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Abstract — Genetic Programming (GP) is one of the evolutionary 
computation techniques that is used for the classification process. 
GP has shown that good accuracy values especially for binary 
classifications can be achieved, however, for multiclass 
classification unfortunately GP does not obtain high accuracy 
results. In this paper, we propose two approaches in order to 
improve the GP classification task. One approach (GP-K) uses 
the K-means clustering technique in order to transform the 
produced value of GP into class labels. The second approach 
(GP-D) uses a discretization technique to perform the 
transformation. A comparison of the original GP, GP-K and GP-
D was conducted using binary and multiclass datasets. In 
addition, a comparison with other state-of-the-art classifiers was 
performed. The results reveal that GP-K shows good 
improvement in terms of accuracy compared to the original GP, 
however, it has a slightly longer execution time. GP-D also 
achieves higher accuracy values than the original GP as well as 
GP-K, and the comparison with the state-of-the-art classifiers 
reveal competitive accuracy values. 
 
Keywords-Evolutionary Computation, Genetic Programming, 
Classification, Multiclass, Binary Classification. 

I. INTRODUCTION 
Evolutionary algorithms are one category of optimization 

techniques that are inspired by processes of biological 
evolution. The term optimization describes a process whereby 
the search for the optimum solution from a set of candidate 
solutions is sought; therefore, its goal is to find the best value 
for each variable in order to achieve satisfactory performance. 
In practical terms, this means to accomplish a task in the most 
efficient way to produce maximum yields given limited 
resources.   

Evolutionary computation is also applied to the domain of 
data mining. Data mining is a relatively broad field that deals 
with the automatic knowledge discovery from databases and it 
is one of the most developed fields in the area of artificial 
intelligence. Given the rapid growth of data collected in various 
realms of human activity and their potential usefulness requires 
efficient tools to extract and make use of the potentially 
gathered knowledge. Evolutionary algorithms are very 
powerful tools that can be utilized to make use of knowledge 
hidden in the data collected [1].  

One of the important data mining tasks is classification, 
which is an effective method that is used in many different 
fields. The main idea behind the classification technique is to 
build a model (classifier) that assigns items in a collection into 
target classes with the goal to accurately predict the target class 

for each item in the data [2]. There are many techniques that 
can be used to do a classification process such as decision trees, 
Bayes networks, genetic algorithms, genetic programming and 
many others. Genetic programming (GP) was found to be 
successful for classification problems and has emerged as a 
powerful tool for classifier evolution [3]. 

GP is an effective technique as it automatically solves 
problems without requiring the user to know or specify the 
form or structure of the solution in advance. Thus, it can be 
used anywhere when neither the solution nor its structure is 
known to the user. GP is distinguished from other evolutionary 
algorithms by the use of a tree representation of variable size 
rather than of a linear string of fixed length representation as in 
genetic algorithms. This flexible representation helps to 
automatically discover the underlying structure of the data. 
Genetic programming has proven to be a very powerful 
optimization technique in many application areas, such as 
evolving a computer program that plays a board game, where 
the parsing of trees is necessary, and thus the genetic 
programming approach seems to be the best option [4]. 

When GP is applied to a classification task, it basically 
derives a classifier that distinguishes two (binary classification) 
or more classes (multiclass classification) in order to apply the 
classifier to new data that determines the class of the data 
instance. GP has been used for classification problems in many 
research investigations. For example, GP was used to 
investigate the prognosis of breast cancer and classify them into 
two classes resulting in an accuracy of GP that outperforms the 
linear programming approach [5]. GP solves the problems by 
generating programs, and these programs consist of 
mathematical and logical operators and functions that result in 
numeric values. For classification problems, this value 
represents the class label. The goal of GP as an optimization 
process is to maximize the number of correctly classified 
records, which is referred to as the accuracy of the classifier. 
For binary classification, this process is simple since GP can be 
configured to return a boolean value that represents the class 
label. For multiclass classification on the other hand, the 
transformation of the resulting numeric values into the target 
class labels is not so trivial. 

This paper discusses in particular the techniques of how to 
transform the GP output value into class labels in order to 
improve the classification accuracy. The first proposed 
approach (GP-K) uses a K-Means clustering technique that 
creates clusters from the GP output value and then uses the 
majority voting technique to decide the class label for the 
clusters. After that, the predicted class labels are used to 
calculate the accuracy. The second approach (GP-D) uses the 



discretization method that transforms continuous values into 
nominal values, thus transforming the GP’s output numerical 
values to categorical class labels.  

