
Intrusion Detection of Multiple Attack Classes
using a Deep Neural Net Ensemble

Simone A. Ludwig
North Dakota State University

Fargo, ND, USA
simone.ludwig@ndsu.edu

Abstract—An intrusion detection system (IDS) is a necessity to
protect against network attacks. The system monitors the activity
within a network of connected computers in order to analyze the
activity for intrusive patterns. Should an ‘attack’ event happen,
then the system has to respond accordingly. Different machine
learning techniques have been proposed in the past roughly
falling into two categories namely clustering algorithms and
classification algorithms. In this paper, the IDS is designed with a
neural network ensemble method to classify the different attacks.
The neural network ensemble method comprises autoencoder,
deep belief neural network, deep neural network, and an extreme
learning machine. The NSL-KDD data set is used to measure the
detection rate and false alarm rate of the implemented neural
network ensemble method. The detection rate and false alarm
rate are the two important measure for IDSs, however, several
other measures are also reported on such as confusion matrix,
classification accuracy, and AUC (area under curve).

I. INTRODUCTION

Cybersecurity is a very important aspect when it comes to
protect networks, computers, and data from attacks and unau-
thorized access. The term cybersecurity encompasses different
technologies, processes and practices involved. There are
different categories that include application security, informa-
tion security, network security, disaster recovery, operational
security and end-user education. One of the challenges that
computing systems and network systems face is the evolving
nature of threats. In the past, this challenge was dealt with
by protecting the most crucial system components from the
biggest known threats. However, this leaves the less important
portions of a system unprotected and vulnerable to inevitable
threats. Since this is not an approach to follow, new ways,
methodologies, and technologies need to be invented in order
to protect systems better [1].

Network based attacks have been increasing over the past
several years both in terms of frequency and severity. One of
the reasons is that more and more technologies are using com-
munication networks, in particular wireless communication
systems. Thus, network security is a high priority to protect
against potential attacks, which is accomplished by monitoring
the network traffic as well as making use of a defense system
and mechanism. There are different attacks on communication
network system and these are flooding, distributed denial-of-
service, surfing, vulnerabilities, etc. Intrusion detection sys-
tems are systems that deal with the recognition of normal
behavior on the network versus suspicious behavior on the

network, in particular, with IDS detection intruders’ actions
that threaten the integrity of the computer system [2].

Today’s system and data intrusions are quite sophisticated
and thus require a multi-tiered approach [5]. This implies
that companies that secure their networks often use several
technologies to prevent cyberattacks and intrusions. There is
a variety of tools and methodologies available, however, the
two common elements to a secure network configuration is
the firewall and the intrusion detection system.

There are two types of IDS namely host based and network
based. The host based system sits on a particular host and
watches for potential attacks. A network based system looks
at the network traffic in real time in order to detect intrusion
patters in the network [3]. A security model should employ
both a host based and a network based solution since both have
advantages and disadvantages. A drawback for the host based
solution is that resources are taken away from the host in order
to power the host based protection system. Furthermore, host
based solutions are reactive and thus can only respond after
an attack has actually occurred. Network based solutions are
usually installed in the form of a hardware appliance, and thus
do not need to use the system resources. This solution tends
to be more costly, however, the installation process is easy.

The detection of an intrusion is based on the difference
between normal operating and intrusion behavior and thus
divides into anomaly detection and misuse detection [4].
Anomalies are detected by analyzing features of normal be-
havior on the network and identifying when anomalies occur.
The advantages of anomaly detection is that unknown intrusion
types can be detected, however, it might result in a high
rate of false positives. On the other hand, misuse detection
is to analyze attack behavior by establishing templates of
attack characteristics, which is used to determine the attacks.
Misuse detection has the characteristics of high accuracy and
fast speed, however, the templates need to be updated very
frequently otherwise this method is not effective.

