to select the
ones that better satisfy user QoS requirements. In this
paper, we model the QoS-aware service selection for
abstract workflows as a Constraint Satisfaction
Problem (CSP) and demonstrate that soft CSPs like
fuzzy CSP are an appropriate approach for these
purposes. We provide evaluations of the model and
discuss how effective the process of abstract workflow
service selection can be when merging it with the
degree of satisfaction. Furthermore, we exploit the hill
climbing strategy using special heuristics to achieve a
speedup in order to make the search process more
effective and scalable.

Keywords: QoS, Provenance, CSP, Fuzzy CSP,

OWL, Service Selection.

1. Introduction

Service-oriented environments have special
characteristics than other computing environments due
to the nature of being open, dynamic, and distributed.
The main concern of service discovery is finding
services that match functional requirements of users. In
distributed environments such as the Grid there are
usually many services that perform the same task. In
these environments, non-functional properties of
services are a great help for differentiating services
from each other. These non-functional properties are
most often referred to as quality of service.

On the other hand in these kinds of environments,
we usually define workflows as sequences of tasks
that, when put together in a specific order, can achieve
a specific goal. It must be possible to describe
workflows without specifying a binding of each task to
a service, so that the bindings can be added at run-
time. In order to convert these types of workflows
(also referred to as abstract workflows), to concrete
ones, semantic descriptions of services along with
matchmaking techniques are used.

Having found matching concrete services for each
abstract task, we can use QoS parameters to select the
concrete services that also match the non-functional
requirements of the user. These types of service
selection are usually referred to as abstract workflow
service selection. The QoS specifications of services
are given by the service providers and are usually
described by ontology languages.

One of the growing demands in distributed service-
oriented environments is the need for tracking,
recording and managing data sources. This has led to
the generation of the concept of provenance in
Service-oriented architectures (SOA). In these
environments, keeping track of information like how
and which resources are being used for the execution
of a workflow is useful for later reasoning. This
information along with the processing steps presents
the provenance data. In the proposed architecture, we
discuss that along with the QoS specifications
described in service ontologies, provenance data can
be exploited to get trustworthy values for QoS
parameters of services.

Previously, some works [1,2,3] have discussed
allowing service consumers to express their QoS
requirements as soft constraints, and subsequently used
fuzzy logic for single web service selection and
composition processes. [1] addresses the single service
selection as a fuzzy multi-attribute decision making
approach and compares the performance of this
algorithm with random and round robin selection
policies. In [2] the authors exploit fuzzy logic and
compute both functional and non-functional

weightings of QoS criteria. While most of these papers
do not provide evaluations of the soft constraints, [3]
studied the effect on the overall satisfaction caused by
a transition from hard to soft constraints with few
evaluations. In [12] the authors exploit fuzzy
distributed constraint satisfaction problem (DisCSP) to
compose web services according to their QoS values.
In DisCSP, variables and constraints are distributed
among independent and communicating agents. They
consider having several service providers as agents,
each with their own constraints on QoS levels of
parameters. By mapping each QoS parameter into a
variable and service providers’ constraints to network
constraint sets, they solve the case of maximizing the
global satisfaction with fuzzified constraints by
negotiations between agents. In the case of abstract
workflow selection, several works [4,5,6,7] have
tackled this issue proposing exact algorithms or
heuristics to optimally determine the appropriate
concrete services for each individual component
invocation or over the whole composite request. [7]
maps the service selection for workflows into a Multi-
Objective Programming model (MOP). [6] models it as
an optimization problem and adopts a genetic
algorithm for solving it, while [4] models the service
composition as a mixed integer linear approach, where
both local constraints and global constraints can be
specified.

None of the approaches above investigate
procedures regarding abstract workflow service
selection with soft constraints. On the other hand, the
papers discussed exploit soft constraints for single
services but did only provide few evaluations on the
results of the approaches. All approaches do not
consider all factors that have an effect on the service
selection with soft constraints. The factors contributing
are few in the case of single service selection,
however, there are more factors involved in workflow
service selection. As a result, the investigation of soft
constraint-based approaches for abstract workflow
service selection is necessary.

