
Automatic Service Composition Using POMDP and
Provenance Data

Mahsa Naseri
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

Email: naseri@cs.usask.ca

Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, USA

Email: simone.ludwig@ndsu.edu

Abstract—Service composition is the process of combining
services in a specific order to achieve a specific goal, whereby
the initial and goal states are determined in advance. The
service composition problem is very similar to standard planning
problems since the idea is to discover a path between the
initial and goal states. In service composition, the composition of
services identifies this path. In this paper, we exploit provenance
information along with Partially Observable Markov Decision
Processes (POMDP) to compose the services automatically. The
POMDP method has been used in literature for the purpose of
robot planning and navigation. In this research, we argue that
due to partial observability of service and system states, the
POMDP approach provides better solutions for the QoS-aware
service composition in dynamic workflow environments. For the
purpose of solving the POMDP, service details and the POMDP
distributions are learnt from the provenance store. Provenance
data contains information regarding workflows, services, their
specifications and execution details. This information facilitates
the service composition process to be performed more intelli-
gently and efficiently.

Index Terms—Workflow composition, partial observability,
POMDP solver

I. INTRODUCTION

Service composition addresses the problem of automatically
placing the services together in a special order to achieve one
or more predetermined goal(s). Since one single service is
usually not sufficient to fulfill the requirements of a user, thus,
a set of appropriate services are selected and composed. The
composite service provides more valuable functionalities than
a single service, while enhancing the reusability of services
as well. A composite service is also referred to as a workflow
and includes a set of atomic services together with the control
and data flow.

As discussed in [1], a composition method should sat-
isfy several requirements such as connectivity, non-functional
Quality of Service (QoS) properties, and scalability. The
connectivity between the composed services should be reli-
able. The composition should also address the non-functional
QoS properties such as response time, availability, reliability,
etc. And finally since business transactions can be complex
and composed of several services, the composition approach
should scale with increasing numbers of composed services.

In general, a service composition approach is performed

in two main steps: the first phase, which is referred to as
the planning phase, discovers the services that provide the
functionalities required by the user. It then generates a set of
plans based on the functional parameters of the services. As
there might be two or more service implementations for one
task, a selection between the execution plans for the service
composition is required. The set of functionally equivalent
service implementations corresponding to an abstract task,
i.e. abstract service, are referred to as concrete services. The
non-functional properties of services, QoS values, are used
to differentiate between these services. QoS parameters are
used to evaluate how well a service composition serves the
customer. Generally, these values are presented by the service
provider while publishing an advertisement as a service level
agreement. The second phase, i.e. the selection phase, cal-
culates the aggregated QoS of the generated plans and selects
the best plan that satisfies the non-functional requirements, i.e.
QoS specifications of services. The selection of the optimal
execution plan that maximizes the QoS values of the compo-
sition is an NP-hard problem. Since discovering the optimal
execution plan can be time consuming, some simplifications
have been assumed for service composition problems [2].

Some service composition approaches relax the QoS con-
straints to achieve better performance in terms of time. A
service composition without constraints can be solved more
efficiently in time. Thus, the optimal execution plan generated
by these approaches, might however, exceed the user’s budget
limit.

The other way of reducing the complexity is exploiting local
maximization approaches instead of global ones. The local
maximization approaches look for the service implementation
with the best QoS for each task instead of evaluating the
objective function for that particular QoS property for each
execution plan. These methods allow the modeling of the ser-
vice composition problem as dynamic programming methods
[3], [4], or multi-constraint path problems (MMCP) [5].

On the other hand, as there are usually multiple QoS param-
eters, it is not possible to get the best value for all properties
without using the multi-objective optimization approach. Thus,
in order to relax the complexity of the service composition
problems, single objective optimization approaches are ex-
ploited versus the multi-objective ones. The mapping between



these problems is done by aggregating the multiple objective
functions to a global one in order to use the principles of the
single objective optimization.

In this paper, we exploit the Partially Observable Markov
Decision Processes (POMDPs) method [6] along with prove-
nance information for service composition and selection. The
POMDP framework has been used for modeling a variety
of real-world sequential decision processes. Its application
areas mostly include robot navigation problems, machine
maintenance, and planning under uncertainty in general. As
for robot navigation, regardless of the quality or quantity
of the sensing hardware deployed on the robot, from its
point of view, the robot will have an incomplete view of
its environment. With this partial observability, the POMDP
model can provide the formal basis for autonomous behaviour
in these domains. Machine maintenance involves any machine
that requires periodic maintenance due to timely deterioration
of its internal components. For this application, POMDPs are
used to obtain an inspection/replacement policy that either
optimizes the operating costs or the production capacity of
the machine [7].