The aim of this paper is to analyze and classify the NSL-
KDD data set [6] to distinguish between normal and intrusion
behavior. The NSL-KDD data set is a ‘cleaned’ data set of
the KDD data set [7] created in 1999. The NSL-KDD data
set consists of selected records from the KDD99 data set by
removing redundancy and duplicates. The approach chosen
in this paper is based on a deep learning ensemble method
whereby related deep learning models are implemented and

evaluated.
The paper continues as follows. Section II describes related

work in the area of intrusion detection systems. In Section III,
the proposed approach is described. Section IV contains the
experiments conducted as well as the results and findings. The
conclusion and future work is given in Section V.

II. RELATED WORK

Many different systems have been built to monitor data
flow in networks in order to prevent temporary and permanent
damages caused by unauthorized access. Unfortunately, these
systems cannot detect all types of intrusions as attack permu-
tations are occurring over time. Machine learning algorithms
have been applied to classify normal and anomalous behavior
on the network.

K-means and K-nearest neighbor algorithms were used in
[8], [9] to perform the classification task. In this approach a
centroid function is used to choose the average and closest
grouping of new instances in order to group similar training
examples together.

Another approach used for IDS are support vector machines
(SVM). SVM divide the dimensional space with a smaller
dimensional hyperplane [10], [11]. In [12], SVM was used to
automate feature selection, which is a preprocessing step that
usually is applied in the area of data mining, thus improving
the classification rate. The so-called CSV-ISVM algorithm was
proposed in [13]. This algorithm uses incremental SVM in
order to select candidate support vectors and shows advantages
in real-time network intrusion detection.

Threshold-based anomaly detection also known as signature
matching has been widely applied to model network traffic.
For example, [14] discussed that traditional network-based
profile models are not sufficient enough to satisfy user pro-
files in the environment nowadays. Thus, a genetic algorithm
approach was used to find signatures of pattern detection rules
via permutations of parent signatures. Another approach [15]
proposed a core-plus-module framework (STAT) that is based
on state transition analysis technique in order to tailor the
design of an IDS to specific traffic types and environments.
Other research compared the genetic algorithm approach with
other approaches such as Naive bayes and K-nearest neighbor
[10].

Deep neural networks (DNN) have seen quite an uptake
in recent years. In particular, significant breakthroughs have
been achieved for tasks such as image recognition, speech
recognition, text recognition, and language translation. Deep
learning methods encompasses many different neural network
models such as deep belief neural networks, convolutional
neural networks, autoencoders, recurrent neural networks, etc.
All these deep neural network approaches have been developed
each serving a different purpose. For example, deep belief
networks (DBN) [16] was applied to image, text and voice
learning tasks. A DBN is formed by stacking several restricted
boltzmann machines (RBM) [17] that serve as multiple pro-
cessing layers in order to learn the representation and features
inherent in the data with multiple levels of abstraction.

Deep learning methods have been applied to the intrusion
detection as follows. Several DBN approaches have been
applied to the intrusion detection task. For example, a DBN
approach is proposed in [18], where a two-layer RBM is used
to train the network in an unsupervised fashion followed by
a feedforward layer whereby backpropagation is used to train
this layer in a supervised fashion. The authors report on the
classification accuracy based on the test set comparing their
approach with SVM, and a hybrid version of DBN with SVM.

In [19], the DBN algorithm was implemented and applied on
the NSL-KDD data set. The measures used were classification
accuracy, TP (true positives), FP (false positives), TN (true
negatives), and FN (false negatives).

A hybrid approach based on autoencoder and DBN is
implemented in [20]. The autoencoder learning method is
used to reduce the dimensionality of the data, which allows
to convert high-dimensional data to a low-dimensional trans-
formation with nonlinear mapping, and thus extracting the
main features of the data. After this first step, DBN learning
will be applied to detect anomalies. The DBN consists of
multilayer RBMs followed by a feedforward layer. First, the
RBMs are trained using an unsupervised approach followed by
supervised training with the feedforward layer. The measures
reported are TPR (true positive rate), FPR (false positive rate),
accuracy and CPU time.