In this paper, we present a new approach for QoS-
aware service selection for abstract workflows and
discuss that this problem can be considered as a fuzzy
Constraint Satisfaction Problem (CSP). Therefore, by
solving the fuzzy CSP, we will find the concrete
services that best match nonfunctional properties of
each abstract service by satisfying user QoS
requirements of the whole workflow. We also
investigate the effect of changes on the factors that
have an effect on the abstract workflow service
selection and present detailed evaluations on the
model. To investigate the scalability of the approach,
the fuzzy CSP model uses the hill climbing search

method including abstract workflow service selection
heuristics.

The next sections of this paper are organized as
follows: In Section 2 we present how the QoS-aware
abstract to concrete service selection conversion can be
modeled as a fuzzy CSP; in Section 3 we provide the
implementation details of the model; in Section 4 a
case study is presented; in Section 5 experimental
results and discussion on the evaluations along with
the hill climbing implementation of the model are
given; and in the last section we present the
conclusion.

2. Modeling Abstract Workflow Service
Selection as a Fuzzy CSP

For distributed environments such as the Grid,
where the workflows and the number of services that
provide the same functionality are large, classical CSP
modeling is not a good choice for this purpose.
Exploiting the classic CSP approach for the abstract
workflow service selection is suitable where the
workflow is not too large and the number of concrete
services matching each abstract one is small. In case of
the Grid, it will result in a CSP with many variables
and constraints. Furthermore, there might no sets of
concrete services available that can fully satisfy the
QoS requirements the user has specified. As a result,
we propose using soft CSPs, in particular fuzzy CSPs
[9], for these kinds of service selections.

In general, in soft CSP not all the given constraints
need to be satisfied if all constraints cannot be met.
One approach to deal with soft constraints is to
generalize the notion of crisp constraints. A crisp
constraint is characterized by the set of tuples for
which the constraint holds. Hence, it is a natural
extension that a fuzzy set characterizes a fuzzy
constraint, i.e. different tuples satisfy the given
constraint to a different degree.

In the case of service selection, this means that
instead of fully satisfying the QoS requirements, they
can be satisfied to some degree. The required degree
can be specified explicitly by the user or can be
implicitly defined within the algorithm. For example,
the algorithm might be organized to change the degree
automatically in case the execution time or memory
usage exceeds a specified limit. In the evaluation
section, we present how much this degree affects the
performance of the algorithm.

To compute the degree of satisfaction for a
sequence of concrete services, we exploit matrices S,
the summation matrix, and R, the requirement matrix.
For each row in S, which represents a QoS attribute, if

the value for that row in R is greater than or equal to
the corresponding value in S then the satisfaction
equals to 1, otherwise we calculate the ratio of
satisfaction. We then compute the average satisfaction
for all attributes and retrieve the overall achieved
satisfaction. This approach can be improved by
assigning a weight to each QoS attribute. The weights
represent the importance of the attributes to the user.
We can then compute the degree of satisfaction by
using the weights to consider the importance of the
attributes. In this model, backtracking will take place
when the calculated degree is less than the required
degree of satisfaction.

3. Architecture of the System

In service oriented environments we need to track
and record data sources for later reasoning. This has
led to the generation of the concept of provenance in
SOA. Provenance data is referred to as the data that is
recorded either during the execution of a workflow,
which is referred to as execution provenance, or by a
particular service reporting about itself or its provider.
Provenance data enables users to trace and identify the
individual services as well as their corresponding
inputs and outputs that were involved in the production
of a specific data result. This data is usually stored in a
provenance store which is a combination of one or
several databases.

In current semantic web systems, QoS
specifications for each concrete service are described
in OWL [10] ontologies. The ontological QoS
specification of service providers are updated
periodically while there might be many requests during
each period. In case the QoS guarantees change during
a period, the providers will not be able to satisfy the
agreed-on thresholds. On the other hand, for service
providers, in order to assure that they comply with the
promised QoS, an agreement is usually made between
the provider and consumer which is referred to as
Service Level Agreement (SLA). Failing to meet SLAs
could result in serious financial consequences for a
provider. However, service providers may not be
trustworthy enough to deliver the services based on the
agreed-on QoS. Besides, the “Validity period” of the
agreement might have come to an end and no
agreement updates might have been made afterwards.