The POMDP methods we exploit in the paper use the basic
dynamic programming approaches for solving POMDPs. For
all algorithms, the approach solves one stage at a time and
works backwards in time. Many of the algorithms use Linear
Programming (LPs) to solve POMDPs. In order to assess the
POMDP distributions, provenance information are exploited.
The provenance [8] of a piece of data provides information
of the source of the data and the process that had led to
its generation. In workflow systems, the provenance of a
workflow presents information about the workflow process,
inputs/outputs of services, intermediate data objects and the
QoS specifications of services. Having a large provenance
store of previous executions of services and workflows, we
plan to perform service composition and selection using the
POMDP technique and provenance data.

Workflow composition and selection methods require an
expressive language that supports flexible descriptions of mod-
els and data to facilitate reasoning and automatic discovery
and composition. Therefore, they mostly exploit the semantic
descriptions of services as well as their QoS specifications
from service repositories or service providers to perform the
composition or selection. In [9], the authors discuss the re-
quirements for workflow composition. In order to satisfy these
requirements, the authors consider three stages for the creation
of the workflows, which include: defining workflow templates,
creating workflow instances that are execution independent,
and creating executable workflows. The three requirements
mentioned can be satisfied through provenance information.
In [10], the authors argue that a robust provenance trace
provides multiple layered presentation of provenance. Thus, a
layered architecture and engine for automatically generating
and managing workflow provenance data is considered in
provenance systems. Provenance creation is performed by
following a layered approach which fulfills the requirements
of the workflow composition process. The first layer of the

architecture represents an abstract description of the workflow
which consists of abstract activities with the relationships that
exist among them. The second layer provides an instance
of the abstract model by presenting bindings and instances
of the activities. The third layer captures provenance of the
execution of the workflow including specification of services
and run-time parameters. The final level captures execution
time specific parameters including information about internal
states of the activities, machines used for running, status and
execution time of the activities. As the execution time specific
parameters are also gathered in provenance stores, provenance
data also includes the QoS specifications of services. Thus,
service selection solutions can be applied to this data in order
to automatically select appropriate services that provide some
QoS requirements.

The remainder of this paper is organized as follows: In
Section 2, related work is described. In Section 3, we present
how service composition can be modelled as a POMDP
and discuss the process taken towards assessing the POMDP
distributions using provenance information. In Section 4, the
implementation details of the model along with a case study
are presented. In Section 5, we present the experiments con-
ducted with different numbers of abstract and concrete services
using various POMDP algorithms. The last section provides
the conclusion of this study.

II. RELATED WORK

Based on the simplifications discussed in the previous sec-
tion and other criteria, service composition has been modelled
by several approaches. As described in [11], the service com-
position problem can be viewed as a planning problem. Some
of the research work, which exploit planning approaches for
service composition include [12], [13]. Rule-based planning
is an approach being used to generate composite services
from high level declarative descriptions. The method presented
in [14] uses composability rules to determine whether two
services are composable.

Some approaches such as the ones presented in [15] and
[16] exploit theorem-proving for service composition. In [15],
the available services and user requirements are described in
a first-order language. Then, constructive proofs are generated
with certain theorem provers. At the end, service composition
descriptions are extracted from particular proofs. [16] uses
propositional variables as identifiers for input/output param-
eters and uses intuitionistic propositional logic for solving the
composition problem.

A planning problem can be described as a multi-tuple
characterized by the set of all possible states of the world: the
initial state of the planner, the set of goal states the planning
system should attempt to reach, the set of actions the planner
can perform, and the transition relations which specify the se-
mantics of each action describing the state each action results
in when executed. The state of a service composition model,
which interacts with services is described by the messages it
sends and receives. The information contained in each message
can be interpreted as the description of the current world state.



The set of actions the planner can perform is mapped to the
set of web service operations. A web service operation is
specified by its name, and its input and output message types.
Service operations are considered as the actions available to
the planning system. Each action in a planning system has
preconditions and effects. The preconditions should hold prior
to the execution of the action, while the post-conditions should
hold after the execution of the action. As mentioned, service
descriptions interpret the states, the input/output messages
are used for describing the precondition/effects of service
executions.

