
Improving Genetic Programming Classification For
Binary And Multiclass Datasets

Nailah Al-Madi and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

nailah.almadi@my.ndsu.edu, simone.ludwig@ndsu.edu

Abstract — Genetic Programming (GP) is one of the evolutionary
computation techniques that is used for the classification process.
GP has shown that good accuracy values especially for binary
classifications can be achieved, however, for multiclass
classification unfortunately GP does not obtain high accuracy
results. In this paper, we propose two approaches in order to
improve the GP classification task. One approach (GP-K) uses
the K-means clustering technique in order to transform the
produced value of GP into class labels. The second approach
(GP-D) uses a discretization technique to perform the
transformation. A comparison of the original GP, GP-K and GP-
D was conducted using binary and multiclass datasets. In
addition, a comparison with other state-of-the-art classifiers was
performed. The results reveal that GP-K shows good
improvement in terms of accuracy compared to the original GP,
however, it has a slightly longer execution time. GP-D also
achieves higher accuracy values than the original GP as well as
GP-K, and the comparison with the state-of-the-art classifiers
reveal competitive accuracy values.

Keywords-Evolutionary Computation, Genetic Programming,
Classification, Multiclass, Binary Classification.

I. INTRODUCTION
Evolutionary algorithms are one category of optimization

techniques that are inspired by processes of biological
evolution. The term optimization describes a process whereby
the search for the optimum solution from a set of candidate
solutions is sought; therefore, its goal is to find the best value
for each variable in order to achieve satisfactory performance.
In practical terms, this means to accomplish a task in the most
efficient way to produce maximum yields given limited
resources.

Evolutionary computation is also applied to the domain of
data mining. Data mining is a relatively broad field that deals
with the automatic knowledge discovery from databases and it
is one of the most developed fields in the area of artificial
intelligence. Given the rapid growth of data collected in various
realms of human activity and their potential usefulness requires
efficient tools to extract and make use of the potentially
gathered knowledge. Evolutionary algorithms are very
powerful tools that can be utilized to make use of knowledge
hidden in the data collected [1].

One of the important data mining tasks is classification,
which is an effective method that is used in many different
fields. The main idea behind the classification technique is to
build a model (classifier) that assigns items in a collection into
target classes with the goal to accurately predict the target class

for each item in the data [2]. There are many techniques that
can be used to do a classification process such as decision trees,
Bayes networks, genetic algorithms, genetic programming and
many others. Genetic programming (GP) was found to be
successful for classification problems and has emerged as a
powerful tool for classifier evolution [3].

GP is an effective technique as it automatically solves
problems without requiring the user to know or specify the
form or structure of the solution in advance. Thus, it can be
used anywhere when neither the solution nor its structure is
known to the user. GP is distinguished from other evolutionary
algorithms by the use of a tree representation of variable size
rather than of a linear string of fixed length representation as in
genetic algorithms. This flexible representation helps to
automatically discover the underlying structure of the data.
Genetic programming has proven to be a very powerful
optimization technique in many application areas, such as
evolving a computer program that plays a board game, where
the parsing of trees is necessary, and thus the genetic
programming approach seems to be the best option [4].

When GP is applied to a classification task, it basically
derives a classifier that distinguishes two (binary classification)
or more classes (multiclass classification) in order to apply the
classifier to new data that determines the class of the data
instance. GP has been used for classification problems in many
research investigations. For example, GP was used to
investigate the prognosis of breast cancer and classify them into
two classes resulting in an accuracy of GP that outperforms the
linear programming approach [5]. GP solves the problems by
generating programs, and these programs consist of
mathematical and logical operators and functions that result in
numeric values. For classification problems, this value
represents the class label. The goal of GP as an optimization
process is to maximize the number of correctly classified
records, which is referred to as the accuracy of the classifier.
For binary classification, this process is simple since GP can be
configured to return a boolean value that represents the class
label. For multiclass classification on the other hand, the
transformation of the resulting numeric values into the target
class labels is not so trivial.