An improved version of DBM is proposed in [21]. Since
the fine-tuning method of DBN is very time-consuming and
suffers from the possibility of only reaching a local optimum,
ELM (Extreme Learning Machines) was applied during the
training process in order to improve the accuracy as well as the
efficiency. The improved DBN was compared with the normal
DBN and achieved an improvement of 0.6% in the detection
rate by roughly reducing the execution time by half. Besides
the detection rate and the execution time no other measures
were reported on.

An accelerated DNN is proposed in [22]. A parallel version
of the DNN is used to accelerate the training phase, which
is a very time consuming task. The training phase consists
of several forward passes and backward passes. The input is
applied to the input nodes and each layer computes the output
on a layer-by-layer basis; this step is the forward pass. The
backward pass first calculates the error between the actual
output and the desired output and then backpropagates this
error by adjusting the weights in each layer as to reduce the
result during the next iteration. Since gradient calculations are
involved during the backpropagation process and depending on
the depth of the network, long training times are inevitable.

A deep learning approach for flow-based anomaly detection
in a Software Defined Networking (SDN) environment is
introduced in [23]. The DNN model is built using just six
basic features, ones that can be easily obtained in an SDN
environment. Different learning rates were experimented with
resulting in the best accuracy when the learning rate is set to
0.0001.

It is important to note that some of the deep learning
methods listed as related work were applied to the KDD data

set and others to the NSL-KDD data set.

III. PROPOSED APPROACH

Ensemble learning is an approach where several classifiers
are trained and their results are fused together in order to
separate the different classes. Ensemble techniques are also
known as multiple classifier systems, or just ensemble systems.
In this paper, several deep neural network approaches are used
and their results are fused together in order to distinguish
between normal and attack behavior of a network. Ensem-
ble approaches have lead to very promising results, usually
achieving a higher classification accuracy than single classifier
approaches alone.

A. Basic Concepts of Ensemble Learning
The concept of ensemble learning was first introduced in

1979 [27], which proposed using an ensemble system in a
divide-and-conquer fashion, whereby the feature space was
partitioned using two or more classifiers. More than 10 years
later, another ensemble system was introduced showing that
the generalization performance of similar neural network con-
figurations can be improved using ensembles by introducing
the variance reduction property [28]. However, research in [29]
placed ensemble systems at the center of machine learning
research. This was achieved by proving that a strong classifier
in the probably approximately correct sense can be generated
by combining weak classifiers through a procedure called
boosting.

The following paragraphs describe the details of ensemble
learning.

Definition 1 Let Ω = {ω1, ω2, ..., ωM} be a set of class
labels, and a function D : Rn → Ω is called a classifier with
the feature vector X = (X1, X2, ..., Xn) ∈ Rn.

Definition 2 Let h1, h2, ..., hM , hi : Rn → R, i = 1, ...,M
be discriminator functions that correspond to the class labels
ω1, ω2, ..., ωM , respectively. Then, the classifier D belonging
to this discriminator function is:

D(X) = ωj∗ ⇔ hj∗(X) =
M

max
j=1

(hj(X)) (1)

for all X ∈ Rn.
Definition 3 Let D1, D2, ..., DL be classifiers and the

majority voting ensemble classifier Dmaj : Rn → Ω is
obtained from these classifiers:

Dmaj(X) = ωi∗ ⇔ |{j : Dj(X) = ωi∗, j = 1, ...,M}|

=
M

max
i=1
|{j : Dj(X) = ωi, j = 1, ...,M}| (2)

Definition 4 Let D1, D2, ..., DL be classifiers and β =
(β1, β2, ..., βL) ∈ RL be a weight vector assigned to the clas-
sifiers. Then, the weighted majority voting ensemble classifier
Dwmaj : R→ Ω is defined by:

Dwmaj(X) = ωi∗ ⇔
L∑

j=1
Dj(X)=ωi∗

βj =
M

max
i=1

(
L∑

j=1
Dj(X)=ωi

βj

)

(3)

B. Proposed Ensemble Deep Neural Network Classifiers

1) Autoencoder (AE): Autoencoders are composed of an
input, a hidden and an output layer. The output received by
the output layer is a reconstruction of the input after the input
has been ‘squished’ through a smaller hidden layer. Thus,
autoencoders offer dimensionality reduction and basically a
compression similar to PCA (principle component analysis).
The features that are extracted via the hidden layer can be
used to train a feedforward layer, thus, removing the output
layer from the autoencoder, i.e., use the hidden layer as input
features for the classification or another autoencoder. The
network is being trained by training each autoencoder using
unsupervised data followed by the fine-tuning step whereby
the last layer is trained using supervised data.