This paper is structured as follows. Section II describes 
related work in the area of classification and some proposed 
improvement techniques, in particular focusing on multiclass 
problems. In Section III, GP, K-Means clustering, and the 
discretization techniques are outlined followed by our proposed 
approaches. Section IV presents the experiments as well as the 
results obtained, and Section V concludes this paper. 

II. RELATED WORK 
Several techniques have been proposed to tackle 

classification using GP for both binary and multiclass problems 
[3]. Some research investigations applied GP in different areas, 
and others focused on the theoretical side to improve the 
accuracy of GP. 

For binary classification, three main approaches are used. 
One approach uses zero as a boundary between classes, such 
that negative values are considered to belong to one class and 
positive values belong to the other class [6, 7]. The second 
approach is to make GP execute and produce a boolean value 
and then use this boolean value as a class label, such as in [8] 
where logical operators were used to produce “if then else” 
classification rules. The third approach uses a separate 
component to determine the class labels for the values of the 
GP output, while [9] used a linear perceptron. This approach 
can also be used for multiclass classification problems.  

Communal Binary Decomposition (CBD) uses a 
probabilistic method to model the outputs of programs; where 
the program's fitness depends on its performance at separating 
only one pair of classes for a particular binary classification 
sub-problem. To test CBD, the authors used GP with 5 
functions (+,-,*, /, if), and applied it on three image datasets 
with different class labels (3, 4, and 5 classes). They compared 
the CBD results with the Program Classification Map (PCM) 
[10, 11] and Probabilistic Model (PM) [12], and showed that 
CBD can achieve better accuracy values, however, with a much 
longer running time.  

For the multiclass classification process, many approaches 
were proposed. One approach is to decompose the problem into 
group of binary sub-problems such as in [13], where the 
authors first construct a method to decompose a multiclass 
classification problem into a number of binary sub-problems, 
solve all these sub-problems in a single GP run, and then 
combine the binary sub-problems to solve the whole multiclass 
problem. Other approaches were done using a separate 
component, such as in [14], where the authors discuss the 
texture classification problem, which involves extracting 
texture features from two or more classes of texture images to 
train a classifier. They used GP to discover useful texture 
feature extraction algorithms, where a feature extraction 
algorithm is considered useful if the feature values have a high 
classification accuracy. They integrated the K-Means clustering 
algorithm into the GP to compute the fitness of the feature 
extraction algorithm, according to their intuition that “the better 
the separation, the better the fitness”. They did this by 
computing the overlap between the clusters generated by K-
Means, where they computed the average of the feature values 
for each class given the cluster centroid, then they calculated 

the midpoint of the two centroids as a cluster boundary, so the 
points above this boundary belong to one cluster and below this 
boundary belong to the other cluster. The number of points in 
the wrong clusters is considered the error. The grey level 
histograms of different textures were used as input to the 
evolved programs. The GP function set contains only the + 
function. They tested their approach using Brodatz as a 
learning set and the Vistex set for training and testing the 
classifier. The resulting accuracy was competitive with other 
feature sets especially when combined with the Haralick 
feature set [15]. The paper was concluded by stating that the 
algorithm has captured some texture regularities, but mentioned 
that it is very difficult to determine what they are. Also, the 
performance was limited by the fact that there is no spatial 
information in the histograms. 

 Static Class Boundary Determination (SCBD) was 
proposed in [10], in which two or more static pre-defined 
thresholds/boundaries are applied to the numeric output value 
of the genetic program, and the ranges/regions between these 
boundaries are linearly translated into different classes. These 
regions are set by fixed boundaries at the beginning of the 
evolution, and remain constant during the run. If there are n 
classes for a classification task, then these classes are 
sequentially assigned to n regions along the numeric output 
value space ranging from negative numbers to positive 
numbers with n-1 thresholds/boundaries. The first class is 
assigned to the region with all numbers less than the first 
boundary; the next class is allocated to all numbers that lie 
between the first and the second boundaries, and so on.  

Slotted Dynamic Class Boundary Determination (SDCBD) 
and Centered Dynamic Class Boundary Determination 
(CDCBD) were proposed in [16], where in CDRS the class 
boundaries are dynamically determined by calculating the 
center of the program output value for each class. The 
algorithm starts by initializing the class boundaries as in 
SCBD, then during the evolution process of each class it 
calculates the center of the class based on an equation, then it 
calculates the boundary between every two classes by taking 
the midpoint of the two adjacent class centers, and then 
performs the classification based on the new boundaries. 
Modifying the class boundaries was done to the training 
examples after every five generations to balance between 
evolution and class boundary determination. In SDCBD, the 
output value of a program is split into certain slots. When a 
large number of slots are used, a large amount of computation 
is required. In their experiment, they used 100 slots derived 
from the range of [-25, 25] with steps of 0.50. Since the input 
features (terminals) are scaled into [-1, 1], each slot is assigned 
to a value for each class. First, it evaluates each genetic 
program based on the SCBD method. Then, it calculates the 
slot values for each class based on the program output value. 
After that, it dynamically determines which class each slot 
belongs to by simply taking the class with the largest value at 
the slot. However, in case a slot does not hold any positive 
value, that is, no programs produce any output at that slot for 
any training examples, then this slot is assigned to the class of 
the nearest neighboring slot. This method is applied after every 
5 generations, similarly to the CDCBD method. 

