
Parallel Glowworm Swarm Optimization Clustering
Algorithm based on MapReduce

Nailah Al-Madi, Ibrahim Aljarah and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

{nailah.almadi,ibrahim.aljarah,simone.ludwig}@ndsu.edu

Abstract—Clustering large data is one of the recently chal-
lenging tasks that is used in many application areas such as
social networking, bioinformatics and many others. Traditional
clustering algorithms need to be modified to handle the increasing
data sizes. In this paper, a scalable design and implementation
of glowworm swarm optimization clustering (MRCGSO) using
MapReduce is introduced to handle big data. The proposed
algorithm uses glowworm swarm optimization to formulate the
clustering algorithm. Glowworm swarm optimization is used to
take advantage of its ability in solving multimodal problems,
which in terms of clustering means finding multiple centroids.
MRCGSO uses the MapReduce methodology for the paralleliza-
tion since it provides fault tolerance, load balancing and data
locality. The experimental results reveal that MRCGSO scales
very well with increasing data set sizes and achieves a very close
to linear speedup while maintaining the clustering quality.

Keywords—Big data clustering, Parallel Processing, Hadoop

I. INTRODUCTION

Data clustering [1] is one of the important data analysis
tasks with the objective of dividing a set of unlabeled data
objects into different groups called clusters; each group hav-
ing common specifications between the group members. An
efficient clustering algorithm is one that produces high quality
clusters, in other words, the similarity measure between the
data objects in the same cluster are to be maximized, and
the similarity measure between the data objects from different
groups are to be minimized. Clustering can therefore be
formulated as a multi-objective optimization problem. Many
techniques have been proposed to solve optimization problems
such as swarm intelligence.

Swarm intelligence [2] simulates the natural swarms such
as ant colonies, flocks of birds, bacterial growth, and schools
of fish. The behavior of the swarm is based on the sense
of the members’ interactions in the swarm by exchanging
their local information with each other to help reaching the
food sources. There is no central member in the swarm, but
rather all swarm members participate equally to achieve the
goal. Some examples of swarm intelligence algorithms are
Particle Swarm Optimization (PSO) [3], Glowworm Swarm
Optimization (GSO) [4], and Ant Colony Optimization (ACO)
[5].

In this paper, we use Glowworm Swarm Optimization
(GSO) [4], which is inspired by simulated experiments of

the behavior of insects called glowworms or lighting worms.
These glowworms are able to control their light emission
and use it for different objectives such as e.g., attracting
other worms during the breeding season. GSO is especially
useful for a simultaneous search of multiple solutions, having
different or equal objective function values. A glowworm
that emits more light (high luciferin level) means that it is
closer to an actual desired position and has a high objective
function value. A glowworm is attracted by other glowworms
whose luciferin level is higher than its own within a local
decision range. If the glowworm finds some neighbors with
a higher luciferin level that are within its local range, the
glowworm moves towards them. At the end of the process,
most glowworms are gathered at the multiple peak locations
in the search space.

Swarm intelligence has been effectively used for data clus-
tering [6, 7]. Solving clustering as an optimization problem
depends on the cluster quality measure (objective function)
used such as cluster similarity, member intra-distance, sum of
square errors, etc. Most swarm intelligence algorithms solve
clustering as a global solution, where each individual searches
for the complete clustering solution. However, GSO solves the
optimization task in a different way, whereby each glowworm
searches for one of the cluster centroids, which is considered
as a sub-solution. The combination of these sub-solutions
forms the global solution of the clustering problem.

Clustering very large data sets that contain large numbers
of records with high dimensions is very difficult and com-
putationally expensive. The parallelization of the algorithm is
the solution to enable existing approaches to work feasibly
on big data, which can be done using different methodologies
such as MPI (Message Passing Interface) [8], or MapReduce
[9], and many others. MapReduce is a prominent parallel
data processing framework, which has been gaining significant
interest from both industry and academia. It is a new method-
ology proposed by Google in 2004, which is a programming
model and an associated implementation for processing large
data sets [9]. MapReduce enables users to develop large-scale
distributed applications by supporting fault tolerance, load
balancing, and data locality.

