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Abstract 

 
Service-oriented applications are using services 

that most accurately meet their requirements; as a 
result Quality of Service (QoS)-based service selection 
mechanisms play an essential role in service-oriented 
architectures. In service-oriented environments such 
as the Grid, we usually define abstract workflows to 
enable the binding of services at runtime. Using 
service discovery techniques to discover services that 
functionally match tasks of the abstract workflow, 
enables to differentiate services in order to select the 
ones that better satisfy user QoS requirements. In this 
paper, we model the QoS-aware service selection for 
abstract workflows as a Constraint Satisfaction 
Problem (CSP) and demonstrate that soft CSPs like 
fuzzy CSP are an appropriate approach for these 
purposes. We provide evaluations of the model and 
discuss how effective the process of abstract workflow 
service selection can be when merging it with the 
degree of satisfaction. Furthermore, we exploit the hill 
climbing strategy using special heuristics to achieve a 
speedup in order to make the search process more 
effective and scalable. 
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1. Introduction 
 

Service-oriented environments have special 
characteristics than other computing environments due 
to the nature of being open, dynamic, and distributed. 
The main concern of service discovery is finding 
services that match functional requirements of users. In 
distributed environments such as the Grid there are 
usually many services that perform the same task. In 
these environments, non-functional properties of 
services are a great help for differentiating services 
from each other. These non-functional properties are 
most often referred to as quality of service. 

On the other hand in these kinds of environments, 
we usually define workflows as sequences of tasks 
that, when put together in a specific order, can achieve 
a specific goal. It must be possible to describe 
workflows without specifying a binding of each task to 
a service, so that the bindings can be added at run-
time. In order to convert these types of workflows 
(also referred to as abstract workflows), to concrete 
ones, semantic descriptions of services along with 
matchmaking techniques are used. 

Having found matching concrete services for each 
abstract task, we can use QoS parameters to select the 
concrete services that also match the non-functional 
requirements of the user. These types of service 
selection are usually referred to as abstract workflow 
service selection. The QoS specifications of services 
are given by the service providers and are usually 
described by ontology languages.  

One of the growing demands in distributed service-
oriented environments is the need for tracking, 
recording and managing data sources. This has led to 
the generation of the concept of provenance in 
Service-oriented architectures (SOA). In these 
environments, keeping track of information like how 
and which resources are being used for the execution 
of a workflow is useful for later reasoning. This 
information along with the processing steps presents 
the provenance data. In the proposed architecture, we 
discuss that along with the QoS specifications 
described in service ontologies, provenance data can 
be exploited to get trustworthy values for QoS 
parameters of services. 

Previously, some works [1,2,3] have discussed 
allowing service consumers to express their QoS 
requirements as soft constraints, and subsequently used 
fuzzy logic for single web service selection and 
composition processes. [1] addresses the single service 
selection as a fuzzy multi-attribute decision making 
approach and compares the performance of this 
algorithm with random and round robin selection 
policies. In [2] the authors exploit fuzzy logic and 
compute both functional and non-functional 



weightings of QoS criteria. While most of these papers 
do not provide evaluations of the soft constraints, [3] 
studied the effect on the overall satisfaction caused by 
a transition from hard to soft constraints with few 
evaluations. In [12] the authors exploit fuzzy 
distributed constraint satisfaction problem (DisCSP) to 
compose web services according to their QoS values. 
In DisCSP, variables and constraints are distributed 
among independent and communicating agents. They 
consider having several service providers as agents, 
each with their own constraints on QoS levels of 
parameters. By mapping each QoS parameter into a 
variable and service providers’ constraints to network 
constraint sets, they solve the case of maximizing the 
global satisfaction with fuzzified constraints by 
negotiations between agents. In the case of abstract 
workflow selection, several works [4,5,6,7] have 
tackled this issue proposing exact algorithms or 
heuristics to optimally determine the appropriate 
concrete services for each individual component 
invocation or over the whole composite request. [7] 
maps the service selection for workflows into a Multi-
Objective Programming model (MOP). [6] models it as 
an optimization problem and adopts a genetic 
algorithm for solving it, while [4] models the service 
composition as a mixed integer linear approach, where 
both local constraints and global constraints can be 
specified. 