Another multiclass classification technique is presented in 
[17], where two populations are evolved simultaneously, one 



contains fuzzy rule sets and the other contains membership 
functions; both work together to effectively adapt to each other. 
Moreover, in [18], the authors proposed an Evolved Class 
Boundary (ECB) approach that draws a boundary between 
classes by calculating the mean of the individual output for 
each class on the training data, and then calculates the midpoint 
of these two means. They tested their approach using 3 binary 
datasets, where they balanced the data to have equal classes, by 
removing some records. They compared their results with the 
static class boundary [10] and the centered dynamic class 
boundary approach [17]. The results showed that ECB obtained 
a good testing accuracy in 2 out of 3 experiments. Also, they 
compared the ECB accuracy results with other works, where 
their rank was between 4th and 8th (out of 27).  

For the binary classification, configuring the GP to return a 
boolean value may lead to a loss in quality of the equation 
created by the GP program since less information is returned. 
In addition, using zero as a boundary is not very effective since 
the GP program may produce positive or negative values for 
both classes. Therefore, a technique is needed to save the GP’s 
program numerical output and transform it into a class label. 
However, for the multiclass classification problems, related 
work proposed a technique that finds the boundaries between 
the classes, also referred to as discretization, by finding specific 
boundaries for the overall dataset. In our work, we want each 
program to be an independent classifier that produces different 
output, and therefore, must have its own boundaries. Moreover, 
the related approach that decomposes the multiclass 
classification problem into groups of binary classification 
problems results in a higher overhead since it has to divide and 
execute more runs in order for the results to be combined at the 
end. 

Therefore, this paper proposes two techniques to solve the 
classification task for both binary and multiclass data by 
preserving the GP program structure (the equations), and 
transforming the GP output into class labels for each program 
(classifier) in order for the GP evolution to be trained to find 
the best classifier with the best accuracy. In our proposed 
approaches, K-Means and discretization techniques are used. In 
the first approach, K-Means is used in a different way than 
[14], where the authors used K-Means and find a midpoint 
between clusters to use as a boundary, however, we used K-
Means to create clusters and then use these clusters to calculate 
the accuracy by applying majority voting. 

III. PROPOSED APPROACHES 
Given that our proposed approaches are based on GP as 

well as K-Means clustering and discretization, we first briefly 
introduce GP, K-Means, and the discretization method used 
before outlining the details of our algorithms.  

A. Genetic Programming 
GP [19] is an evolutionary computation technique that 

automatically solves problems without requiring the user to 
know or specify the form or structure of the solution in advance 
[20]. It offers a solution through the evolution of computer 
programs by methods of natural selection. Each program is 
composed of functions (+, -, ×, ÷, etc.) and terminals (variables 
like x, y or constants like 2.2, 7, 11, etc.), and is represented as 
a tree. 

After the selection of the GP-specific settings such as 
chosen terminals, functions, population size, fitness function 
and termination criterion, the GP process can start and proceed 
by the following steps:  

Step 1: Randomly generate an initial population of 
computer programs. 

Step 2: Execute each computer program in the population 
and calculate its fitness using the fitness function.  

Step 3: Use the selection operation and choose two 
programs (parents). 

Step 4: With the assigned probabilities, select a genetic 
operator to perform crossover and mutation. 

Step 5: Repeat Step 3 and 4 until the size of the new 
population becomes equal to the size of the initial population. 
Then replace the current population with the new population. 
Then Go to Step 2 and repeat the process until the termination 
criterion (maximum number of generation is reached, or a pre-
specified accuracy) is satisfied. 

The result of the run is usually the program with the best 
fitness value found during the whole evolution. All these steps 
are shown in Figure 1. 

 
Fig. 1.  GP Process 

B. K-Means Clustering 
K-Means was proposed in [21]. It is one of the efficient 

clustering algorithms and is used in many applications since it 
is simple to implement and has shown good performance. K-
Means is categorized under the partitioning clustering 
algorithms, where the goal is to maximize the intra-cluster 
similarity, and minimize the inter-cluster similarity. K-Means is 
an efficient method as it runs in linear time. K-Means starts 
with specifying the number of clusters needed, K, and 
continues by following these steps (cluster example is shown in 
Figure 2): 

Step 1: Choose K initial random centroids, C1, C2, 
C3...CK. 