In this paper, we propose a scalable design and implemen-
tation of glowworm swarm optimization clustering [10] using

the MapReduce methodology called MRCGSO. MRCGSO is
different from CGSO since it implements the Map and Reduce
functions in order to achieve the goal of enabling CGSO
to solve big data clustering and enhance its scalability. The
proposed algorithm is evaluated using real and large synthetic
datasets.

The organization of this paper is as follows: In Section II,
we describe the glowworm clustering algorithm process and
the MapReduce model, and introduce the proposed MRCGSO
approach. Then, we report on our experiments, and show the
results in Section III. We conclude this paper in Section IV.

II. RELATED WORK

Big data clustering has recently received significant efforts
to build parallel efficient and effective clustering algorithms.
Most of these algorithms use the MapReduce methodology
that has been devoted to enhance the algorithms’ scalability.

Yaobin et al. in [11] introduced a MapReduce design
and implementation of an efficient DBSCAN algorithm. The
proposed algorithm tackled the drawbacks of existing parallel
DBSCAN algorithms such as the data balancing, scalability
limitation, and the limitation of the parallel environment
used. The algorithm resolved these issues by using a fully
parallelized implementation and by removing the sequential
processing bottleneck as well as improving the algorithm’s
portability. Furthermore, the algorithm showed the biggest
improvement when the data was imbalanced needing high
computational cost. The evaluation experiments conducted
using large scale datasets confirm the efficiency and scalability
of their algorithm.

A parallel K-means algorithm clustering algorithm based
on MapReduce was proposed in [12]. The algorithm finds
the centroids by calculating the weighted average of each
individual cluster points through the Map function; afterwards
the Reduce function assigns a new centroid for each data
point based on the distance calculations. Then, a MapReduce
iterative refinement technique is applied to find the final
centroids.

Ping et al. in [13] proposed an algorithm for solving the
problem of the document clustering using the MapReduce-
based K-means algorithm. The algorithm uses MapReduce to
read the document collection to calculate the term frequency
and inverse document frequency. The introduced algorithm
represents the documents as [key, value] pairs, where the key
is the document type and the value is the document text. The
experiments showed that the algorithm works well for text
clustering and can be done in relatively short time with high
accuracy.

Li et al. in [14] suggested another K-means clustering al-
gorithm using MapReduce by merging the K-means algorithm
with ensemble learning method bagging. The algorithm is used
to solve the outlier problem. Their algorithm shows that the
algorithm is efficient on a large scale data sets with large
number of outliers.

In [15], self-organizing map (SOM) was modified to work
with large scale data sets by implementing the algorithm using

Hadoop Mapreduce to improve the performance of clustering.
Experiments were conducted with large real data sets and
demonstrated the efficiency of MapReduce-based SOM and
confirmed that the MapRduce methodology is applicable to
parallelize these types of algorithms.

In [16], the authors used the MapReduce framework to
solve co-clustering problems. They proved that MapReduce is
a good solution for co-clustering mining tasks and they applied
the algorithm to many application areas such as collaborative
filtering, text mining, etc. The experiments showed that the
co-clustering with MapReduce can scale well with large data
sets.

In [17], a fast clustering algorithm with constant factor
approximation guarantee was proposed. The authors use a
sampling technique to decrease the data size. A comparison of
this algorithm with several sequential and parallel algorithms
for the k-median problem was done using randomly generated
data sets to check the algorithm performance. The results
showed that the algorithm achieves better or similar solutions
compared to the existing algorithms especially on very large
data sets.

Yang et al. in [18] proposed a big data clustering method
based on the MapReduce framework. They used the ant colony
approach to decompose the big data into several data partitions
to be used in parallel clustering. Using MapReduce with the
ant colony clustering algorithm lead to the automation of the
semantic clustering to improve the data analysis. The proposed
algorithm was developed and tested on data sets with large
number of records and showed acceptable accuracy with good
efficiency.

In [19], the authors suggested an idea to minimize the I/O
cost for clustering analysis with the MapReduce model by
minimizing the network overhead among the processing nodes.
Furthermore, they suggested a subspace clustering method to
handle very large datasets in efficient time. Experiments on
data of millions of instances returned good speedup results.