None of the approaches above investigate 
procedures regarding abstract workflow service 
selection with soft constraints. On the other hand, the 
papers discussed exploit soft constraints for single 
services but did only provide few evaluations on the 
results of the approaches. All approaches do not 
consider all factors that have an effect on the service 
selection with soft constraints. The factors contributing 
are few in the case of single service selection, 
however, there are more factors involved in workflow 
service selection. As a result, the investigation of soft 
constraint-based approaches for abstract workflow 
service selection is necessary. 

In this paper, we present a new approach for QoS-
aware service selection for abstract workflows and 
discuss that this problem can be considered as a fuzzy 
Constraint Satisfaction Problem (CSP). Therefore, by 
solving the fuzzy CSP, we will find the concrete 
services that best match nonfunctional properties of 
each abstract service by satisfying user QoS 
requirements of the whole workflow. We also 
investigate the effect of changes on the factors that 
have an effect on the abstract workflow service 
selection and present detailed evaluations on the 
model. To investigate the scalability of the approach, 
the fuzzy CSP model uses the hill climbing search 

method including abstract workflow service selection 
heuristics. 

The next sections of this paper are organized as 
follows: In Section 2 we present how the QoS-aware 
abstract to concrete service selection conversion can be 
modeled as a fuzzy CSP; in Section 3 we provide the 
implementation details of the model; in Section 4 a 
case study is presented; in Section 5 experimental 
results and discussion on the evaluations along with 
the hill climbing implementation of the model are 
given; and in the last section we present the 
conclusion. 
 
2. Modeling Abstract Workflow Service 
Selection as a Fuzzy CSP 
 

For distributed environments such as the Grid, 
where the workflows and the number of services that 
provide the same functionality are large, classical CSP 
modeling is not a good choice for this purpose. 
Exploiting the classic CSP approach for the abstract 
workflow service selection is suitable where the 
workflow is not too large and the number of concrete 
services matching each abstract one is small. In case of 
the Grid, it will result in a CSP with many variables 
and constraints. Furthermore, there might no sets of 
concrete services available that can fully satisfy the 
QoS requirements the user has specified. As a result, 
we propose using soft CSPs, in particular fuzzy CSPs 
[9], for these kinds of service selections. 

In general, in soft CSP not all the given constraints 
need to be satisfied if all constraints cannot be met. 
One approach to deal with soft constraints is to 
generalize the notion of crisp constraints. A crisp 
constraint is characterized by the set of tuples for 
which the constraint holds. Hence, it is a natural 
extension that a fuzzy set characterizes a fuzzy 
constraint, i.e. different tuples satisfy the given 
constraint to a different degree. 

In the case of service selection, this means that 
instead of fully satisfying the QoS requirements, they 
can be satisfied to some degree. The required degree 
can be specified explicitly by the user or can be 
implicitly defined within the algorithm. For example, 
the algorithm might be organized to change the degree 
automatically in case the execution time or memory 
usage exceeds a specified limit. In the evaluation 
section, we present how much this degree affects the 
performance of the algorithm. 

To compute the degree of satisfaction for a 
sequence of concrete services, we exploit matrices S, 
the summation matrix, and R, the requirement matrix. 
For each row in S, which represents a QoS attribute, if 



the value for that row in R is greater than or equal to 
the corresponding value in S then the satisfaction 
equals to 1, otherwise we calculate the ratio of 
satisfaction. We then compute the average satisfaction 
for all attributes and retrieve the overall achieved 
satisfaction. This approach can be improved by 
assigning a weight to each QoS attribute. The weights 
represent the importance of the attributes to the user. 
We can then compute the degree of satisfaction by 
using the weights to consider the importance of the 
attributes. In this model, backtracking will take place 
when the calculated degree is less than the required 
degree of satisfaction. 