To overcome the inconsistencies between the
guaranteed and delivered QoS values of services, we
propose to retrieve QoS values from the provenance
data and to exploit it along with the QoS specifications
of services given by the OWL ontologies.

In the provenance store, we record information
about the previous executions of different workflows
to allow future reasoning. This data can include
input/output datasets of services, start and end
execution time, the status of execution of the whole
process or each service etc. We can exploit the
provenance store to retrieve trustworthy information
about the QoS promises of services. For example, we
can use the start and end time of the execution process
of services to measure the QoS parameter “time”.
Similarly, we can keep track of the status of the
execution of services or use the end time and get
estimates for the “reliability” of services. Availability
of a service would have a set of Boolean values
gathered over a period and can be recorded by a client
about a service. By counting the number of times the
service was available and dividing this value by the
total number the service was called for interaction, we
can compute the QoS parameter “availability”.

The QoS processor first extracts the values of the
QoS attributes of concrete services from their service
ontologies using the Protégé OWL API [11]. In the
next step, for each concrete service the processor
queries the provenance store and retrieves QoS values
for some attributes such as execution time, reliability
and availability. We can set the query to select the
values that date back to a specific time; for example, a
time after the last renewal of the attributes of
ontologies or the agreements. To get the final values
for these QoS attributes, we have two options. The first
option is to take the average of values from both
sources: provenance data and ontology. The second
option, which we used in our implementation, is to
assign a weight value to both sources. This weight
value represents the importance or the trust we can put
on the sources. Thus, in order to achieve the final
value (V) for QoS parameter P for the service instance
Si, we multiply the weight value for the provenance
data, i.e. w1, by the value that we retrieve for that
parameter of this service from the provenance data,
added by the weight value the provenance data, added
by the weight value for service ontologies, i.e. w2,
multiplied by the value we retrieve for the same
parameter from the service’s QoS ontologies. This
statement is summarized in the following formula:

iii VwVwV 2211 ⋅+⋅= and 1
2

1
=∑

=j
jw

where wj represents the trust/weight value of resource
j, Vi represents the final value for some QoS parameter
for service i and Vji represents the value retrieved for
that parameter from resource j.

The matrix M is then built by the QoS processor

Table 1. QoS values for the sample workflow scenario.
Time Cost Reliability Service Name

Provenance Ontology Ontology Provenance Ontology
Srv_1 11.5 12.5 10 0.85 0.75
Srv_2 15 14.6 11 0.72 0.7

Text_file_
Reader

Srv_3 17 16.5 8 0.8 0.85
Srv_1 20.8 19.2 12 0.48 0.52
Srv_2 13 12 9 0.64 0.6

Extract_TSV_
ChEBI

Srv_3 12 10 15 0.7 0.6
Srv_1 15 14 8 0.4 0.4
Srv_2 10.5 9.5 12 0.52 0.48

Remove_non_
MDL

Srv_3 13 15 10 0.3 0.4

for each abstract service and along with the
requirement matrix is sent to the Fuzzy CSP solver.
The result of the solver will be the list of concrete
services that perfectly match the requested QoS values
with regard to the requested degree of satisfaction.

4. A Case Study

Consider an abstract workflow scenario for a
bioinformatics application. Chemical Entities of
Biological Interest (ChEBI) [13] is a freely available
dictionary of molecular entities focused on ‘small’
chemical compounds. ChEBI encompasses an
ontological classification, whereby the relationships
between molecular entities or classes of entities and
their parents and/or children are specified. This
workflow scenario loads a Tab Separated Value (TSV)
file from the ChEBI database. The TSV is a very
simple textual data format which allows tabular data to
be exchanged between applications that use different
internal data formats. After the extraction of the
molecules from the TSV file all non MDL mol files are
removed. MDL is a format for chemical table files.
Later, the valid molecules are inserted into a database.