All clustering algorithms applied on large scale data share
the computational burden due to the high processing overhead
and the iterative mechanism that is used for the implemen-
tation. To reduce the large computational burden, scalable
algorithms can be achieved by employing parallel processing
mechanisms to build parallel clustering algorithms. In this pa-
per, a parallel clustering algorithm is proposed. We use glow-
worm swarm optimization as it performs multiple searches to
find the best centroids in the search space. Furthermore, the
MapReduce framework has been chosen as the parallelization
technique in order to enhance the scalability and efficiency of
the CGSO [10]. To the best of our knowledge, this is the first
work that implements GSO clustering with MapReduce. The
main objective for this paper is to show that GSO clustering
benefits from MapReduce and is applicable for large datasets.

III. PROPOSED APPROACH

Given that our proposed approach is based on the glowworm
swarm optimization clustering algorithm CGSO as well as the
MapReduce methodology, we first briefly introduce GSO, then

clustering using GSO and MapReduce before outlining the
details of our proposed MRCGSO algorithm.

A. Glowworm Swarm Optimization Algorithm

GSO is one of the most recent swarm intelligence method
introduced by Krishnan and Ghose in 2005 [4]. GSO is
distinguished from other methods and has been efficiently
used for optimizing multimodal functions. In GSO, glowworm
swarm S, which consists of m glowworms, is distributed
in the objective function search space. Each glowworm gj
(j = 1...m) is assigned a random position pj inside the given
search space. Glowworm gj carries its own luciferin level Lj ,
and has a vision range called local-decision range rdj . The
luciferin level depends on the objective function value and
the glowworm position. The glowworm with a better position
is brighter than others, and therefore, has a higher luciferin
level value and is therefore closer to the optimal solution.
All glowworms seek the neighborhood set within their local
decision range, and then move towards the brighter ones within
the neighborhood set. Finally, most of the glowworms gather
in compact groups in the function search space at multiple
optimal locations.

GSO works in an iterative process that consists of several lu-
ciferin updates and glowworm movements, which are executed
to find optimal solutions. The luciferin level Lj is updated
using the following equation:

Lj(t) = (1− ρ)Lj(t− 1) + γF (pj(t)) (1)

where Lj(t−1) is the previous luciferin level for glowworm j;
ρ is the luciferin decay constant (ρ ∈ (0, 1)); γ is the luciferin
enhancement fraction, and F (pj(t)) represents the objective
function value for glowworm j at current glowworm position
(pj); t is the current iteration.

After that, each glowworm j explores its own neighborhood
region to extract the neighbors that have the highest luciferin
level by applying the following rule:

z ∈ Nj(t) iff Distancejz < rdj(t) and Lz(t) > Lj(t)
(2)

where z is one of the neighboring glowworms close to
glowworm j, Nj(t) is the neighborhood set, Distancejz is
the Euclidean distance between glowworm j and glowworm
z, rdj(t) is the local decision range for glowworm j, and
Lz(t) and Lj(t) are the luciferin levels for glowworm z and
j, respectively.

After that, each glowworm selects the movement direction
using the roulette wheel method. Therefore, the glowworm
position (pj) is adjusted based on the selected neighbor
position (pz) using the following equation:

pj(t) = pj(t− 1) + s
pz(t)− pj(t)
Distancejz

(3)

pj(t − 1) is glowworm j’s previous position, s is a step size
constant, and Distancejz is the Euclidean distance between
glowworms j and z.

B. Glowworm Swarm Optimization Clustering Algorithm -
CGSO

In [10], the authors proposed a partitioning-based clustering
algorithm (CGSO) by formulating the clustering problem as a
multimodal optimization problem.

Given dataset D, a clustering algorithm extracts a set of
clusters C = {C1, C2, ..., Ck}, each is represented with a point
called centroid, such as c = {c1, c2, ..., ck}, where k is the
number of centroids in the c centroid set. Furthermore, the
clustering algorithm tries to maximize the similarity of the
instances in the same cluster, and to minimize the similarity
of instances from different clusters.