Step  2:  Compute the distance from each point to every 
centroid, and then assign the point to the cluster with the 
minimum distance (closest one). 

Step 3: Compute the new means (centroids) of the 
generated clusters, and repeat this step until no changes occur 
on the clusters, or until a predefined number of iterations is 
reached. 

The distance between points and centroids can be computed 
using the Manhattan distance as follows: 



Distance (P, Ci) =  ∑ | Cxi – Pxi |                                 (1) 
To compute the new centroid the following equation is 

used: 

C= !"#$%&'()*+%$
#!"#$%&'()*+%$

                                  (2) 

 
Fig. 2.  K-Means Clustering Example 

C. Discretization  
Discretization [22] is the process that discretizes and 

converts numeric attributes in the dataset into nominal 
attributes. There are two types of discretization, supervised and 
non-supervised. One of the supervised versions takes the class 
label into account when discretizing the numbers by calculating 
the entropy on the basis of the class label. It first sorts the 
attributes, and then finds the split points using the entropy [23]. 
This technique is used by our approaches. It finds the best split 
such that the segments are as pure as possible; thus, the 
majority of the values in a segment correspond to having the 
same class label. Formally, the goal is to find the split with the 
maximal information gain (Info (S)), which is obtained when 
the information value (Info(S, T)) is minimal. Therefore, given 
a set of samples S, partitioned into two intervals S1 and S2 
using boundary T, the entropy after partitioning is calculated as 
in Equation 3:   

  Info (S, T) = |!!|
!

  Info (S1) + |!!|
!

 Info (S2)         (3) 

where |•| denotes the cardinality. The boundary T is chosen 
from the midpoints of the attributes values, and the information 
content (Info) is calculated as follows: 

	
  	
  	
  Info (S) = P1 *log2 (P1) – P2 *log2 (P2)      (4) 
where P1 is the fraction of pairs within the first class, and P2 

is the fraction of pairs within the second class. 
The best splits are found by examining all possible splits 

and then selecting the optimal split points. The boundary that 
minimizes the entropy function over all possible boundaries is 
selected for the binary discretization. The process is recursively 
applied to partitions obtained until some stopping criterion is 
met, such as what is proposed by the Minimum Description 
Length (MDL): 

N
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(5)

 
where K is the number of classes in S, K1 is the number of 

classes in S1, and K2 is the number of classes in S2, N is the 
number of instances, and E is the entropy of the instances, E1 
entropy of the instances in S1, and E2 is entropy of instances in 
S2. 

An example of the process is shown in Figure 3, where 
there are continuous numbers in the range from 24 to 60, and 
each number is related to a class label (in the second row). The 
discretization process uses the information gain by taking the 
class labels to find split points that have splits with pure class 
labels. After defining the splits, majority voting is used to 
define the class label of the split, thus, in our example, we have 
class labels C2, C1, C2, C1, C2, C1, C2 respectively, for the 
splits shown in Figure 3. 

 
Fig. 3.  Discretization Example 

D. GP-K and GP-D 
We propose two methods to achieve higher accuracy values 

for the classification of GP. The first method is based on using 
K-Means in combination with GP (GP-K), and the other is 
using GP together with the discretization process (GP-D). 
These techniques are used to transform the produced numeric 
output of the GP to a class label by storing the produced values 
from a program (classifier) in a data vector, and then applying 
the transformation process on it. 

In GP-K, the K-Means clustering algorithm is applied on 
the GP program output, then the accuracy or fitness of this 
program is computed using the number of records that are in 
the correct cluster. The process to compute the fitness of each 
program and to apply the program (equation) on the data 
records works as follows. The result of GP for each record (a 
number) is recorded and stored in a data vector. After that, K-
Means is applied on this resulting data vector, and the number 
of K clusters is defined (that is the same as the number of 
classes in the original dataset). Majority voting is used on the 
resulting clusters to define the label of the cluster (class label). 
Then, after labeling the clusters, the records that are incorrectly 
appearing in the cluster are counted and represent the 
misclassified records by calculating the accuracy using 
Equation 6.  

Accuracy =  100%*
AllRecords#

)iedRecordsMisclassif#  -  AllRecords(#  (6) 

For GP-K, we found that the best number of iterations to 
run K-Means is 500, as it gives good accuracy values and does 
not affect the execution time too much (more iterations implies 
a larger execution time). However, K-Means may stop before 
reaching 500 iterations in case no changes occurred during 
consecutive iterations. 