The autoencoder architecture that was used for the exper-
iments follows the implementation in [22] with two autoen-
coders of size 20 and 10, respectively, followed by a fully
connected layer of size 5.

2) Deep Belief Neural Network (DBN): The main idea
of a DBN is to train a sequence of RBMs by defining the
probability distributions over the hidden layer in order to
estimate the probability of the generating visible layer. This
is done by learning certain parameters via random sampling
to learn the model. The cascade of RBMs allows the hidden
vectors of one RBM to be the input for the next RBM and so
on.

The following general rules apply:
• If the number of hidden units in the top layer is above

a certain threshold, then the performance converges to a
certain accuracy.

• The performance tends to increase with the training of
each RBM.

• The performance decreases as the number of layers
increases.

The stacking of RBM layers can be seen as a feature
extraction method. The training of the RBM layers is done
without the labels, and thus is unsupervised training. The last
layer of the network is a fully connected layer and is trained
with labeled data.

The DBN architecture that was used for the experiments
consisted of 2 RBM layers with 20 and 15 nodes, respectively,
followed by a 15-node fully connected layer.

3) Deep Neural Network (DNN): A DNN consists of an
input, several hidden layers, and an output layer. The network
is trained using backpropagation in order to minimize the error
between the actual output and the desired output.

For the experiments, a network with two hidden layers of
size 25 and 20 was implemented. Standard backpropagation
has two shortcomings, the first is that a fixed learning rate
is used, and the second that the search can get stuck in local
minima. Thus, the Adam optimizer was introduced [31]. Adam
(Adaptive Moment Estimation) uses separate learning rates for
each weight as well as an exponentially decaying average
of previous gradients that contributes to a better training
algorithm.

4) Extreme Learning Machine RBM (ELM): Extreme learn-
ing machine is a learning algorithm that is used to train a
single hidden layer neural network [32]. The input weights
and hidden biases are randomly generated. The output weights
are calculated by the regularized least square method, thus,
resulting in a simple deterministic solution. Since there are no
iterations and/or parameter tuning involved as in backpropaga-
tion based neural networks, the method is very fast. Moreover,
the regularized least squares computations of the ELM are
much faster than solving the quadratic programming problem
as is the case in SVM. Several studies have shown that ELM
is much more efficient at the same time achieving a higher
generalization performance than NN or SVM [33]. Thus, ELM
has become a significant research topic in particular in the
machine learning domain.

The ELM architecture that was used for the experiments
follows the implementation in [21]. The network structure
used is a 110-90-50-25 layer structure trained with a maximum
number of iterations set to 300.

IV. EXPERIMENTS AND RESULTS

A. NSL-KDD Data set

The history behind the NSL-KDD data set is the following.
In 1998, the MIT Lincoln Lab held a DARPA-sponsored IDS
event which simulated an attack scenario to the Air-Force
base with an repeat event one year later [24]. During these
events improvements were suggested by the computer security
community. The DARPA data set [25] consists of host and
network data files recorded during a seven week time period.
The first two weeks were attack-free whereas the remaining
weeks contained also attack data. In order to make it easier
for the data mining community to apply machine learning
techniques another data set, the KDD99 data set, was created
by preprocessing the data and extracting the relevant features.
The output classes are divided into 5 categories namely DOS
(denial of service), probe, R2L (Root to local), U2R (user to
root), and normal. The KDD99 data is still in use today and has
been extensively studied. However, several researchers have
pointed out various shortcomings [26]:

• Imbalance data set; 80% is attack data.
• U2R and R2L attacks are rare.
• Duplicate records in both training and testing data set.