The workflow is composed of four services for
reading the text files, extracting TSV files from the
ChEBI database, removing non MDL files and
inserting the rest of the molecules into a database.

Suppose that the service discovery process has
discovered the first three matching concrete services
for these four abstract services. The details of QoS
values for the three of these services are given in Table
1. We assumed that for the user the trust weight on
both QoS sources, i.e. provenance data and ontology
descriptions, equals to 0.5.

The required degree of satisfaction is 0.85 and the
QoS requirements for time, cost and reliability are 40,
30 and 0.8. Figure 1 shows an instance of a part of the
execution process. In the third step, the satisfaction
degree becomes 0.84 which is less than the required
degree of satisfaction. Thus the algorithm chooses a

different concrete service for Remove_non_MDL, thus
the required degree of satisfaction is fulfilled. It then
selects a concrete service for the last task of the
workflow, guaranteeing that the overall satisfaction
score is equal or greater than 0.85. Thus, the valid
molecules are inserted into database. Having followed
this procedure, a set of concrete services are selected
for the abstract workflow in a way that the required
QoS values are satisfied with 0.85 degree of
satisfaction.

Figure 1. Keeping track of the execution steps.

5. Experimental Results

In this section, we provide evaluations of the
presented approach. For the abstract workflow service
selection there are some important factors that can
affect the performance of the model, and investigating
the degree of satisfaction with regard to these factors is
very important. We have considered all the factors that
affect the performance of the fuzzy CSP solver. In the
following parts of this section, we will show and
discuss how each factor can affect the execution time
of the algorithm. The factors include: the number of
abstract services, the number of concrete services, the

number of attributes and the degree of satisfaction. The
number of abstract services presents the number of
services the workflow is composed of, while the
number of concrete services reflects the number of
services that functionally match each abstract service
in the workflow.

The application was implemented in Java and the
experiments were run using an Intel 1.5 GHz dual CPU
machine with 2 GB of RAM memory. To get reliable
results, we executed the algorithm five times for
different datasets. The datasets were generated by
narrowing and broadening the range of the requested
QoS attributes to make sure that the process has been
tested for any kind of data and with different values for
the factors.

5.1. Number of Abstract Services

Figure 2. Effect of increasing the number of

abstract services (No Abst Srv) for degrees of
satisfaction 0.9 to 1.

The number of abstract services reflects the number

of services the abstract workflow is composed of. It
can be expected that the larger the workflow, the
greater the execution time of the algorithm will be. We
increased the number of abstract services along with
the degree of satisfaction. Keeping the number of QoS
attributes as well as the number of matching concrete
services for each abstract service to 5, we repeated the
evaluation with the number of abstract services
ranging from 5 to 15 with increments of 5. For each set
we ran the algorithm for degrees 0.7 to 1 with an
increment of 0.1. We observed that there is a little
change in the execution time when the required degree
of satisfaction is below 0.9. The slope begins to change
considerably from 0.9 to 1, especially for larger
numbers of abstract services. It can be inferred from
the experiment results that if a fully satisfying set of
concrete services for the abstract workflow is

available, an increase in the number of abstract
services does not affect the performance of the
algorithm much while the required degrees of
satisfaction is below 0.9.

To investigate the behavior of the presented
approach for the range 0.9 to 1, we evaluated the
algorithm for this range with increments of 0.02 while
the same number of concrete services and attributes
were kept. Figure 2 shows the results of the evaluation.
The notable variations can be observed from degree
0.96 onwards. The slopes of the lines continue to
increase slowly until 0.98 and the major changes take
place between 0.98 and 1. Larger numbers of abstract
services have a greater effect on the slope and
therefore on the execution time of the approach.

5.2. Number of Concrete Services

We evaluate the effect of the number of concrete
services on the performance of the algorithm. It was
explained earlier that the number of concrete services
specifies the number of columns of the domain matrix,
i.e. M, for each abstract service. For a good result, we
kept the number of abstract services constant to 10 and
the number of attributes to 5. We then increased the
number of concrete services from 5 to 15 with
increments of 5.