GP-D completes the same process by first applying the GP 
program on the data records, and then recording the output 
number by storing it into a data vector. Afterwards, the 
supervised discretization is applied on this data vector. The 
discretization was applied using the one implemented by the 
WEKA data mining software [23], where a vector of the 
outputs and its class labels are sent to the discretization 
component. The result from the discretization is a range value 
instead of a numeric value. After that, all the records in the 
same range are collected, and then based on the class label for 
the maximum number of records in the range the class label for 
that range is defined. The accuracy is also calculated using 
Equation 6. 



IV. EXPERIMENTS AND RESULTS 
To evaluate the proposed techniques and see how effective 

they are in improving the accuracy of the GP, experiments were 
performed using the Java Genetic Algorithms Package (JGAP) 
[24] on two types of datasets, one with binary classes (true and 
false), and the other with multiple classes (multiclass). 

A. Datasets 
The experiments are applied on two types of datasets [25]. 

The binary datasets are the Wisconsin Diagnostic Breast 
Cancer (WDBC) dataset that predicts the two breast cancer 
diagnoses of benign and malignant, the Hepatitis dataset 
contains data of whether a person lived or died, the Heart 
datasets refers to the presence of heart disease in patients, and 
the Diabetes dataset is the Pima Indians Diabetes Database and 
the diagnostic investigated is whether the patient shows signs 
of diabetes or not. The details of these datasets including the 
number of features, and the number of records contained are 
shown in Table I. 

The second type of datasets that were used are multiclass 
datasets that include the Dermatology dataset, which 
determines the type of Eryhemato-Squamous disease, the 
Lymph dataset, which is about the Lymphography disease, the 
Splice dataset contains Primate splice-junction gene sequences 
(DNA) with associated imperfect domain theory, and the CTG 
dataset consists of fetal Cardiotocograms (CTGs) records. The 
CTG dataset has two outcome categories, the first one classifies 
a morphologic pattern (CTG-Class), and the second is related 
to the fetal state (CTG-NSP). All details including the number 
of features and records of these datasets are shown in Table II. 

B. Experimental Settings 
The experiments were conducted as follows. First of all, 

feature selection was performed on the datasets using the 
WEKA software [23], which reduced the number of features as 
shown in the brackets in Table I for the binary datasets, and in 
Table II for the multiclass datasets, respectively. The attribute 
selection method in WEKA is a supervised attribute filter that 
allows various search and evaluation methods to be combined 
[23]. Secondly, our GP algorithm was run using the following 
settings: population size = 500, number of generations = 1000, 
crossover probability = 0.5, mutation probability = 0.1, 
maximum initial depth = 5, maximum crossover depth = 8, 

function probability = 8, dynamize arity probability = 0.05, 
new chromosome percentage = 0.2. 37 functions are used, and 
14 of them are variables and constants. The experiments are 
applied on the standard GP (GP), the proposed GP-K and GP-D 
using 66% of the datasets for training and the remaining 34% 
for testing. 

TABLE I.   BINARY DATASETS 

Dataset Classes Features (Filtered) Records 
Breast 2 31 (11) 568 
Diabetes 2 8 (4) 768 
Heart 2 13 (9) 269 
Hepatitis 2 19 (10) 155 

TABLE II.  MULTICLASS DATASETS 

Dataset  Classes Features (Filtered) Records 
Lymph 4 19 (10) 148 
Splice 3 61 (22) 3190 
Dermatology 6 33 (19) 366 
CTG_NSP 3 22 (7) 2126 
CTG_Class 10 22 (11) 2126 

C. Results 
To evaluate the results of the proposed GP algorithms, they 

are compared with standard GP measuring the accuracy and 
execution time. Moreover, a comparison with state-of-the-art 
classifiers was done to measure how well our algorithms 
compared to the ones known in the literature. 

Table III shows the average with standard deviation for 30 
runs, as well as the best accuracy results of the standard GP, 
and the proposed approaches GP-K and GP-D applied to the 
binary datasets for the training and testing phases. 

We can infer from Table III that GP-K and GP-D show 
improvements compared to the accuracy of GP. For the breast 
cancer dataset, the GP obtained a testing accuracy of 92.85%, 
whereas GP-K and GP-D achieved 95.39% and 97.54%, 
respectively. Similarly, for the Diabetes, Heart and Hepatitis 
datasets, GP-K showed improvements over the original GP, 
whereby GP-D scored best.  