Some background knowledge regarding the semantics of
the operations are required for deducing the preconditions
and effects of operations from the input and output document
schemas. Semantic mark-up languages such as OWL [17] have
been used in literature for this purpose.

The work presented in [18] argues that classical planning
approaches are not suitable for web service composition as
web service invocations are not deterministic. As discussed
in this work, a decision-theoretic planning technique such as
Markov Decision Processes (MDPs) better address this issue.
As mentioned in [11], when describing the state of the world,
there is a problem that is not normally encountered in planning
systems which is the “partial observability of states”. We
can only know as much about the current state of the world
as is described in the small set of documents. AI planning
and Markovian approaches have focused on the situations
where the state of the environment is fully observable, instead
POMDPs provide a general planning and decision making
framework for an agent to act optimally in partially observable
domains. It consists of a set of states, a set of actions that the
agent can execute, and a set of observations.

The POMDP model augments a well-researched framework
of Markov decision processes (MDPs) to situations where
an agent cannot reliably identify the underlying environment
state. Thus, POMDPs expand the application of MDPs to many
realistic problems. It should be mentioned that the generality
of POMDPs has the drawback of high computational cost.

Thus, due to partial observability of service and system
states, in this paper, we argue that the POMDP approach is a
suitable model for the QoS-aware service composition problem
compared to other planning approaches. The POMDP methods
can extract composition models that involve structures with
undeterministic branches. Most importantly, as services are
unreliable, there are many factors that can affect the status
of a service. Thus, exploiting a solution that supports partial
observability of the results addresses the issues that would
arise in the dynamic service environment. Besides, a POMDP
problem is the same as a planning problem, and similarly,
given a complete and correct model of the world dynamics
and a reward structure, an optimal policy is provided by this
method.

III. MODELING AND METHODOLOGY

A. POMDP Dynamics

The dynamics of the POMDP model are described by the
set of states S, actions A, observations O, along with state
transition function T , observation function Z, and the reward
function R. The state transition function T : S ×A represents
a probability distribution over world states for each world state
and agent action. T (s, a, s′) assesses the probability of ending
in state s′ given that the agent starts in state s and takes action
a.

The reward function R maps the states and actions into
numerical rewards. It represents the expected immediate re-
ward gained by the agent for taking each action in each state.
R(s, s′, a) represents the expected reward on state transition s
to s′ given action a. In general, determining the current state
with complete certainty is not possible, a brief distribution is
maintained to represent the history of the agent interaction
within the domain. Z : S ×A is the observation function,
which for each action and resulting state provides a probability
distribution over possible observations. Z(s′, a, o) stands for
the probability of making observation o given that the agent
took action a and reached state s′.

The goal of the POMDP problem solving task is to select
actions as to maximize the reward collection. The optimal be-
havior in a POMDP requires access to the entire history of the
process. A summary statistic is derived for the entire history
of a process, which is referred to as an information state or
belief state. An information state is a statistic for the history,
which means that optimal behavior can be achieved using the
information state in place of the history. An information state
b is simply a probability distribution over the set of states S
with b(s) being the probability of occupying state s.

Given an information state b, in order to compute the
resulting information state b′ basic rules from probability
theory, Bayes rule and the independence assumption inherent
in the POMDP model, are used. The next information state
depends only upon the previous information state and the im-
mediate transition taken. Equation 1 depicts how transition and
observation probability distributions are used toward updating
the belief state:

b(s′) =
1

P a(o|b)
Za(o|s′)

∑
s∈S

Pra(s′|s)b(s) (1)

Being in a particular belief state b, taking action a, and re-
ceiving observation o, the next belief state can be determined.
As we are having finite numbers of actions and observations,
given a belief state, the number of future belief states are finite.