In CGSO, the GSO objective is adjusted to locate multiple
optimal centroids such that each centroid represents a sub-
solution and the combination of these sub-solutions formulate
the global solution for the clustering problem. The proposed
CGSO consists of four main phases: initialization phase,
luciferin level update, glowworm movement, and candidate
centroids set construction.

In the initialization phase, first an initial glowworm swarm
S of size m is created. For each glowworm gj , a random
position vector (pi) is generated using uniform randomization
within the given search space within the minimum and the
maximum values that are calculated from the data set D.
Then, the luciferin level (Lj) is initialized using the initial
luciferin level L0. The fitness function value Fj is initialized
to zero. The local range rs is set to an initial constant range r0.
Secondly, after initializing the swarm, the set of data instances
crj which are covered by gj , is extracted from data set D, and
the intraDj is calculated using the following equation:

intraDj =

|crj |∑
i=1

Distance(crji, gj) (4)

where crji is the data instance i which is covered by gj ; |crj |
is the number of data instances which is covered by gj . Then,
in the last step of the initialization phase, the Sum Squared
Errors (SSE) and Inter Distance (InterDist) are calculated
using Equation 5 and Equation 6, respectively.

SSE =

k∑
j=1

|Cj |∑
i=1

(Distance(xi, cj))
2 (5)

InterDist =

k∑
i=1

k∑
j=i

(Distance(ci, cj))
2 (6)

where the Distance is calculated using the Euclidean distance.
After the initialization phase, an iterative process is per-

formed to find optimal glowworms that represent the clustering
problem centroids. The result of each iteration is an updated
swarm with an updated candidate centroids set. In the luciferin
level update phase, the fitness function F is evaluated using
Equation 7 to assign new Fj values to each glowworm.

F (gj) =
1
n |crj |

SSE × intraDj

max
j

(intraDj)

(7)

After the fitness function evaluation for glowworm gj , the
luciferin level Lj is updated using Equation 1. Then, each
glowworm gj locates the neighborhood group to find the best
neighbor. Then, the glowworm is moved towards the best
neighbor by updating its pj vector using the best neighbor
position. After that, |crj |, and intraDj are updated based
on the new glowworm gj positions. After that, the candidate
centroid set c is reconstructed based on the highest fitness
values (Fj). The iterative process is continued until the size
of the candidate centroid set c becomes less than a specific
threshold (minimum number of centroids is given), or the
maximum number of iterations is achieved. The candidate
centroid set c decreases throughout the iterative process,
and after the clustering process is completed, the candidate
centroid set is used to evaluate the clustering results.

C. MapReduce Methodology

MapReduce is a highly scalable model and can be used
across many computer nodes, and is mostly applicable for
data intensive applications when there are limitations on mul-
tiprocessing and large shared-memory machines. MapReduce
makes use of two main operations: Map and Reduce. Both
Map and Reduce operations take inputs and produce outputs
in the form of <key, value>. The Map operation goes over a
large number of records and extracts interesting information
from each record, and then all values with the same key
are sent to the same Reduce operation. However, the Reduce
operation aggregates intermediate results, generated from the
Map function that has the same key, then generates the final
results.

A well-known and commonly used implementation of
MapReduce is Apache Hadoop [20]. It is an open source
software framework that supports data-intensive distributed
applications licensed under Apache. It enables applications to
work with petabytes of data using thousands of independent
processors. One of the main components of Hadoop is the
storage component, Hadoop Distributed File System (HDFS).
HDFS provides high-throughput access to the data and main-
tains fault tolerance by creating multiple replicas of the target
data blocks. HDFS and MapReduce work together to support
the ability of moving computation to the data, and not vice
versa.

D. Proposed MRCGSO Approach

CGSO solves the clustering problem as an optimization
task to obtain the best solution based on the coverage of
centroids taking into consideration the intra-distance of each
cluster. In CGSO, each glowworm competes to be a centroid
and tries to cover the largest amount of data records, which
means to have the highest coverage with the minimum intra-
distance. Therefore, when the clustering is applied to big
data, the calculation of the coverage and the intra-distance is
very computationally expensive. MRCGSO solves this issue
by parallelizing CGSO using the MapReduce methodology
formulating CGSO with Map and Reduce functions.