 

TABLE III.  ACCURACY FOR BINARY DATASETS 

Datasets 
Breast Diabetes Heart Hepatitis 

Training Testing Training Testing Training Testing Training Testing 

GP 

Avg. 95.85 92.85 76.02 75.84 86.65 73.04 87.81 82.52 

Std. ±1.07 ±1.90 ±0.99 ±1.25 ±1.91 ±4.19 ±1.72 ±2.88 

Best 97.86 95.88 77.87 78.63 89.27 81.52 91.18 86.79 

GP-K 

Avg. 97.76 95.39 77.52 78.34 88.93 76.34 88.20 86.03 

Std. ±0.58 ±0.86 ±0.29 ±0.82 ±0.51 ±3.38 ±0.83 ±2.35 

Best 98.66 96.91 78.26 80.15 90.40 81.52 90.20 90.57 

GP-D 

Avg. 98.66 97.54 78.46 80.07 89.94 80.50 94.05 88.55 

Std. ±0.16 ±0.48 ±0.62 ±1.00 ±0.43 ±2.56 ±0.88 ±1.10 

Best 99.20 98.45 79.84 82.44 90.96 85.87 96.08 90.57 



TABLE IV.  ACCURACY FOR MULTICLASS DATASETS 

Datasets 
Lymph Splice Dermatology CTG-NSP CTG-Class 

Train. Testing Train. Testing Train. Testing Train. Testing Train. Testing 

GP 

Avg. 83.71 73.07 71.59 70.98 74.43 72.32 84.38 83.53 47.56 44.74 

Std. ±3.13 ±4.45 ±4.10 ±4.19 ±5.13 ±5.29 ±0.99 ±1.83 ±3.40 ±4.81 

Best 90.72 82.35 82.30 82.90 87.14 82.40 87.24 87.83 54.10 52.97 

GP-K 

Avg. 86.84 76.01 75.60 74.21 91.58 79.46 85.03 83.49 65.59 61.03 

Std. ±1.10 ±2.94 ±3.48 ±4.59 ±2.11 ±4.05 ±0.72 ±1.19 ±1.41 ±2.79 

Best 88.66 80.39 87.45 86.91 95.44 86.40 86.60 86.86 69.43 65.98 

GP-D 

Avg. 89.97 78.36 91.24 86.22 97.28 86.24 90.12 88.33 73.50 64.09 

Std. ±1.43 ±2.15 ±0.78 ±4.35 ±1.05 ±4.64 ±0.65 ±1.05 ±1.40 ±5.06 

Best. 91.75 84.31 92.35 90.69 99.17 96.00 91.17 90.32 76.41 73.17 
 

Looking at the training accuracy, for the breast cancer 
dataset, GP obtained an accuracy of 95.85%, with the best 
value (from the 30 runs) of 97.86%. However, GP-K’s best 
value is 98.66%, GP-D’s average is 98.66%, and its best value 
is 99.20%. The same trend is found for the other binary 
datasets, where GP-K slightly improves GP’s accuracy (3%-
4%), and GP-D outperforms both GP and GP-K by 5%-8% 
compared to GP. It can also be seen that both GP-K and GP-D 
have a smaller standard deviation compared to GP, which 
indicates that they are more robust. 

The accuracy results for the multiclass datasets are shown 
in Table IV. We can see that GP-D achieves the highest 
accuracy for all datasets, and GP-K improves the accuracy of 
standard GP. For example, for the Splice dataset, GP’s 
accuracy is 70.98%, GP-K’s is 74.21% and GP-D’s is 86.22%. 
For the Dermatology dataset, GP’s accuracy is 72.32%, GP-K’s 
is 79.46% and GP-D’s is 86.24%. The maximum improvement 
that was achieved was for the CTG-class dataset, where GP’s 
accuracy is 44.74%, GP-K’s is 61.03% (increased by 16%), 
and GP-D’s is 64.09% (increased by 19% compared to GP’s 
accuracy). 

Looking at the best results accomplished while testing the 
datasets, the accuracy values obtained on the Lymph dataset are 
82.35%, 80.39%, 84.31% for GP, GP-K, and GP-D, 
respectively. However, the difference for the Splice dataset is 
larger where 82.90%, 86.91% and 90.69% were measured. The 
difference between the best accuracy values of the GP, GP-K 
and GP-D for the Dermatology and the CTG-NSP datasets are 
smaller (close to what is shown for Lymph), while for the 
CTG-Class dataset, GP’s best value is 52.97%, GP-K is 
65.98%, GP-D is 73.17%. Moreover, commenting on the 
standard deviation of the testing process, the values for the 
Lymph dataset are ±4.45, ±2.94, and ±2.15 for GP, GP-D and 
GP-K, respectively. For the other datasets, the values for GP, 
GP-K and GP-D are in the same range, besides for the binary 
datasets, where the values are either smaller or no change is 
observed. 