B. Web Service Composition as POMDP

A Web services programming interface is described us-
ing WSDL (Web Service Description Language) [19], which
specifies properties of a web service such as its function-
ality, location and invocation interface. These interfaces are
exploited for the automatic composition of services along with
the services’ QoS properties, which facilitate dynamic service



selection. As mentioned before, we exploit a single objective
function for composition purposes. In the context of QoS-
aware service composition, there are n QoS properties that
have to be optimized. These QoS properties can have conflicts
between each other in a way that one, such as availability,
should be maximized while another, such as response time, has
to be minimized. In order to map multi-objective optimization
to single-optimization, the Simple Additive Weighting (SAW)
[20] method is exploited. This method aggregates the objective
functions in order to use the principles of the single objective
optimization function. For this purpose, QoS properties have
to be normalized and summed up to a global QoS value that
is then to be maximized.

As mentioned earlier, since the web service environment is
dynamic, the agent would not be able to guarantee successful
service execution. On the other hand, the state information
that we obtain cannot be complete due to the limitation of
the document and dynamic nature of the environment. Thus,
the POMDP model is exploited and in order to model the
service composition as a POMDP, the following mappings
are required: The status of each task node represents a state,
the operations the services perform are mapped to POMDP
actions, and accordingly, the invocation results of service
operations are mapped to observations of actions. As for the
rewards, the QoS values of the services are to be used to
accomplish the service selection. The SAW method is applied
to the values of the QoS parameters to obtain a global QoS
value.

The dynamics of the POMDP model are to be learnt from
the provenance store. In service-oriented environments, great
numbers of workflows are executed to perform scientific and
business experiments. The workflow activities are run repeat-
edly by one or more users, and large numbers of result data
sets in the form of data files and data parameters are produced.
As the number of such datasets increases, it becomes difficult
to identify and keep track of the data. Besides, for these large-
scale scientific computations how a result dataset is derived is
of great importance since it specifies the amount of reliability
that can be placed on the results.

Capturing the execution details of these transformations is
a significant advantage of workflows. The execution details of
a workflow, referred to as provenance information, is usually
traced automatically and stored in provenance stores. Prove-
nance data identifies what data is passed between services,
which services are involved, and how results are eventually
generated for particular sets of input values. Data associated
with a particular service, recorded by the service itself or its
provider is also stored as provenance information. Such data
may contribute to the accuracy of results a service produces,
the number of times a given service has been invoked, or the
types of other services that used it.

We assume to have a large dataset of the previous executions
of different types of workflows. The provenance data set in-
cludes information about services, their executions (including
input/output parameters and data objects), and QoS parameters
such as execution time, response time, cost, status, etc. This

information is being used for the POMDP modeling as well
as the assessment. The service operations’ information provide
us with the list of actions, service outputs are used to model
the observations and service states are being extracted from
the semantic descriptions of services.

To calculate the probability distributions for the POMDP
approach, provenance information is exploited along with
the Maximum Likelihood (ML) method. The Bayes rule is
applied to each probability and along with the ML method,
the probability values are assessed.

In the following, we describe the information and procedure
we use to compute the POMDP distributions. The transition
probability for each action, i.e. T (s, a, s′) assesses the proba-
bility of reaching state s′ given that the workflow policy starts
in state s and takes action a. In order to assess this probability
using provenance information, the ML method is applied to the
service states along with timing information. To assess the ML
method for the state transition probabilities, for each action we
determine the number of state transitions from state i to state
j with regard to the total number of transitions available from
state i. The transition probability estimation for our model is
computed based on the following equation:

P (s′ | s, a) =
nij

nj
(2)

where for service a, nij denotes the number of transitions
from state i to state j, and ni denotes the total number
of transitions from state i. The start and execution time of
services decide about the state orderings. For example, as for
service a, the number of times a state transition from state i
to state to j has occurred is calculated using the starting and
execution time of state i along with the starting time of state
j: i.e. for service a, the consequent state transitions from i to
j are discovered based on the following:

timestart(j) = timestart(i) + timeexecution(i) (3)

The following equation states how this distribution is as-
sessed:

T (s, a, s′) = P (s′|s, a) =
na
s′s

na
s

(4)

where na
s′s is the total number of data rows in the provenance

data set with current state of s′ and the previous state s for
action a, and na

s is the total number of rows with state s for
action a.

Having assessed the probabilities for all the individual
states, for each action, the transition matrix rows are then
normalized so that the values of each row sum up to 1.