In MRCGSO, each glowworm gj in the swarm has the
following information:

• Luciferin level (Lj)
• Fitness function value (Fj)
• M-dimensional position vector (pj)
• Coverage set size (crj), which is the number of the data

instances that are covered by gj
• Intra-distance (intraDj), which is the distance between

the crj set members and the gj position
• Local decision range (rd), which is the range of the

glowworm to find the covered data records within this
range, and to find the glowworm’s neighbors.

This information is updated in each iteration based on the
previous swarm state. MRCGSO consists of three main steps,
which are: initialization, coverage and distance computations,
fitness evaluation and swarm movement. The initialization
step includes a random initialization of the swarm members,
and ensures that each glowworm has a position between
the minimum and maximum values of the data set features.
Moreover, each glowworm ensures to cover at least one data
record, thus guaranteeing that the generated position of the
glowworm is not an outlier, as well as ensuring that there is
no empty candidate cluster.

In the coverage and distance step, the map and reduce
functions are implemented based on the data records. After
initialization, the swarm is written to the distributed cache.
The mapper accesses the HDFS to read the data set, which
is partitioned based on the number of mappers used. Each
mapper retrieves the swarm from the distributed cache and
then calculates the sub-covered records and at the same time
the sub-intra-distances for each glowworm of the swarm based
on the data chunk it holds. After that, the mapper will
emit the result of each glowworm in the following <key,
value> format, where the value is delimited by semicolons:
<glowworm-id, sub-coverage;sub-intra-distance> where the
sub-coverage is the number of data records covered by the
glowworm, and the sub-intra-distance is the summation of the
distance between the glowworm and the covered data records.

The reducer receives the intermediate output from the map-
pers and calculates the sum of sub-coverages and sub-intra-
distances from all mappers in order to find the glowworm’s
cumulative coverage and cumulative intra-distance for the
whole data set. Then, the reducer emits the results in the fol-
lowing <key, value> format: <glowworm-id, coverage;intra-
distance> where the coverage is the number of data instances
covered by the glowworm based on the whole data set, and the
intra-distance is the sum of distances between the glowworm
and the covered data instances from the whole data set. The
reducers output will be saved on the HDFS. The number
of mapper and reducers are multiple and are based on the
data set size and the available hardware resources. The fitness
evaluation and swarm movement step, reads the reducers’
output and calculates the fitness of each glowworm, then
continues the same CGSO process of updating the glowworm
position based on its glowworm neighbors.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments done to evaluate
our proposed algorithm MRCGSO. First, the execution envi-
ronment, and the information of the datasets used are given.
Then, the experimental results are provided and discussed.

A. Environment and Datasets

We ran the experiments on one of the common Hadoop clus-
ter that is used by researchers, the Longhorn Hadoop cluster
hosted by the Texas Advanced Computing Center (TACC)1.
The Longhorn Hadoop cluster has 48 nodes containing 48GB
of RAM, 8 Intel Nehalem cores (2.5GHz each), which gives
a total of 384 compute cores and 2.304 TB of aggregated
memory. Experiments were performed using Hadoop version
0.20 (new API) for the MapReduce framework, and Java
runtime 1.6 to implement the MRCGSO algorithm.

The MRCGSO settings were as recommended in [21]:
• ρ = 0.4
• γ = 0.6
• the initial luciferin level L0 = 5.0
• the step size s = 0.03
• swarm size = 1000 glowworms
• maximum number of iterations = 100
• radial sensor range (local range) rs is varied for different

dataset as it depends on the data set, preliminary exper-
iments were conducted to choose the best rs value for
each individual data set.

The real datasets that are used are the following:
• MAGIC: represents the results of registration simulation

of high energy gamma particles in a ground-based atmo-
spheric Cherenkov gamma telescope using the imaging
technique. It was obtained from UCI machine learning
repository2.

• Electricity: contains electricity prices from the Australian
New South Wales Electricity Market. The clustering
process identifies two states (UP or DOWN) according
to the change of the price relative to a moving average
of the last 24 hours. Obtained from MOA3.