 
3. Architecture of the System 
 

In service oriented environments we need to track 
and record data sources for later reasoning. This has 
led to the generation of the concept of provenance in 
SOA. Provenance data is referred to as the data that is 
recorded either during the execution of a workflow, 
which is referred to as execution provenance, or by a 
particular service reporting about itself or its provider. 
Provenance data enables users to trace and identify the 
individual services as well as their corresponding 
inputs and outputs that were involved in the production 
of a specific data result. This data is usually stored in a 
provenance store which is a combination of one or 
several databases.  

In current semantic web systems, QoS 
specifications for each concrete service are described 
in OWL [10] ontologies. The ontological QoS 
specification of service providers are updated 
periodically while there might be many requests during 
each period. In case the QoS guarantees change during 
a period, the providers will not be able to satisfy the 
agreed-on thresholds. On the other hand, for service 
providers, in order to assure that they comply with the 
promised QoS, an agreement is usually made between 
the provider and consumer which is referred to as 
Service Level Agreement (SLA). Failing to meet SLAs 
could result in serious financial consequences for a 
provider. However, service providers may not be 
trustworthy enough to deliver the services based on the 
agreed-on QoS. Besides, the “Validity period” of the 
agreement might have come to an end and no 
agreement updates might have been made afterwards.  

To overcome the inconsistencies between the 
guaranteed and delivered QoS values of services, we 
propose to retrieve QoS values from the provenance 
data and to exploit it along with the QoS specifications 
of services given by the OWL ontologies. 

In the provenance store, we record information 
about the previous executions of different workflows 
to allow future reasoning. This data can include 
input/output datasets of services, start and end 
execution time, the status of execution of the whole 
process or each service etc. We can exploit the 
provenance store to retrieve trustworthy information 
about the QoS promises of services. For example, we 
can use the start and end time of the execution process 
of services to measure the QoS parameter “time”. 
Similarly, we can keep track of the status of the 
execution of services or use the end time and get 
estimates for the “reliability” of services. Availability 
of a service would have a set of Boolean values 
gathered over a period and can be recorded by a client 
about a service. By counting the number of times the 
service was available and dividing this value by the 
total number the service was called for interaction, we 
can compute the QoS parameter “availability”. 

The QoS processor first extracts the values of the 
QoS attributes of concrete services from their service 
ontologies using the Protégé OWL API [11]. In the 
next step, for each concrete service the processor 
queries the provenance store and retrieves QoS values 
for some attributes such as execution time, reliability 
and availability. We can set the query to select the 
values that date back to a specific time; for example, a 
time after the last renewal of the attributes of 
ontologies or the agreements. To get the final values 
for these QoS attributes, we have two options. The first 
option is to take the average of values from both 
sources: provenance data and ontology. The second 
option, which we used in our implementation, is to 
assign a weight value to both sources. This weight 
value represents the importance or the trust we can put 
on the sources. Thus, in order to achieve the final 
value (V) for QoS parameter P for the service instance 
Si, we multiply the weight value for the provenance 
data, i.e. w1, by the value that we retrieve for that 
parameter of this service from the provenance data, 
added by the weight value the provenance data, added 
by the weight value for service ontologies, i.e. w2, 
multiplied by the value we retrieve for the same 
parameter from the service’s QoS ontologies. This 
statement is summarized in the following formula: 

iii VwVwV 2211 ⋅+⋅=  and 1
2

1
=∑

=j
jw  

where wj represents the trust/weight value of resource 
j, Vi represents the final value for some QoS parameter 
for service i and Vji represents the value retrieved for 
that parameter from resource j. 