This paper discusses in particular the techniques of how to
transform the GP output value into class labels in order to
improve the classification accuracy. The first proposed
approach (GP-K) uses a K-Means clustering technique that
creates clusters from the GP output value and then uses the
majority voting technique to decide the class label for the
clusters. After that, the predicted class labels are used to
calculate the accuracy. The second approach (GP-D) uses the

discretization method that transforms continuous values into
nominal values, thus transforming the GP’s output numerical
values to categorical class labels.

This paper is structured as follows. Section II describes
related work in the area of classification and some proposed
improvement techniques, in particular focusing on multiclass
problems. In Section III, GP, K-Means clustering, and the
discretization techniques are outlined followed by our proposed
approaches. Section IV presents the experiments as well as the
results obtained, and Section V concludes this paper.

II. RELATED WORK
Several techniques have been proposed to tackle

classification using GP for both binary and multiclass problems
[3]. Some research investigations applied GP in different areas,
and others focused on the theoretical side to improve the
accuracy of GP.

For binary classification, three main approaches are used.
One approach uses zero as a boundary between classes, such
that negative values are considered to belong to one class and
positive values belong to the other class [6, 7]. The second
approach is to make GP execute and produce a boolean value
and then use this boolean value as a class label, such as in [8]
where logical operators were used to produce “if then else”
classification rules. The third approach uses a separate
component to determine the class labels for the values of the
GP output, while [9] used a linear perceptron. This approach
can also be used for multiclass classification problems.

Communal Binary Decomposition (CBD) uses a
probabilistic method to model the outputs of programs; where
the program's fitness depends on its performance at separating
only one pair of classes for a particular binary classification
sub-problem. To test CBD, the authors used GP with 5
functions (+,-,*, /, if), and applied it on three image datasets
with different class labels (3, 4, and 5 classes). They compared
the CBD results with the Program Classification Map (PCM)
[10, 11] and Probabilistic Model (PM) [12], and showed that
CBD can achieve better accuracy values, however, with a much
longer running time.

For the multiclass classification process, many approaches
were proposed. One approach is to decompose the problem into
group of binary sub-problems such as in [13], where the
authors first construct a method to decompose a multiclass
classification problem into a number of binary sub-problems,
solve all these sub-problems in a single GP run, and then
combine the binary sub-problems to solve the whole multiclass
problem. Other approaches were done using a separate
component, such as in [14], where the authors discuss the
texture classification problem, which involves extracting
texture features from two or more classes of texture images to
train a classifier. They used GP to discover useful texture
feature extraction algorithms, where a feature extraction
algorithm is considered useful if the feature values have a high
classification accuracy. They integrated the K-Means clustering
algorithm into the GP to compute the fitness of the feature
extraction algorithm, according to their intuition that “the better
the separation, the better the fitness”. They did this by
computing the overlap between the clusters generated by K-
Means, where they computed the average of the feature values
for each class given the cluster centroid, then they calculated

the midpoint of the two centroids as a cluster boundary, so the
points above this boundary belong to one cluster and below this
boundary belong to the other cluster. The number of points in
the wrong clusters is considered the error. The grey level
histograms of different textures were used as input to the
evolved programs. The GP function set contains only the +
function. They tested their approach using Brodatz as a
learning set and the Vistex set for training and testing the
classifier. The resulting accuracy was competitive with other
feature sets especially when combined with the Haralick
feature set [15]. The paper was concluded by stating that the
algorithm has captured some texture regularities, but mentioned
that it is very difficult to determine what they are. Also, the
performance was limited by the fact that there is no spatial
information in the histograms.

 Static Class Boundary Determination (SCBD) was
proposed in [10], in which two or more static pre-defined
thresholds/boundaries are applied to the numeric output value
of the genetic program, and the ranges/regions between these
boundaries are linearly translated into different classes. These
regions are set by fixed boundaries at the beginning of the
evolution, and remain constant during the run. If there are n
classes for a classification task, then these classes are
sequentially assigned to n regions along the numeric output
value space ranging from negative numbers to positive
numbers with n-1 thresholds/boundaries. The first class is
assigned to the region with all numbers less than the first
boundary; the next class is allocated to all numbers that lie
between the first and the second boundaries, and so on.