Similarly, as for the transition matrix, the observation matrix
values are assessed through the ML method and the status of
the execution of services. The Z(s′, a, o) is determined by
computing the probability as follows:

P (o | s′, a) =
oij
oj

(5)

where oij denotes the number of data rows in the provenance
dataset where being in state s′ and taking service a, the



observation o was recorded. The oj presents the total number
of data rows where having been in state s′, action a was taken.
Reward(s, s′, a) is defined as the response time, cost, and

or any aggregated QoS parameters associated with service a
during a state transition. The goal of the service selection
phase of the composition problem is to find the solution, which
optimizes the aggregated QoS value. The aggregated value of
QoS parameters of all data rows associated with service a is
averaged and stored as the reward/cost for that service in the
rewards matrix.

Having modeled the service composition as a POMDP, the
composition is formed by solving the model that generates the
optimal service composition policy graph. POMDP models can
be solved using exact solution techniques.

An exact solution to a POMDP yields the optimal action for
each possible belief over the world states. The optimal action
optimizes the expected reward of the agent over a possibly
infinite horizon. The sequence of optimal actions is known
as the optimal policy of the agent for interacting with its
environment. The exact method calculates the optimal policy
by generating two arrays of V , for the value, and Ω, for the
policy. At the end of the algorithm, Ω contains the solution,
and V contains the discounted sum of the rewards to be earned
on average by following that solution from state s. As any
POMDP can be reduced to a continuous belief-state MDP, the
value iteration phase for POMDPs is the same as continuous
MDPs. It is a standard method for finding the optimal infinite
horizon policy using a sequence of optimal value functions.

The Value iteration algorithm will iteratively generate a set
of vectors, V , which will be evolved using the previous stage
vectors. Each vector in the next stage, V ′, is constructed from
the immediate rewards and the transformation of V using the
POMDP functions. A vector in V has a particular strategy
associated with it. Each vector at a stage represents the value
of acting according to the particular current and future strategy
for that vector. Selecting a vector at a stage is the same as
selecting a particular course of action at a stage and a particular
future action strategy.

As for value iteration, it is important to be able to extract a
policy from a value function. For policy iteration, it is impor-
tant to be able to represent a policy so that its value function
can be calculated easily. The policy iteration phase represents
and improves the policy. The methods applied on this phase
usually consist of two steps of policy evaluation and policy
improvement. The policy evaluation phase discovers a policy
tree by finding the action associated with each node n and the
successor node of n after receiving observation o. The policy
improvement step performs a standard dynamic programming
backup during which the value function is transformed into an
improved value function [21].

C. POMDP Algorithms

Several POMDP algorithms exist that are distinguished by
the way the value iteration is done. The enumeration algorithm
[19] is an exact POMDP algorithm and conceptually the
simplest of all the exact algorithms. It first generates all

possible vectors by ignoring the information state and later on
uses Linear Programming to discard useless vectors. In order
to construct a vector, an action and a vector in V for each
observation should be selected. Thus, large numbers of vectors
can be generated of which many are not useful since they are
dominated by other vectors over the entire belief space. These
vectors can be eliminated at the expense of some computing
time, but regardless, enumerating over the vectors takes a long
time even for some small problems.

The witness algorithm [22] tries to find the best value
function for each of the actions separately. Unlike Sondik’s
algorithm it does not consider all the actions all the time.
As described, we can represent V and V ′ using collections of
policy trees respectively. This algorithm, first finds a collection
of policy trees that represent the expected reward by taking
action a from belief state b. It then defines regions for a vector
and looks for a point where that vector is not dominant. Once
these functions are discovered, they are combined into the final
V ′ value function. Simply, the witness algorithm is using linear
programming to find a single point called “witness” with the
fact that V ′ 6= V . If a witness is found, it is used to determine
a new vector by solving a linear program. This process is then
repeated.

The incremental pruning algorithm [23] combines elements
of the enumeration and the witness algorithms. Similar to the
witness algorithm, it considers constructing sets of vectors
for each action individually and then focusing on each one
observation at a time. Incremental Pruning algorithm can solve
the problems that cannot be solved within a reasonable time
in the Witness algorithm. It breaks down the value function
V ′ as a combination of simpler value functions [6].