Thus, these shortcomings were alleviated with the introduction
of the NSL-KDD data set. The NSL-KDD data set contains
41 features that are either continuous or discrete. The features
of the data set are grouped into four categories:

• Basic features that are derived from the packet headers
without inspecting the payload information.

• Content features for which domain knowledge is used to
assess the payload of the original TCP packets.

• Time-based traffic features that are extracted to capture
the properties during a 2-second time window.

• Host-based traffic features that are extracted to assess
attacks that span intervals of longer than 2-second time
periods.

The outcome is given as either normal or a specific attack
type. The simulated attacks fall into one of the following
categories:

• Denial of Service (DoS): this is an attack that occupies
either a computing or memory resource so that no other
requests can be serviced.

• Probing: the attacker scans the network to gather infor-
mation in order to exploit the systems; an example is port
scanning.

• Remote to Local (R2L): attacker sends a packet to the
network by exploiting some vulnerability in order to gain
local access; an example is password guessing.

• User to root (U2R): the attacker accesses a normal user
account and exploits vulnerability to gain root access to
the system; an example is a buffer overflow attack.

There are different attack types that map to the different attack
classes; these are outlined in Table I.

TABLE I
MAPPING OF ATTACK TYPES TO ATTACK CLASSES

Attack class Attack types

DoS back, land, neptune, pod, smurf,
teardrop, mailbomb, apache2, pro-
cesstable, udpstorm

Probe ipsweep, nmap, portsweep, satan,
mscan, saint

R2L ftp write, guess passwd, imap, multi-
hop, phf, spy, warezclient, warezmas-
ter, sendmail, named, snmpgetattack,
snmpguess, xlock, xsnoop, worm

U2R buffer overflow, loadmodule, perl,
rootkit, httptunnel, ps, sqlattack, xterm

Table II shows the number of training and testing records
and their distribution. There are 125, 973 records in the train-
ing data set, and 22, 543 records in the testing data set.

TABLE II
DESTRIBUTION OF TRAINING AND TESTING RECORDS

Normal DoS Probe U2R R2L Total

Train 67,343 45,927 11,656 52 995 125,973
Test 9,711 7,458 2,421 200 2,754 22,543

B. Evaluation Measures

The performance measures used to evaluate the ensemble
classifier are the following:

• Confusion matrix: contains the number of actual and
predicted classifications achieved by the classifier.

• False positives (FP): defines the number of detected
attacks that are actual normal behavior.

• False negatives (FN): are the wrong predictions whereby
instances that are attacks are classified as normal.

• True positive (TP): instances that are correctly classified
as normal.

• True negatives (TN): attack instances that are correctly
classified.

• Accuracy or True positive rate (TPR): percentage of
correct predictions compared to all predictions.

• Area Under Curve (AUC): describes the curve between
TPR and FPR and the area under the curve; FPR is
calculated as

FP

TN + FN
. (4)

• False alarm rate: is calculated as
FP

TN
. (5)

• Detection rate: is calculated as
TN − FN

TN
. (6)

• Precision (P): is calculated as

TP

TP + FP
. (7)

• Recall (R): is the proportion of instances belonging to the
positive class that are correctly predicted as positive and
calculated as

TP

TP + FN
. (8)

• F1-score: also known as F-score or F-measure considers
both precision and recall to compute the score; it is
computed as

2× P ×R
P +R

. (9)

C. Results

The following are the results of the run achieved during the
training phase. Table III shows the confusion matrix whereby
13, 313 and 11, 769 are correctly classified as normal and
attacks, respectively.

TABLE III
CONFUSION MATRIX OF TRAINING PHASE

normal attack

normal 13313 15
attack 36 11769

The different metric scores during the training phase are
listed in Table IV. The main measure for IDSs are the false
alarm rate, which should be low, and the detection rate, which
should be high. Results of 0.11% and 99.69% are achieved,
respectively. Other values of importance are the classification
accuracy and AUC with both achieving 99.79%.