Figure 3. Effect of increasing the number of

concrete services (No Conc Srv) for degrees of
satisfaction 0.9 to 1.

Similar to the previous evaluation, we ran the

algorithm for different datasets and for a degree of
satisfaction range varying from 0.6 to 1 with
increments of 0.1. Again as expected, increasing the
number of concrete services will increase the execution
time of the algorithm. Again, it is interesting to notice
that like in the previous evaluation, not much variation
can be observed in the range of 0.7 to 0.9, and the
significant changes occur in the range of 0.9 and 1.

To investigate this further, we repeated the
evaluations this time from 0.9 to 1 with increments of
0.02. The experiment was run for different datasets
with 5, 10 and 15 concrete services. Figure 3 shows
the results. We can see that as we increase the number
of concrete services, the variations in the slopes of the
curves can be observed from an earlier degree of
satisfaction which is completely reasonable as
increasing the number of concrete services makes the
search process more time consuming, especially when
the constraints can be hardly satisfied.

5.3. Number of Attributes

The number of QoS attributes for services is
another factor that can affect the performance of the
algorithm. These attributes consist of execution time,
cost, reliability, etc. As discussed in Section 3, the
number of attributes specifies the number of rows of
the matrices. This implies that it should have a strong
impact on the execution time of the algorithm. For this
purpose, we kept the number of abstract services
constant to 15, the number of concrete services to 10,
and ran the algorithm with 3, 5 and 7 number of
attributes while varying the degree of satisfaction from
0.8 to 1. The results are presented in Figure 4. The
interesting point of this experiment is that as the
number of attributes increases, the choices for partially
satisfying the degree of satisfaction also increases. As
a result in some of the experiments, we observed that
for some degrees of satisfaction less than 1, the
execution time was smaller for a larger number of
attributes. This depends on the dataset and the
resulting tree of possibilities which is being
constructed by the fuzzy CSP and this can lead to a
shorter execution time for a larger number of
attributes.

Figure 4. Effect of increasing the number of
attributes for degrees of satisfaction 0.8 to 1.

5.4. Scalability

The fuzzy CSP algorithm implemented and
evaluated so far was based on the classic backtracking
and depth first search. This technique is complete but
has the shortcoming of being time consuming and does
not support scalability. For hard constrained service
selection problems, and for workflows with a large
number of services, evaluations of the implemented
approach resulted in very high execution times.
Therefore, in order to enable scalability of the model
and investigate its behavior for large and strictly
constrained abstract workflow service selections, we
exploited the stochastic search method, hill climbing,
and applied it to our fuzzy CSP model. To exploit the
hill climbing method for solving the abstract workflow
service selection with fuzzy CSP modeling, we came
up with some heuristics to start with a good solution in
the search space and improve the search faster.

Figure 5. Scalability of the hill climbing algorithm

for 10 to 50 numbers of abstract services.

The algorithm starts by computing the distance
between the QoS parameters vector of each concrete
service with the requirements vector. For each abstract
service, the concrete service with the largest distance is
selected. Therefore, the starting point in the search
space is a suboptimal point which helps to retrieve the
partial solution faster. The search process begins
improvements by selecting the QoS parameter that has
the lowest overall satisfaction. It then finds the abstract
service, i.e. the variable, which had the lowest value
for that parameter and tries to find and assign another
concrete service to it in a way that improves the
satisfaction degree. This procedure continues until no
more abstract service assignment can be improved.

Experiments were done to evaluate the proposed
algorithm for large workflows. The algorithm was
repeated for 10 to 50 numbers of abstract workflows
with increments of 10 and for degrees of satisfaction

0.9 to 0.98 with increments of 0.02. For each
experiment the number of concrete services and the
number of attributes were kept constantly to 5.

Figure 5 shows the result of the experiments. It can
be seen that the approach is very fast in comparison to
the backtracking approach. There is not a large
variation in slopes for higher degrees of satisfaction
while increasing the number of abstract services, and
therefore the increase in the execution time remains
relatively small.