For the training phase, the results show the same trend as 
for the testing phase comparing GP, GP-K and GP-D. 
However, they have higher values compared to the testing 
phase. GP achieved average accuracy results of 90.72%, 
82.90%, 87.14%, 87.24%, 54.10% on the Lymph, Splice, 
Dermatology, CTG-NSP, and CTG-Class datasets, 
respectively. However, GP-K obtained 88.66%, 87.45%, 

95.44%, 86.60% and 69.43%. GP-D on the other hand 
achieved scores of 89.97%, 91.24%, 97.28%, 90.12% and 
73.50%. In addition, the best values are much higher, where for 
the same order of datasets GP-D obtained 91.75%, 92.35%, 
99.17%, 91.17%, and 76.41%. 

The running time results are shown in Figure 4 (drawn 
using the logarithmic scale to adapt to the large difference 
between small and large datasets), where we can see that GP-K 
has a slightly longer running time than GP, while GP-D’s 
running time is much longer compared to GP. For example, for 
the breast cancer dataset GP took 55.70 seconds, GP-K took 
60.44 seconds, and GP-D took 367.80 seconds. For the binary 
datasets, and the Lymph and Dermatology, the running times 
are similar to the breast cancer dataset, whereas for Splice, 
CTG-NSP and CTG-Class the difference of GP-D is much 
larger. The difference in running time increases when the 
number of records gets larger (compare the number of records 
of Splice: 3190 with CTG: 2126). 

 
Fig. 4.  Running time results for GP, GP-K and GP-D 

 
The reason for this longer running time of GP-D, is that 

GP-D uses the discretization method as stated in [16] by 
calculating the information gain for each possible split point. If 
the dataset has for example 2126 records, then there are 2126 
possible split points. In addition, this discretization process is 
done for every program (classifier) when its fitness is 
calculated, therefore, for a population size of 500, the 
discretization portion is executed 500 times per generation. 
Although GP-D has a longer running time compared to GP and 



GP-K, however, a substantial improvement in accuracy is 
achieved, as well as the robustness of the algorithm is 
increased. However, if time is of essence, GP-K can be used 
since it has a higher accuracy than standard GP with a 
comparable running time. 

A comparison of the accuracy of GP, GP-K and GP-D with 
other well-known classification methods on the same datasets 
is shown in Tables V and VI, where the numbers in bold are the 
highest values, and the values in bold and italic are the second 
highest values. The following classifiers were used and are 
described below: 
• Bayes Network (BN): learning algorithm using various 

search algorithms and quality measures. 
• Naive Bayes (NB): class for a classifier using estimator 

classes. 
• J48: contains a class for generating a pruned or un-pruned 

C4.5 decision tree. 
• IBK: K-nearest neighbors classifier, which can select an 

appropriate value of K based on cross-validation and also 
performs distance weighting. 

• MP: multilayer perceptron is a classifier that uses back 
propagation to classify instances. 

• K*:  is an instance-based classifier, that is, the class of a test 
instance is based upon the class of those training instances 
similar to it, as determined by some similarity function. 

• JRip: implements a propositional rule learner, Repeated 
Incremental Pruning to Produce Error Reduction (RIPPER). 

• SMO: implements John Platt's sequential minimal 
optimization algorithm for training a support vector 
classifier. 
All these algorithms were applied using the WEKA data 

mining software [16] with 10 fold cross-validation. 
The binary dataset results are shown in Table V. GP-D 

outperforms all other classifiers with an average accuracy of 
97.54% for the Breast dataset. However, for the Diabetes 
dataset, NB has the highest accuracy of 84.38%, whereas 
standard GP has 75.84%, GP-K and GP-D have average 
accuracy values of 78.34% and 80.07%, respectively, 

outperforming the K* and JRip results. For the Heart dataset, 
GP-D achieves the highest average accuracy of 80.50%, and 
the best accuracy of 85.87%. GP-K obtains an accuracy of 
76.34% and outperforms a number of other classifiers such as 
J48, BN, IBK, K*, JRip, and MP. For the Hepatitis dataset, GP-
D also achieves the highest accuracy of 88.55% with the best 
value of 90.57%, again outperforming all other classifiers. 
Moreover, GP-K also outperforms all other classifiers with an 
accuracy of 86.03% (best value of 90.57%). In summary, GP-D 
obtains the highest accuracy values for the binary datasets in 3 
out of 4 cases, whereby GP-K has the highest average accuracy 
value on the Hepatitis dataset, as well as outperforming some 
of the other classifiers. 