TABLE IV
VARIOUS METRIC SCORES FOR TRAINING PHASE

Accuracy 0.997971
AUC 0.997912

False alarm rate 0.001125
Detection rate 0.996950

F1 score 0.997838

TABLE V
PRECISION, RECALL, F1-SCORE AND SUPPORT FOR TRAINING PHASE

Precision Recall F1-score Support

0.00 1.00 1.00 1.00 13328
1.00 1.00 1.00 1.00 11805

avg / total 1.00 1.00 1.00 25133

Precision, recall, F1-score and support results are given in
Table V.

The following are the results of the run achieved during
the testing phase when the trained model is applied to the
test data. Table VI displays the confusion matrix. 8, 282 and
12, 570 records were correctly classified as normal and attack,
respectively, with only 1, 692 records being misclassified.

TABLE VI
CONFUSION MATRIX OF TESTING PHASE

normal attack

normal 8282 1429
attack 263 12570

A false alarm rate of 14.72%, and a detection rate of 97.95%
were achieved on the test data set as shown in Table VII. A
classification accuracy of 92.50% was achieved with an AUC
of 91.62%. The F1-score resulted in 93.69%.

TABLE VII
VARIOUS METRIC SCORES FOR TESTING PHASE

Accuracy 0.924947
AUC 0.916177

False alarm rate 0.147153
Detection rate 0.979506

F1 score 0.936941

Precision, recall, F1-score and support results are given in
Table VIII.

TABLE VIII
PRECISION, RECALL, F1-SCORE AND SUPPORT FOR TESTING PHASE

Precision Recall F1-score Support

0.00 0.97 0.85 0.91 9711
1.00 0.90 0.98 0.94 12833

avg / total 0.93 0.92 0.92 22544

D. Comparison with Results of Related Work

In order to compare the results obtained by our proposed
ensemble method, different related work applying deep neural
network approaches to the NSL-KDD data set have been used.
However, please note that related approaches mostly reported
only on one or a few of the measures. Thus, Table IX is rather
sparse with many measures missing from the comparison
approaches.

The comparison approaches are DNN [30], DBN [18],
Autoencoder DNN [22], ELM-DBN [21], and DNN2 [23].

In terms of classification accuracy, only DBN, autoencoder
and DNN2 have published results. These are 97.45% achieved
by the DBN approach, and 91.7% achieved by DNN2. For
the autoencoder DNN, listed as separate values of 96.5%
for the normal category and 97.5% for the attack category.
With regards to this measure our proposed ensemble method
falls short with achieving only 92.49% compared to DBN and
autoencoder. However, in the area of IDSs the most important
measures are the detection rate and false alarm rate. None
of the comparison approach has considered the false alarm
rate, thus it cannot be compared. The detection rate on the
other hand was only measured by the ELM-DBM approach
achieving 91.8% whereas our method achieved 97.95%. In
terms of precision, recall, and F-measure the only approaches
that can be compared with are DNN and DNN2. The DNN
approach achieved values of 96%, 64% and 77%, and the
DNN2 method obtained 83%, 75%, and 72%, respectively.
Please note that the results of DNN were obtained from the
figures given in the paper. Our proposed method achieved
values of 93%, 92% and 92% for precision, recall and f-
measure, respectively. Overall, our method obtained better
results with the exception of the classification accuracy.

V. CONCLUSION

IDSs are systems that are designed to defend against net-
work attacks. Different methods have been proposed in the past
and many of these systems implement a data mining approach.
The data mining approaches can be classified into clustering
and classification approaches. In this paper, a classification
model using deep neural networks was studied. In particu-
lar, the NSL-KDD data set was investigated using a deep
neural network ensemble technique. The ensemble technique
comprised different deep neural network techniques such as
autoencoder, deep belief neural network, deep neural network,
and an extreme learning machine. The most important mea-
sures for IDSs are the detection rate and false alarm rate. The
detection rate is the fraction of the difference between the
attack instances that are correctly classified and the instances
that are falsely classified as normal, and attack instances that
are correctly classified. The false alarm rate is the fraction of
detected attacks that are actual normal and attack instances
that are correctly classified. Other measures considered are
classification accuracy, AUC, precision, recall, and F-measure.