The matrix M is then built by the QoS processor 



Table 1.  QoS values for the sample workflow scenario. 
Time Cost Reliability Service Name 

Provenance Ontology Ontology Provenance Ontology 
Srv_1 11.5 12.5 10 0.85 0.75 
Srv_2 15 14.6 11 0.72 0.7 

Text_file_ 
Reader 

Srv_3 17 16.5 8 0.8 0.85 
Srv_1 20.8 19.2 12 0.48 0.52 
Srv_2 13 12 9 0.64 0.6 

Extract_TSV_
ChEBI 

Srv_3 12 10 15 0.7 0.6 
Srv_1 15 14 8 0.4 0.4 
Srv_2 10.5 9.5 12 0.52 0.48 

Remove_non_
MDL 

Srv_3 13 15 10 0.3 0.4 
 

for each abstract service and along with the 
requirement matrix is sent to the Fuzzy CSP solver. 
The result of the solver will be the list of concrete 
services that perfectly match the requested QoS values 
with regard to the requested degree of satisfaction. 
 
4. A Case Study 
 

Consider an abstract workflow scenario for a 
bioinformatics application. Chemical Entities of 
Biological Interest (ChEBI) [13] is a freely available 
dictionary of molecular entities focused on ‘small’ 
chemical compounds. ChEBI encompasses an 
ontological classification, whereby the relationships 
between molecular entities or classes of entities and 
their parents and/or children are specified. This 
workflow scenario loads a Tab Separated Value (TSV) 
file from the ChEBI database. The TSV is a very 
simple textual data format which allows tabular data to 
be exchanged between applications that use different 
internal data formats. After the extraction of the 
molecules from the TSV file all non MDL mol files are 
removed. MDL is a format for chemical table files. 
Later, the valid molecules are inserted into a database.  

The workflow is composed of four services for 
reading the text files, extracting TSV files from the 
ChEBI database, removing non MDL files and 
inserting the rest of the molecules into a database. 

Suppose that the service discovery process has 
discovered the first three matching concrete services 
for these four abstract services. The details of QoS 
values for the three of these services are given in Table 
1. We assumed that for the user the trust weight on 
both QoS sources, i.e. provenance data and ontology 
descriptions, equals to 0.5. 

The required degree of satisfaction is 0.85 and the 
QoS requirements for time, cost and reliability are 40, 
30 and 0.8. Figure 1 shows an instance of a part of the 
execution process. In the third step, the satisfaction 
degree becomes 0.84 which is less than the required 
degree of satisfaction. Thus the algorithm chooses a 

different concrete service for Remove_non_MDL, thus 
the required degree of satisfaction is fulfilled. It then 
selects a concrete service for the last task of the 
workflow, guaranteeing that the overall satisfaction 
score is equal or greater than 0.85. Thus, the valid 
molecules are inserted into database. Having followed 
this procedure, a set of concrete services are selected 
for the abstract workflow in a way that the required 
QoS values are satisfied with 0.85 degree of 
satisfaction. 

 

 
Figure 1.  Keeping track of the execution steps. 
 

5. Experimental Results 
 

In this section, we provide evaluations of the 
presented approach. For the abstract workflow service 
selection there are some important factors that can 
affect the performance of the model, and investigating 
the degree of satisfaction with regard to these factors is 
very important. We have considered all the factors that 
affect the performance of the fuzzy CSP solver. In the 
following parts of this section, we will show and 
discuss how each factor can affect the execution time 
of the algorithm. The factors include: the number of 
abstract services, the number of concrete services, the 



number of attributes and the degree of satisfaction. The 
number of abstract services presents the number of 
services the workflow is composed of, while the 
number of concrete services reflects the number of 
services that functionally match each abstract service 
in the workflow. 

The application was implemented in Java and the 
experiments were run using an Intel 1.5 GHz dual CPU 
machine with 2 GB of RAM memory. To get reliable 
results, we executed the algorithm five times for 
different datasets. The datasets were generated by 
narrowing and broadening the range of the requested 
QoS attributes to make sure that the process has been 
tested for any kind of data and with different values for 
the factors. 
 