IV. IMPLEMENTATION AND CASE STUDY

A. Implementation

Our implementation of the presented model exploits the
POMDP solver presented in [1] to discover the policy graph
and to perform the service composition. The solver has
implementations of the enumeration algorithm, the witness
algorithm, the incremental pruning algorithm, and few more.
The code uses linear programming to solve POMDPs. The
POMDP solver receives an input file of the POMDP problem
in a certain format and solves it using the selected POMDP
algorithm, discount factor, and other settings. The discount
factor is a value between 0 and 1 which is used to make the
total reward to be finite. Based on the value of this factor, the
rewards received later get discounted, and contribute less than
the current rewards.

In order to model the service composition as a POMDP
and to save the model in the appropriate file format, we im-
plemented a java program which extracts the services, states,
and observations from the provenance data. We exploited
the Taverna provenance system [24] to generate provenance
information, but since Taverna does not support QoS record-
ing, Taverna’s provenance information was augmented with
state variables and QoS values which were measured and
generated using other measuring tools such as WebInject [25].



Our program then assesses the POMDP probabilities from the
provenance store, creates the transition and observation ma-
trices using the proposed model, normalizes each matrix row,
and calculates the rewards. These values are then formatted
into the POMDP solver input file, which is then solved by
the solver. The enumeration algorithm, the witness algorithm,
and the incremental pruning algorithm are the three POMDP
approaches exploited for the purpose of evaluation.

B. Case Study

To better present how the service composition can be mod-
eled and solved through a POMDP, a case study is provided
which addresses the following scenario:

A manufacturer wants to deliver an order to a retailer.
The manufacturer might satisfy the order in one of several
ways. He first checks for the availability of the order in his
inventory. If the order is available in his stock, he will then
assemble the order and ship it to the retailer’s address. In
case the manufacturer is out of stock, he checks his supplier
for availability. The last option would be to check the stock
market for the order.

Based on the described case study, the services for this
scenario include abstract services for checking the inventory,
checking the supplier, checking the stock market, assembling
the order, and shipping the good. The results of these services
would be either yes or no entries. In case of the availability
of the stock, or successful assembly and shipment, the result
would be a yes entry, and in the other cases a no entry. The
QoS values associated with each service include the service
cost and execution time.

The following model suggests the list of POMDP actions,
observations, and states that are modeled for this scenario. Ac-
cording to our described model, the services are mapped into
POMDP actions. Since each action can result in a success or
failure, the observations for each action include a {YES,NO}
set. As for the states, the initial state starts with checking the
availability of the stock in the inventory. Each action based
on its success or failure would result in a new state that is
described according to the actions. An end state is considered
as a dummy state.

The following are the states, observations, and actions for
this case study.

States: Invent Avail (inventory is available);
Supp Avail (supplier is available); Market Avail
(market is available); Shipped Order (order is shipped);
Assemble Order (order is assembled); End (final state).

Observations: Inv avl Y ES (inventory is available);
Inv avl NO (inventory is not available); Sup avl Y ES
(supplier is available); Sup avl NO (supplier is not avail-
able); Mar avl Y ES (market is available); Mar avl NO
(market is not available); Assmbl Y ES (good is assembled);
Assmbl NO (good is not assembled); Ship Y ES (good is
shipped); Ship NO (good is not shipped).

Actions: Check Inventory Availability (check avail-
ability of inventory); Check Supplier Availability (check
availability of supplier); Check Market Availability

(check availability of market); Assmble Order (assemble
order); Ship Order (ship order).

Figure 1 displays the scenario.

V. EXPERIMENTS AND RESULTS

A provenance store of previous executions of the workflow
paths using different concrete services and the POMDP pa-
rameters and input file were generated. The QoS of response
time was the only QoS parameter used in this experiment. The
experiments were done on an Intel Pentium 4 CPU 2.4 GHz
machine with 1 GB of RAM.

First, the three POMDP algorithms were verified with the
case study shown in the previous section. Then, in order to
evaluate the scalability of the proposed service composition
approach, a set of experiments were performed scaling differ-
ent numbers of abstract and concrete services.

A. Verification of Method

To perform the verification experiment, for each abstract
service, 5 concrete services providing the same functionality
but different QoS values were considered. The discount factor
was set to 90%.

The results presented in Figure 2 are the POMDP policy
graph generated by the solver, which depict the service com-
position with optimal services. The figure shows the structure
of the service composition found by the generated POMDP
policy. As can be seen, the services have been composed
correctly and the exact model structure is discovered since
Figures 1 and 2 are identical.