The results of the proposed ensemble method was compared
with related deep learning methods that were applied on the
NSL-KDD data set. The comparison approaches were DNN,
DBN, autoencoder DNN, and ELM-DBN. Unfortunately, one
shortcoming of the related work methods is that most of them
only reported on one or a few of the measures. In particular,
the relevant measures of false alarm rate and detection rate
were hardly measured.

In terms of classification accuracy, DBN and autoencoder
achieved approximately 5% higher accuracy value than our
proposed ensemble method. However, in terms of the other
more relevant measures our proposed ensemble method out-
performs the other measures quite significantly. For example,

for the detection rate our method achieved 97.95% whereas
ELM-DBM achieved only 91.8%. Furthermore, the precision,
recall, and F-measure are also significantly higher than the
comparison approaches DNN and DNN2. Values of 93%, 92%
and 92% were obtained by our method, and 96%, 64% and
77% were achieved by the DNN method, and 83%, 75%,
and 72% were obtained by DNN2. In summary, our proposed
ensemble method obtained better results than the comparison
approach in terms of the important measures of IDSs with the
exception of the classification accuracy.

Future research will include more deep learning methods
such as clustering methods called deep embedded clustering,
deep self-organizing maps, etc. Also, other machine learning
methods can be used and added to the ensemble. It would also
be interesting to investigate the execution time when run on
a CPU versus a GPU, in particular with regards to big data
problems.

REFERENCES

[1] Cybersecurity, http://whatis.techtarget.com/definition/cybersecurity, 2017.
[2] W. Stallings, Network security essentials: applications and standards, 5th

edition, Pearson, 2013.
[3] K. Scarfone and P. Mell, Guide to Intrusion Detection and Prevention

Systems Recommendations (IDPS), National Institute of Standards and
Technology, NIST Spec. Publ. 800-97, 2007.

[4] B. C. Rhodes, J. A. Mahaffey, J. D. Cannady, Multiple self-organizing
maps for intrusion detection, 23rd national information systems security
conference, 2000.

[5] Top Free Network-Based Intrusion Detection Systems
(IDS) for the Enterprise, https://www.upguard.com/articles/
top-free-network-based-intrusion-detection-systems-ids-for-the-enterprise,
2015.

[6] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, A Detailed Analysis
of the KDD CUP 99 Data Set, IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA), 2009.

[7] W. Lee, S. J. Stolfo, A framework for constructing features and models
for intrusion detection systems, ACM Transactions on Information and
System Security 3:227-261, 2000.

[8] I. Chairunnisa, Lukas, and H. D. Widiputra. Clustering base intrusion de-
tection for network profiling using k-means, ecm and k-nearest neighbor
algorithms. In Konferensi Nasional Sistem dan Informatika, 2009.

[9] S. Zanero and S. M. Savaresi. Unsupervised learning techniques for an
intrusion detection system. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, pages 412-419, New York, NY, USA,
2004.

[10] A. Ali, A. Saleh, and T. Ramdan. Multilayer perceptrons networks for
an intelligent adaptive intrusion detection system. International Journal
of Computer Science and Network Security, 10(2), 2010.

[11] N. Gornitz, M. Kloft, K. Rieck, and U. Brefeld. Active learning for
network intrusion detection. In 2nd ACM workshop on security and
artificial intelligence, pages 47-54, 2009.

[12] M. Kloft, U. Brefeld, P. Dussel, C. Gehl, and P. Laskov. Automatic
feature selection for anomaly detection. In AISEC 2008, pages 71-76,
2008.

[13] R. Chitrakar and C. Huang, Selection of candidate support vectors in
incremental SVM for network intrusion detection, Computers & Security,
vol 45, pp. 231-241, 2014.

[14] F. Giroire, J. Chandrashekar, G. Iannaccone, K. Papagiannaki, E. M.
Schooler, and N. Taft. The cubicle vs. the coffee shop: Behavioral modes
in enterprise end-users. In Proceedings of the 2008 Passive and Active
Measurement Conference, pages 202-211, Springer, 2008.