Slotted Dynamic Class Boundary Determination (SDCBD)
and Centered Dynamic Class Boundary Determination
(CDCBD) were proposed in [16], where in CDRS the class
boundaries are dynamically determined by calculating the
center of the program output value for each class. The
algorithm starts by initializing the class boundaries as in
SCBD, then during the evolution process of each class it
calculates the center of the class based on an equation, then it
calculates the boundary between every two classes by taking
the midpoint of the two adjacent class centers, and then
performs the classification based on the new boundaries.
Modifying the class boundaries was done to the training
examples after every five generations to balance between
evolution and class boundary determination. In SDCBD, the
output value of a program is split into certain slots. When a
large number of slots are used, a large amount of computation
is required. In their experiment, they used 100 slots derived
from the range of [-25, 25] with steps of 0.50. Since the input
features (terminals) are scaled into [-1, 1], each slot is assigned
to a value for each class. First, it evaluates each genetic
program based on the SCBD method. Then, it calculates the
slot values for each class based on the program output value.
After that, it dynamically determines which class each slot
belongs to by simply taking the class with the largest value at
the slot. However, in case a slot does not hold any positive
value, that is, no programs produce any output at that slot for
any training examples, then this slot is assigned to the class of
the nearest neighboring slot. This method is applied after every
5 generations, similarly to the CDCBD method.

Another multiclass classification technique is presented in
[17], where two populations are evolved simultaneously, one

contains fuzzy rule sets and the other contains membership
functions; both work together to effectively adapt to each other.
Moreover, in [18], the authors proposed an Evolved Class
Boundary (ECB) approach that draws a boundary between
classes by calculating the mean of the individual output for
each class on the training data, and then calculates the midpoint
of these two means. They tested their approach using 3 binary
datasets, where they balanced the data to have equal classes, by
removing some records. They compared their results with the
static class boundary [10] and the centered dynamic class
boundary approach [17]. The results showed that ECB obtained
a good testing accuracy in 2 out of 3 experiments. Also, they
compared the ECB accuracy results with other works, where
their rank was between 4th and 8th (out of 27).

For the binary classification, configuring the GP to return a
boolean value may lead to a loss in quality of the equation
created by the GP program since less information is returned.
In addition, using zero as a boundary is not very effective since
the GP program may produce positive or negative values for
both classes. Therefore, a technique is needed to save the GP’s
program numerical output and transform it into a class label.
However, for the multiclass classification problems, related
work proposed a technique that finds the boundaries between
the classes, also referred to as discretization, by finding specific
boundaries for the overall dataset. In our work, we want each
program to be an independent classifier that produces different
output, and therefore, must have its own boundaries. Moreover,
the related approach that decomposes the multiclass
classification problem into groups of binary classification
problems results in a higher overhead since it has to divide and
execute more runs in order for the results to be combined at the
end.

Therefore, this paper proposes two techniques to solve the
classification task for both binary and multiclass data by
preserving the GP program structure (the equations), and
transforming the GP output into class labels for each program
(classifier) in order for the GP evolution to be trained to find
the best classifier with the best accuracy. In our proposed
approaches, K-Means and discretization techniques are used. In
the first approach, K-Means is used in a different way than
[14], where the authors used K-Means and find a midpoint
between clusters to use as a boundary, however, we used K-
Means to create clusters and then use these clusters to calculate
the accuracy by applying majority voting.

III. PROPOSED APPROACHES
Given that our proposed approaches are based on GP as

well as K-Means clustering and discretization, we first briefly
introduce GP, K-Means, and the discretization method used
before outlining the details of our algorithms.

A. Genetic Programming
GP [19] is an evolutionary computation technique that

automatically solves problems without requiring the user to
know or specify the form or structure of the solution in advance
[20]. It offers a solution through the evolution of computer
programs by methods of natural selection. Each program is
composed of functions (+, -, ×, ÷, etc.) and terminals (variables
like x, y or constants like 2.2, 7, 11, etc.), and is represented as
a tree.