As the workflow model in the case study presents, the
POMDP approach is able to discover complex structures with
parallel or-splits, a split at which just one branch is active at
a time. The POMDP can also extract the parallel and-splits, a
split at which all branches are active at a time. Since POMDP
treats and-splits the same way as or-splits, they are discovered
similarly.

As for the selection phase, the POMDP approach selects the
optimal path by choosing the concrete services that provide the
least cost and response time for each abstract service. The total
execution time for solving this scenario was 1.5 seconds.

B. Scalability Analysis

In this section, we present the scalability results of the
algorithm along with the experiments done using the different
POMDP algorithms. Since POMDP is solved using linear
programming methods, the scalability of our approach was
assessed by three sets of experiments.

The first experiment was performed with a constant number
of abstract services and variable numbers of concrete services.
The same scenario presented in the case study with 6 abstract
services was used for this experiment. The number of concrete
services was set to 5 at the beginning and was incremented by
5 consecutively up to 25 services. The discount factor was set
to 80%. The discount factor is used during the value iteration
algorithm. This factor dictates the relative usefulness of fu-
ture rewards compared to immediate rewards. The POMDP



Fig. 1: Case study scenario

Fig. 2: Policy graph generated by the POMDP solver

Fig. 3: Performance evaluation for different numbers of con-
crete services with a constant number of abstract services

algorithm selected for this experiment was the incremental
pruning algorithm. Figure 3 shows the results. As can be seen
from the figure, the graph shows a polynomial distribution.
For the first measurement point, 6 abstract services times 5
concrete services results in 30 services in total. As for the last
measurement point, where we have 6 abstract services and
25 concrete services for each abstract service, the number of
services in total is 120. Therefore, for 5 concrete services a
total of 30 services, and for 25 concrete services a total of
120 services are involved when searching for the appropriate
policy graph.

For the second experiment, we enlarged the size of the

service composition problem by changing the number of
abstract services incrementally by 5, while keeping the number
of concrete services to 5. The POMDP algorithm selected
for this experiment was the incremental pruning algorithm.
The experimental results are displayed in Figure 4. The graph
follows a slight polynomial distribution. For a workflow size
of 5 abstract services, each having 5 concrete services, the
execution time is 1.8 seconds, whereas for 25 abstract services
the execution time is 27.8 seconds.

The last experiment assesses the performance of the three
POMDP algorithms (enumeration, incremental pruning, and
witness) on the service composition. The number of abstract
services are increased by 5 services and the execution time is
evaluated. The graph in Figure 5 displays the results. It can
be observed that all three algorithms show a similar trend,
with the enumeration algorithm performing slightly better
compared to the others for the experiments.

VI. CONCLUSION AND FUTURE WORK

This paper showed an approach to service composition and
selection by exploiting the provenance information along with
partially observable Markov decision processes to compose the
services of a workflow automatically. Provenance data contains
information regarding workflows, services, their specifications
and execution details. We modeled the QoS-aware service
composition as a POMDP, learning the service details from
the provenance store. In particular, we presented how the
service composition problem can be modeled as a POMDP.
We argued that since service composition can be seen as a
planning problem, due to the dynamic environment of services



Fig. 4: Performance evaluation for different numbers of ab-
stract services with a constant number of concrete services

Fig. 5: Performance evaluation with regard to various POMDP
algorithms

and the uncertainty, POMDP is an appropriate approach for
service composition.

Experiments were performed to assess the scalability of the
model, and the performance of several POMDP algorithms
was evaluated. The method showed reasonable scalability
and the algorithms provide similar performance in terms of
execution time. The proposed approach is also applicable to
QoS-aware composition cases where the optimal selection of
services is not desired but instead a range of required QoS
values are specified. This requires a small modification on the
reward assessment.

The future work will involve applying hierarchical POMDPs
to the composition problem, which is likely to result in better
performance. Since hierarchical POMDPs require an abstract
hierarchy of actions, they provide a suitable approach to
improve the scalability of the proposed method.

REFERENCES

[1] A. R. Cassandra, “A Survey of POMDP Applications”, Working Notes
of AAAI 1998 Fall Symposium on Planning with Partially Observable
Markov Decision Processes (1998), pp. 17-24, 1998.

[2] N. Milanovic and M. Malek. “Current Solutions for Web Service
Composition”. IEEE Internet Computing 8, 6 (November 2004), 51-59.
DOI=10.1109/MIC.2004.58.