5.1. Number of Abstract Services 
 

 
Figure 2. Effect of increasing the number of 

abstract services (No Abst Srv) for degrees of 
satisfaction 0.9 to 1. 

 
The number of abstract services reflects the number 

of services the abstract workflow is composed of. It 
can be expected that the larger the workflow, the 
greater the execution time of the algorithm will be. We 
increased the number of abstract services along with 
the degree of satisfaction. Keeping the number of QoS 
attributes as well as the number of matching concrete 
services for each abstract service to 5, we repeated the 
evaluation with the number of abstract services 
ranging from 5 to 15 with increments of 5. For each set 
we ran the algorithm for degrees 0.7 to 1 with an 
increment of 0.1. We observed that there is a little 
change in the execution time when the required degree 
of satisfaction is below 0.9. The slope begins to change 
considerably from 0.9 to 1, especially for larger 
numbers of abstract services. It can be inferred from 
the experiment results that if a fully satisfying set of 
concrete services for the abstract workflow is 

available, an increase in the number of abstract 
services does not affect the performance of the 
algorithm much while the required degrees of 
satisfaction is below 0.9. 

To investigate the behavior of the presented 
approach for the range 0.9 to 1, we evaluated the 
algorithm for this range with increments of 0.02 while 
the same number of concrete services and attributes 
were kept. Figure 2 shows the results of the evaluation. 
The notable variations can be observed from degree 
0.96 onwards. The slopes of the lines continue to 
increase slowly until 0.98 and the major changes take 
place between 0.98 and 1. Larger numbers of abstract 
services have a greater effect on the slope and 
therefore on the execution time of the approach. 
 
5.2. Number of Concrete Services 
 

We evaluate the effect of the number of concrete 
services on the performance of the algorithm. It was 
explained earlier that the number of concrete services 
specifies the number of columns of the domain matrix, 
i.e. M, for each abstract service. For a good result, we 
kept the number of abstract services constant to 10 and 
the number of attributes to 5. We then increased the 
number of concrete services from 5 to 15 with 
increments of 5.  
 

 
Figure 3. Effect of increasing the number of 

concrete services (No Conc Srv) for degrees of 
satisfaction 0.9 to 1. 

 
Similar to the previous evaluation, we ran the 

algorithm for different datasets and for a degree of 
satisfaction range varying from 0.6 to 1 with 
increments of 0.1. Again as expected, increasing the 
number of concrete services will increase the execution 
time of the algorithm. Again, it is interesting to notice 
that like in the previous evaluation, not much variation 
can be observed in the range of 0.7 to 0.9, and the 
significant changes occur in the range of 0.9 and 1. 



To investigate this further, we repeated the 
evaluations this time from 0.9 to 1 with increments of 
0.02. The experiment was run for different datasets 
with 5, 10 and 15 concrete services. Figure 3 shows 
the results. We can see that as we increase the number 
of concrete services, the variations in the slopes of the 
curves can be observed from an earlier degree of 
satisfaction which is completely reasonable as 
increasing the number of concrete services makes the 
search process more time consuming, especially when 
the constraints can be hardly satisfied. 

 
5.3. Number of Attributes 
 

The number of QoS attributes for services is 
another factor that can affect the performance of the 
algorithm. These attributes consist of execution time, 
cost, reliability, etc. As discussed in Section 3, the 
number of attributes specifies the number of rows of 
the matrices. This implies that it should have a strong 
impact on the execution time of the algorithm. For this 
purpose, we kept the number of abstract services 
constant to 15, the number of concrete services to 10, 
and ran the algorithm with 3, 5 and 7 number of 
attributes while varying the degree of satisfaction from 
0.8 to 1. The results are presented in Figure 4. The 
interesting point of this experiment is that as the 
number of attributes increases, the choices for partially 
satisfying the degree of satisfaction also increases. As 
a result in some of the experiments, we observed that 
for some degrees of satisfaction less than 1, the 
execution time was smaller for a larger number of 
attributes. This depends on the dataset and the 
resulting tree of possibilities which is being 
constructed by the fuzzy CSP and this can lead to a 
shorter execution time for a larger number of 
attributes. 
 