• Poker Hand: is an examples of a hand consisting of
five playing cards drawn from a standard deck of 52
cards. Each card is described using 10 attributes and the
dataset describes 10 poker hand situations (clusters). It
was obtained from UCI2.

• Cover Type: represents cover type for 30 x 30 meter cells
from US Forest. The real data set is obtained from the
UCI2. It has 7 clusters that represent the type of trees.

• Synthetic: four series of datasets were generated using the
data generator developed in [22]. The datasets range from
2 million to 16 million data records. In order to simplify
the names of the synthetic datasets, we used names with
specific pattern based on the data records number, the
number of dimensions, and the number of the clusters.

1https://portal.longhorn.tacc.utexas.edu/
2http://archive.ics.uci.edu/ml/index.html
3http://moa.cs.waikato.ac.nz/datasets/

For example: the F2m2d5c dataset consists of 2 million
2m data records, each record is in 2 dimensions 2d and
the dataset is distributed into 5 clusters 5c.

TABLE I
SUMMARY OF THE DATASETS

Dataset #Records #Dim Size (MB) Type #Clusters
MAGIC 19, 020 10 3.0 Real 2
Electricity 45, 312 8 6.0 Real 2
Poker 1, 025, 010 10 49.0 Real 10
CoverType 581, 012 54 199.2 Real 7
F2m2d5c 2, 000, 000 2 83.01 Synth 5
F4m2d5c 4, 000, 000 2 165.0 Synth 5
F8m2d5c 8, 000, 000 2 330.3 Synth 5
F16m2d5c 16, 000, 000 2 660.4 Synth 5

B. Evaluation Measures
In our experiments, we used the parallel Speedup [23] mea-

sure to evaluate the performance of our MRCGSO algorithm,
which is calculated using the following equation:

Speedup =
T2

Tn
(8)

where T2 is the running time using 2 nodes, and Tn is the
running time using n nodes, where n is a multiple of 2.

The speedup is obtained by fixing the swarm size while
increasing the number of cluster nodes to evaluate the al-
gorithm’s ability to scale with increasing numbers of the
cluster nodes. However, Scaleup is a measure of speedup that
increases with increasing dataset sizes to evaluate the ability
of the parallel algorithm utilizing the cluster nodes effectively,
which is calculated using Equation 9.

Scaleup =
TSN

T2SN
(9)

where TSN is the running time for the dataset with size S
using N nodes, and T2SN is the running time using 2-fold of
S and 2-folds of N nodes.

Moreover, we use the purity measure for the evaluation
of the cluster quality [24], which is the standard measure of
clustering quality and is calculated as:

Purity =
1

n

k∑
j=1

max
i

(| Li ∩ Cj |) (10)

where Li denotes the true assignments of the data instances
in cluster i; q is the number of actual clusters in the data set.

A clustering algorithm with large purity values indicates
better clustering solutions. The clustering quality is perfect if
the clusters only contain data instances from one true cluster;
in that case the purity is equal to 1.

C. Results

The running times and speedup measures for MRCGSO
are shown in Figures 1 and 2, respectively. As can be noted
from Figure 1, the improvement factor of MRCGSO’s running
times for the F2m2d5c, F4m2d5c, F8m2d5c, F16m2d5c data
sets using 32 nodes are 9.09, 9.66, 10.54, 11.35, respectively,

(a) F2m2d5c Time (b) F4m2d5c Time (c) F8m2d5c Time (d) F16m2d5c Time

Fig. 1. Time Results

(a) F2m2d5c Speedup (b) F4m2d5c Speedup (c) F8m2d5c Speedup (d) F16m2d5c Speedup

Fig. 2. Time and Speedup Results

compared to the running time with 2 nodes. The MRCGSO
algorithm shows a significant improvement in running time.
Furthermore, the running time of MRCGSO decreases almost
linearly with increasing numbers of nodes of the Hadoop
cluster. MRCGSO shows the same trend for all dataset sizes
ranging from 2 million to 16 million.