[3] Y. Gao, J. Na, B. Zhang, L. Yang, and Q. Gong. 2006. “Optimal
Web Services Selection Using Dynamic Programming”, Proceedings
of the 11th IEEE Symposium on Computers and Communications
(ISCC ’06). IEEE Computer Society, Washington, DC, USA, 365-370.
DOI=10.1109/ISCC.2006.116.

[4] Y. Li, J. Huai, T. Deng, H. Sun, H. Guo, and Z. Du, “QoS-aware
Service Composition in Service Overlay Networks”, Proceedings of IEEE
International Conference on Web Services, vol., no., pp.703-710, 9-13
July 2007, DOI=10.1109/ICWS.2007.148.

[5] S. Mcilraith, “Adapting Golog for composition of Semantic Web ser-
vices”. Proceedings of the 8th International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse, France, April 2002.

[6] POMDP Tutorial, accessed from http://www.cs.brown.edu/research/ai/
pomdp/tutorial/index.html, last retrieved Jan. 2013.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. “Planning and acting
in partially observable stochastic domains”, Artif. Intell. 101, 1-2 (May
1998), 99-134. DOI=10.1016/S0004-3702(98)00023-X.

[8] S. B. Davidson and J. Freire. “Provenance and scientific workflows:
challenges and opportunities”. Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (SIGMOD ’08), New
York, NY, USA, 1345-1350. DOI=10.1145/1376616.1376772.

[9] Y. Gil, “Workflow Composition: Semantic Representations for Flexible
Automation”, Book Chapter, 2005.

[10] J. Kim et al., “Provenance trails in the Wings-Pegasus system”, Concur-
rency and Computation: Practice and Experience, vol. 20, 2007.

[11] J. Hoffmann, P. Bertoli, and M. Pistore, “Web service composition
as planning, revisited: in between background theories and initial state
uncertainty”. Proceedings of the 22nd national conference on Artificial
intelligence - Volume 2 (AAAI’07), Anthony Cohn (Ed.), Vol. 2. AAAI
Press 1013-1018.

[12] D. McDermott, “Estimated-regression planning for interactions with
Web services”, Proceedings of the 6th International Conference on AI
Planning and Scheduling, Toulouse, France, 2002. AAAI Press.

[13] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing Web
services on the Semantic Web”, The VLDB Journal 12, 4 (November
2003), 333-351. DOI=10.1007/s00778-003-0101-5.

[14] S. Lammermann, “Runtime Service Composition via Logic-Based Pro-
gram Synthesis”, PhD thesis, Department of Microelectronics and Infor-
mation Technology, Royal Institute of Technology, June 2002.

[15] R. J. Waldinger. 2000. “Web Agents Cooperating Deductively”, Pro-
ceedings of the First International Workshop on Formal Approaches to
Agent-Based Systems-Revised Papers (FAABS ’00).

[16] Web Service Description Language (WSDL), accessed from http://www.
w3.org/TR/wsdl, last retrieved Jan. 2013.

[17] Web Ontology Language (OWL), accessed from http://www.w3.org/
2004/OWL/, last retrieved Jan. 2013.

[18] P. Doshi and R. Goodwin and R. Akkiraju and K. Verma, “Dynamic
Workflow Composition using Markov Decision Processes”, International
Journal of Web Services Research, vol. 2, pp. 1-17, 2005.

[19] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. “Acting optimally
in partially observable stochastic domains”. Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1994.

[20] A. Strunk, “QoS-Aware Service Composition: A Survey”, Proceedings
of the IEEE 8th European Conference on Web Services (ECOWS), 2010.

[21] D. Braziunas, “POMDP solution methods”, Technical Report, 2003.
[22] G. E. Monahan. “A survey of partially observable Markov decision

processes: theory, models, and algorithms”, Management Science, 28 (1),
pp. 1, 1982.

[23] N. L. Zhang and W. Liu. “Planning in stochastic domains: Problem
characteristics and approximation”. Technical Report HKUST-CS96-31,
Dept. of Computer Science, Hong Kong University of Science and
Technology, 1996.

[24] Taverna, accessed from http://www.taverna.org.uk/, last retrieved Jan.
2013.

[25] WebInject, Web Application and Web Services Test Tool, accessed from
http://webinject.org/, last retrieved Jan. 2013.