 
Figure 4. Effect of increasing the number of 
attributes for degrees of satisfaction 0.8 to 1. 

 

5.4. Scalability 
 

The fuzzy CSP algorithm implemented and 
evaluated so far was based on the classic backtracking 
and depth first search. This technique is complete but 
has the shortcoming of being time consuming and does 
not support scalability. For hard constrained service 
selection problems, and for workflows with a large 
number of services, evaluations of the implemented 
approach resulted in very high execution times. 
Therefore, in order to enable scalability of the model 
and investigate its behavior for large and strictly 
constrained abstract workflow service selections, we 
exploited the stochastic search method, hill climbing, 
and applied it to our fuzzy CSP model. To exploit the 
hill climbing method for solving the abstract workflow 
service selection with fuzzy CSP modeling, we came 
up with some heuristics to start with a good solution in 
the search space and improve the search faster.  

 

 
Figure 5. Scalability of the hill climbing algorithm 

for 10 to 50 numbers of abstract services. 
 

The algorithm starts by computing the distance 
between the QoS parameters vector of each concrete 
service with the requirements vector. For each abstract 
service, the concrete service with the largest distance is 
selected. Therefore, the starting point in the search 
space is a suboptimal point which helps to retrieve the 
partial solution faster. The search process begins 
improvements by selecting the QoS parameter that has 
the lowest overall satisfaction. It then finds the abstract 
service, i.e. the variable, which had the lowest value 
for that parameter and tries to find and assign another 
concrete service to it in a way that improves the 
satisfaction degree. This procedure continues until no 
more abstract service assignment can be improved. 

Experiments were done to evaluate the proposed 
algorithm for large workflows. The algorithm was 
repeated for 10 to 50 numbers of abstract workflows 
with increments of 10 and for degrees of satisfaction 



0.9 to 0.98 with increments of 0.02. For each 
experiment the number of concrete services and the 
number of attributes were kept constantly to 5. 

Figure 5 shows the result of the experiments. It can 
be seen that the approach is very fast in comparison to 
the backtracking approach. There is not a large 
variation in slopes for higher degrees of satisfaction 
while increasing the number of abstract services, and 
therefore the increase in the execution time remains 
relatively small. 
 
6. Conclusion 
 

In this paper, we put forward an approach to solve 
the service selection for abstract workflows using CSP. 
We discussed that none of the previous approaches 
which targeted this problem used soft constraints. We 
provided an abstract service selection model exploiting 
fuzzy CSP and outlined that fuzzy constraint 
satisfaction modeling is even better for this purpose 
because either it can find a partial solution in the case 
no fully satisfiable solution exists or it can result in a 
faster solution by decreasing the degree of satisfaction 
in cases when the QoS requirements are fully 
satisfiable. We also applied new heuristics and also 
solved the presented model using the hill climbing 
algorithm to observe whether fuzzy CSP for abstract 
workflow service selection will scale for real 
application scenarios.  

The presented approach is also applicable for cases 
when the user tends to specify a range for each 
required QoS attribute, instead of a single value. 
Therefore, instead of comparing the values of the 
summation matrix with the requirement matrix, we 
check if the correspondent values in the summation 
matrix are within the range specified in the 
requirement matrix. 

The evaluations showed the effectiveness of 
considering the degree of satisfaction for solving the 
service selection process. It was observed from the 
evaluations that for a service selection where the 
constraints can be fully satisfied, an increase in the 
number of factors does not affect the performance of 
the algorithm much, while the required degree is less 
than 0.95. On the other hand, for computing the degree 
of satisfaction for a set of abstract services, we may 
want to merge the importance of each attribute, its 
weight, into the calculation. Thus, in the case when 
one or more attributes are not particularly important 
for the requester, we might be able to save some time 
as the algorithm may need to search longer to satisfy 
these attributes completely. 
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