In addition, the MRCGSO speedup in the Figure 2 scales
close to linear (optimal speedup) for most data sets. It can be
derived that for smaller datasets such as F2m2d4c, the speedup
is good for 2 to 4 nodes then it drifts away from the linear.
Whereas, for F4m2d5c, it is linear for 2, 4, and 8 nodes, and
very close to 16 nodes and then drifts away. F8m2d5c shows
the same results but has a closer speedup to linear for 16 nodes,
while F16m2d5c has a linear speedup starting from 2 nodes
to 16 nodes with a close value for 32 nodes. Therefore, we
can conclude that the larger the dataset, the better the speedup.
MRCGSO for F16m2d5c achieves a significant speedup that
is very close to the linear speedup.

The results of the scaleup measure are shown in Figure 3,
which are the MRCGSO results for increasing double folds of
data set sizes (starting from 2, 4, 8 to 16 million data records)
with the same double folds of nodes (2, 4, 8 to 16 nodes). The
scaleup has almost a constant ratio and ranges between 1 and
1.12. The speedup for F2m2d5c is 1 while for F16m2d5c it
is 1.12, which is a very small difference.

Experimental tests are implemented to test the purity of
MRCGSO applied on four real data sets that vary in sizes
(ranging between 19,020 and 2,025,010 records). The purity
results are shown in Table II for the Magic, Electricity, Poker
and Cover data sets; 0.66, 0.58, 0.53, and 0.55, respectively.
These results outperform the purity of the known clustering
algorithm K-Means, which achieves 0.60, 0.51, 0.11 and 0.32

Fig. 3. Scaleup Measure

TABLE II
PURITY RESULTS

Dataset K-Means MRCPSO MRCGSO
MAGIC 0.60 0.65 0.66
Electricity 0.51 0.58 0.58
Poker 0.11 0.51 0.53
CoverType 0.32 0.53 0.55

respectively.

In addition, MRCGSO is compared with a MapReduce
based clustering algorithm using PSO (MRCPSO) which was
proposed in [25]. The purity results of MRCPSO are 0.65,
0.58, 0.51, and 0.53 for the same data sets, respectively.
Comparing the purity results of MRCGSO and MRCPSO, we
can see that MRCGSO has, as expected, comparable results
for the four real data sets.

V. CONCLUSION

In this paper, we proposed a scalable design and implemen-
tation of a glowworm swarm optimization clustering (MR-
CGSO) algorithm using MapReduce. The CGSO clustering
algorithm is an effective method for data clustering, however,
it needs a long time to process large data sets. Therefore, MR-
CGSO was proposed to overcome the inefficiency of CGSO
for big data sets. MRCGSO shows that CGSO can efficiently
be parallelized with MapReduce to process very large data
sets. In MRCGSO, the clustering task is formulated as a
multimodal optimization to find the best centroids representing
the clustering segments.

Experiments were conducted with millions of records show-
ing good accuracy and good scalability. In addition, MRCGSO
scales very well with increasing data set sizes and scales very
close to the optimal speedup. Our future work aims to find a
mechanism to select the optimal local decision range for the
glowworms, and investigate if there is any relation between
the range and the number of features of the data set and the
data set size. Furthermore, we plan to apply MRCGSO in real
application domains such as the community detection in the
social networks.

ACKNOWLEDGMENT

The authors acknowledge the support of the ND EPSCoR
IIP-DDA funding grant FAR0021976. In addition, this work
used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575.

REFERENCES

[1] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, 1st ed. Addison Wesley, May 2005.

[2] A. Engelbrecht, Computational Intelligence, An Introduc-
tion, second edition ed. Wiley, 2007.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimiza-
tion,” in Proceedings of the IEEE ICNN’95. Australia, pp.
1942–1948, 1995.

[4] K. Krishnanand and D. Ghose, “Detection of multiple
source locations using a glowworm metaphor with appli-
cations to collective robotics,” in IEEE Swarm Intelligence
Symposium, Pasadena, CA, USA, pp. 84 – 91, June 2005.

[5] C. Blum, “Ant colony optimization: Introduction and re-
cent trends,” Physics of Life Reviews, vol. 2, pp. 353–373,
Dec. 2005.

[6] J. Handl, J. Knowles, and M. Dorigo, “Strategies for the
increased robustness of ant-based clustering,” in Engineer-
ing Self-Organising Systems, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, vol. 2977, pp. 90–
104, 2004.