For the multiclass datasets, GP-D shows competitive values 
compared to the other classifiers, such as the Lymph dataset, 
where GP’s best accuracy is 84.31%. Also, for the 
Dermatology and CTG-NSP datasets, GP-D’s best value is 
96.00%, which is somewhat close to the best result of 97.81% 
for Dermatology, and 90.32% (best 92.94%) for CTG-NSP. 
GP-K did not achieve close scores as GP-D did; however, it 
definitely improved the standard GP. 

A statistical two-tailed Z-Test was applied on the average 
results of the 30 runs for GP-K compared to standard GP as 
well as for GP-D compared with standard GP using a 
significance level of 5%. The Z-Test results show that GP-K 
and GP-D achieve significant accuracy improvements on all 
datasets except for GP-K when applied on CTG-NSP. 

V.CONCLUSION 
This paper proposed two approaches in order to improve 

the accuracy of GP for the classification task, in particular for 
multiclass classification problems. The first proposed approach, 
GP-K, makes use of the K-Means clustering algorithm to 
transform the GP output from a numeric value to a class label. 
The second approach, GP-D, performs the same transformation 
process by applying the discretization method on every 
classifier.  

 

TABLE V.  ACCURACY RESULTS FOR BINARY DATASET COMPARED WITH OTHER CLASSIFIERS 

Datasets GP GP-K GP-D J48 BN NB IBK K* JRip SMO MP 

Breast 92.85 (95.88) 95.39 (96.91) 97.54 (98.45) 93.48 95.95 94.54 95.24 95.59 95.07 96.65 97.00 

Diabetes 75.84 (78.63) 78.34 (80.15) 80.07 (82.44) 81.41 83.27 84.38 80.66 78.43 78.81 84.01 81.41 

Heart  73.04 (81.52) 76.34 (81.52) 80.50 (85.87) 74.86 75.52 77.47 68.35 69.92 74.73 76.82 75.52 

Hepatitis 82.52 (86.79) 86.03 (90.57) 88.55 (90.57) 81.93 83.22 85.16 81.29 83.87 78.70 83.22 81.29 

TABLE VI.  ACCURACY RESULTS FOR MULTICLASS DATASET COMPARED WITH OTHER CLASSIFIERS 

Datasets GP GP-K GP-D J48 BN NB IBK K* JRip SMO MP 

Lymph 73.07 (82.35) 76.01 (80.39) 78.36 (84.31) 78.37 79.72 80.40 77.70 81.75 77.02 81.08 79.72 

Splice 70.98 (82.90) 74.21 (86.91) 86.22 (90.69) 93.54 96.14 92.06 68.24 77.86 94.07 85.20 89.78 

Dermatology 72.32 (82.40) 79.46 (86.40) 86.24 (96.00) 95.35 97.81 97.81 96.72 97.54 94.26 97.81 96.72 

CTG-NSP 83.53 (87.83) 83.49 (86.86) 88.33 (90.32) 92.94 89.46 84.43 92.09 91.90 91.95 88.19 89.51 

CTG-Class 44.74 (52.97) 61.03 (65.98) 64.09 (73.17) 82.83 78.50 71.49 80.66 81.93 82.07 76.81 79.82 
 



    
A comparison of the standard GP with the proposed 

approaches was conducted using binary and multiclass datasets 
measuring the accuracy and running time. Overall, it was 
shown that both, GP-K and GP-D, improve the accuracy of 
standard GP, however, this comes at the cost of a longer 
running time. GP-K only has a slightly longer running time, but 
GP-D takes a very long time to run. In addition, for the binary 
datasets, GP-K and GP-D were found to be more robust 
compared to standard GP as shown by the standard deviation. 
Comparing the proposed approaches with other known 
classifiers, it was found that GP-D outperforms 3 of 4 
classifiers for the binary datasets, and for the multiclass higher 
accuracy values than GP were achieved with some competitive 
values compared to the know classifiers.  

Given that both GP-K and GP-D have longer running times 
than GP, preliminary tests were run keeping the running time 
for standard GP the same as GP-D in order to see the effect on 
the accuracy. The tests were applied on the Breast dataset with 
30 runs. GP was run for 6,000 iterations instead of 1,000 
(running time on average was 373.02 seconds close to 367.8 
seconds for GP-D). The average accuracy of GP improved 
from 92.85% to 94.36%. GP-D has an average accuracy of 
97.54%, which is still much better than standard GP. However, 
more experiments are necessary to confirm the same trend on 
all other datasets. 

Future work involves finding a way to keep the high 
accuracy and good robustness of GP-D, while at the same time 
shorten the running time. This might be done by parallelizing 
the proposed approach, or by limiting the discretization process 
to be run only on every other classifier in the population.  
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