[15] M. Pillai, J. Eloff, and H. Venter. An approach to implement a network
intrusion detection system using genetic algorithms. In Proceedings of
South African Institute of Computer Scientists and Information Technol-
ogists, pages 221-228, Western Cape, South Africa, 2004.

[16] G. E. Hinton, S. Osindero, and Y.-W. Teh, A fast learning algorithm for
deep belief nets, Neural computation, vol. 18, pp. 1527-1554, 2006.

TABLE IX
COMPARISON OF PROPOSED APPROACH WITH OTHER APPROACHES BASED ON THE AVAILABLE MEASURES

Accuracy (%) Detect rate (%) Precision (%) Recall (%) F-measure (%)

DNN [30] - - 96.0 (est. from figure) 64.0 (est. from figure) 77.0 (est. from figure)
DBN [18] 97.5 (40% training set) - - - -

Autoencoder [22] 96.5 (normal) 97.5 (attack) - - - -
ELM-DBN [21] - 91.8 - - -

DNN2 [23] 91.7 - 83.0 75.0 74.0
Proposed approach 92.5 97.9 93.0 92.0 92.0

[17] R. Salakhutdinov and G. E. Hinton, Deep boltzmann machines, Inter-
national conference on artificial intelligence and statistics, 2009.

[18] M. Z. Alom, V. Bontupalli and T. M. Taha, Intrusion detection using
deep belief networks, 2015 National Aerospace and Electronics Confer-
ence (NAECON), Dayton, OH, 2015.

[19] K. Alrawashdeh and C. Purdy, Toward an Online Anomaly Intrusion
Detection System Based on Deep Learning, 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), Anaheim,
CA, 2016.

[20] Y. Li, R. Ma, R. Jiao, A Hybrid Malicious Code Detection Method based
on Deep Learning, International Journal of Security and Its Applications,
vol. 9, no. 5, 2015.

[21] Y. Liu and X. Zhang, Intrusion Detection Based on IDBM, 2016
IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing,
Auckland, 2016.

[22] S. Potluri and C. Diedrich, Accelerated deep neural networks for
enhanced Intrusion Detection System, 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
Berlin, 2016.

[23] T. A. Tang, L. Mhamdi, D. McLernon, S. A. Raza Zaidi, M. Ghogho,
Deep learning approach for Network Intrusion Detection in Software De-
fined Networking, 2016 International Conference on Wireless Networks
and Mobile Communications (WINCOM), Fez, Morocco, 2016.

[24] A. Ozgur, H. Erdem, A review of KDD99 dataset usage in intrusion
detection and machine learning between 2010 and 2015 (Version 1), PeerJ
Preprints, 2016.

[25] DARPA Intrusion Detection Data Sets, https://www.ll.mit.edu/ideval/

data/, 1998.
[26] R. Sommer, V. Paxson, Outside the closed world: On using machine

learning for network intrusion detection, Proceedings of the 2010 IEEE
Symposium on Security and Privacy, IEEE Computer Society, Washing-
ton, DC, USA, 2010.

[27] B. V. Dasarathy and B. V. Sheela, Composite classifier system design:
concepts and methodology, Proceedings of the IEEE, vol. 67, no. 5, pp.
708-713, 1979.

[28] L. K. Hansen and P. Salamon, Neural network ensembles, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp.
993-1001, 1990.

[29] R. E. Schapire, The Strength of Weak Learnability, Machine Learning,
vol. 5, no. 2, pp. 197-227, 1990.

[30] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, A Deep Learning Approach
for Network Intrusion Detection System. In Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communica-
tions Technologies, Brussels, Belgium, 2016.

[31] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, Pro-
ceedings of the 3rd International Conference on Learning Representations
(ICLR), 2014.

[32] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme learning machine:
theory and applications, Neurocomputing, vol. 70, no. 13, pp. 489-501,
2006.

[33] G.-B. Huang, L. Chen, and C.-K. Siew, Universal approximation us-
ing incremental constructive feedforward networks with random hidden
nodes, IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-

892, 2006.