6. Conclusion

In this paper, we put forward an approach to solve
the service selection for abstract workflows using CSP.
We discussed that none of the previous approaches
which targeted this problem used soft constraints. We
provided an abstract service selection model exploiting
fuzzy CSP and outlined that fuzzy constraint
satisfaction modeling is even better for this purpose
because either it can find a partial solution in the case
no fully satisfiable solution exists or it can result in a
faster solution by decreasing the degree of satisfaction
in cases when the QoS requirements are fully
satisfiable. We also applied new heuristics and also
solved the presented model using the hill climbing
algorithm to observe whether fuzzy CSP for abstract
workflow service selection will scale for real
application scenarios.

The presented approach is also applicable for cases
when the user tends to specify a range for each
required QoS attribute, instead of a single value.
Therefore, instead of comparing the values of the
summation matrix with the requirement matrix, we
check if the correspondent values in the summation
matrix are within the range specified in the
requirement matrix.

The evaluations showed the effectiveness of
considering the degree of satisfaction for solving the
service selection process. It was observed from the
evaluations that for a service selection where the
constraints can be fully satisfied, an increase in the
number of factors does not affect the performance of
the algorithm much, while the required degree is less
than 0.95. On the other hand, for computing the degree
of satisfaction for a set of abstract services, we may
want to merge the importance of each attribute, its
weight, into the calculation. Thus, in the case when
one or more attributes are not particularly important
for the requester, we might be able to save some time
as the algorithm may need to search longer to satisfy
these attributes completely.

7. References

[1] H. Tong, S. Zhang, “A Fuzzy Multi–Attribute Decision
Making Algorithm for Web Services Selection based on
QoS”, Proceedings of the 2006 IEEE Asia–Pacific
Conference on Services Computing (APSCC’06), 2006.

[2] P. Wang, K. M. Chao, C. C. Lo, C. L. Huang, Y. Li, “A
Fuzzy Model for Selection of QoS Aware Web Services”,
Proceedings of the 2006 IEEE International Conference,
2006.

[3] S. Chung, O. Hafeez, M. De Cock, “Selection of Web
Services with Imprecise QoS Constraints”, 2007.

[4] D. Ardagna and B. Pernici,“Global and Local QoS
Guarantee in Web Service Selection”, In Proc. of Business
Process Management Workshops, pp 32–46, Sept. 2005.

[5] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R.
Steinmetz, “Heuristics for QoS-aware Web Service
Composition”, In Proc. of Int’l Conf. on Web Services, Sept.
2006.

[6] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani.
“An Approach for QoS-aware Service Composition Based on
Genetic Algorithms”, In Proc. of GECCO 2005, June 2005.

[7] Y. Qu, C. Lin, Y.Wang, and Z. Shan., “QoS-aware
Composite Service Selection in Grids”, In Proc. of Int’l
Conf. on Grid and Cooperative Computing, pages 458–465,
Oct. 2006.

[8] E.P.K. Tsang, “Foundations of Constraint Satisfaction”,
Academic Press, London and San Diego, 1993.

[9] Zs. Ruttkay, “Fuzzy Constraint Satisfaction”,
Proceedings 1st IEEE Conference on Evolutionary
Computing, Orlando, USA, 1994.

[10] OWL Web Ontology Language Reference, retrieved
May 9, 2009, from http://www.w3.org/TR/owl-ref/, 2004.

[11] Protégé-owl api programmer's guide, retrieved January
21, 2009, retrieved May 9, 2009, from
http://protege.stanford.edu/plugins/owl/api/guide.html, 2006.

[12] X. T. Nguyen, R., Kowalczyk, M. T. Phan, “Modeling
and Solving QoS Composition Problem Using Fuzzy
DiscCSP”, IEEE International Conference on Web Services,
2006.

[13] Chemical Entities of Biological Interest (ChEBI),
retrieved May 9, 2009, from http://www.ebi.ac.uk/chebi/.