[7] M. Omran, A. P. Engelbrecht, A. Salman, “Particle swarm
optimization method for image clustering,” International
Journal of Pattern Recognition and Artificial Intelligence,
vol. 3, pp. 297–322, 2009.

[8] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI: The Complete Reference. MIT Press
Cambridge, MA, USA, 1995.

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the 6th
conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pp. 10–10, 2004.

[10] I. Aljarah and S. A. Ludwig, “A new clustering ap-
proach based on glowworm swarm optimization.” in IEEE
Congress on Evolutionary Computation. Mexico, Cancun:
IEEE, pp. 2642–2649, 2013.

[11] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “Mr-dbscan:
a scalable mapreduce-based dbscan algorithm for heavily
skewed data,” Frontiers of Computer Science, vol. 8, no. 1,
pp. 83–99, 2014.

[12] Z. Weizhong, M. Huifang, and H. Qing, “Parallel k-
means clustering based on mapreduce,” in Proceedings of
the CloudCom’09. Berlin, Heidelberg: Springer-Verlag,
pp. 674–679, 2009.

[13] P. Zhau, J. Lei and W. Ye, “Large-scale data sets clus-
tering based on mapreduce and hadoop,” Computational
Information Systems, vol. 7, no. 16, pp. 5956–5963, 2011.

[14] L. Guang, W. Gong-Qing, H. Xue-Gang, Z. Jing, L. Lian,
and W. Xindong, “K-means clustering with bagging and
mapreduce,” in Proceedings of the 2011 44th Hawaii In-
ternational Conference on System Sciences. Washington,
DC, USA: IEEE Computer Society, pp. 1–8, 2011.

[15] S. Nair and J. Mehta, “Clustering with apache hadoop,”
in Proceedings of the International Conference, Workshop
on Emerging Trends in Technology, ICWET’11. New York,
NY, USA: ACM, pp. 505–509, 2011.

[16] S. Papadimitriou and J. Sun, “Disco: Distributed co-
clustering with map-reduce: A case study towards petabyte-
scale end-to-end mining,” in Proc. of the IEEE ICDM’08,
Washington, DC, USA, pp. 512–521, 2008.

[17] E. Alina, I. Sungjin, and M. Benjamin, “Fast clustering
using mapreduce,” in Proceedings of KDD’11. NY, USA:
ACM, pp. 681–689, 2011.

[18] J. Yang and X. Li, “Mapreduce based method for big data
semantic clustering,” in Proceedings of the 2013 IEEE In-
ternational Conference on Systems, Man, and Cybernetics,
SMC’13. Washington, DC, USA: IEEE Computer Society,
pp. 2814–2819, 2013.

[19] F. Cordeiro, “Clustering very large multi-dimensional
datasets with mapreduce,” in Proceedings of KDD’11. NY,
USA: ACM, pp. 690–698, 2011.

[20] (2012) Apache Software Foundation,
Hadoop MapReduce [Online]. Available:
http://hadoop.apache.org/mapreduce. [Online]. Available:
http://hadoop.apache.org/mapreduce

[21] K. Krishnanand and D. Ghose, “Glowworm swarm opti-
misation: a new method for optimising multi-modal func-
tions,” International Journal of Computational Intelligence
Studies, vol. 1, pp. 93–119, 2009.

[22] R. Orlandic, Y. Lai, and W. Yee, “Clustering high-
dimensional data using an efficient and effective data space

reduction,” in Proc. ACM 14th Conf. on Information and
Knowledge Management, Bremen, Germany, pp. 201–208,
2005.

[23] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Intro-
duction to Parallel Computing. Addison-Wesley, USA,
2003.

[24] Y. Zhao and G. Karypis, “Evaluation of hierarchical clus-
tering algorithms for document datasets,” in Proceedings of

the eleventh CIKM’02. NY, USA: ACM, pp. 515–524,
2002.

[25] I. Aljarah and S. A. Ludwig, “Parallel particle swarm
optimization clustering algorithm based on mapreduce
methodology,” in NaBIC, Mexico, Mexico City, pp. 104–
111, 2012.