After the selection of the GP-specific settings such as
chosen terminals, functions, population size, fitness function
and termination criterion, the GP process can start and proceed
by the following steps:

Step 1: Randomly generate an initial population of
computer programs.

Step 2: Execute each computer program in the population
and calculate its fitness using the fitness function.

Step 3: Use the selection operation and choose two
programs (parents).

Step 4: With the assigned probabilities, select a genetic
operator to perform crossover and mutation.

Step 5: Repeat Step 3 and 4 until the size of the new
population becomes equal to the size of the initial population.
Then replace the current population with the new population.
Then Go to Step 2 and repeat the process until the termination
criterion (maximum number of generation is reached, or a pre-
specified accuracy) is satisfied.

The result of the run is usually the program with the best
fitness value found during the whole evolution. All these steps
are shown in Figure 1.

Fig. 1. GP Process

B. K-Means Clustering
K-Means was proposed in [21]. It is one of the efficient

clustering algorithms and is used in many applications since it
is simple to implement and has shown good performance. K-
Means is categorized under the partitioning clustering
algorithms, where the goal is to maximize the intra-cluster
similarity, and minimize the inter-cluster similarity. K-Means is
an efficient method as it runs in linear time. K-Means starts
with specifying the number of clusters needed, K, and
continues by following these steps (cluster example is shown in
Figure 2):

Step 1: Choose K initial random centroids, C1, C2,
C3...CK.

Step 2: Compute the distance from each point to every
centroid, and then assign the point to the cluster with the
minimum distance (closest one).

Step 3: Compute the new means (centroids) of the
generated clusters, and repeat this step until no changes occur
on the clusters, or until a predefined number of iterations is
reached.

The distance between points and centroids can be computed
using the Manhattan distance as follows:

Distance (P, Ci) = ∑ | Cxi – Pxi | (1)
To compute the new centroid the following equation is

used:

C= !"#$%&'()*+%$
#!"#$%&'()*+%$

 (2)

Fig. 2. K-Means Clustering Example

C. Discretization
Discretization [22] is the process that discretizes and

converts numeric attributes in the dataset into nominal
attributes. There are two types of discretization, supervised and
non-supervised. One of the supervised versions takes the class
label into account when discretizing the numbers by calculating
the entropy on the basis of the class label. It first sorts the
attributes, and then finds the split points using the entropy [23].
This technique is used by our approaches. It finds the best split
such that the segments are as pure as possible; thus, the
majority of the values in a segment correspond to having the
same class label. Formally, the goal is to find the split with the
maximal information gain (Info (S)), which is obtained when
the information value (Info(S, T)) is minimal. Therefore, given
a set of samples S, partitioned into two intervals S1 and S2
using boundary T, the entropy after partitioning is calculated as
in Equation 3:

 Info (S, T) = |!!|
!

 Info (S1) + |!!|
!

 Info (S2) (3)

where |•| denotes the cardinality. The boundary T is chosen
from the midpoints of the attributes values, and the information
content (Info) is calculated as follows:

	
 	
 	
 Info (S) = P1 *log2 (P1) – P2 *log2 (P2) (4)
where P1 is the fraction of pairs within the first class, and P2

is the fraction of pairs within the second class.
The best splits are found by examining all possible splits

and then selecting the optimal split points. The boundary that
minimizes the entropy function over all possible boundaries is
selected for the binary discretization. The process is recursively
applied to partitions obtained until some stopping criterion is
met, such as what is proposed by the Minimum Description
Length (MDL):

N
]EKEKKE[)23(log

N
1)-(Nlog

 >Gain 2211
k

22 −−−−
+

(5)

where K is the number of classes in S, K1 is the number of

classes in S1, and K2 is the number of classes in S2, N is the
number of instances, and E is the entropy of the instances, E1
entropy of the instances in S1, and E2 is entropy of instances in
S2.

An example of the process is shown in Figure 3, where
there are continuous numbers in the range from 24 to 60, and
each number is related to a class label (in the second row). The
discretization process uses the information gain by taking the
class labels to find split points that have splits with pure class
labels. After defining the splits, majority voting is used to
define the class label of the split, thus, in our example, we have
class labels C2, C1, C2, C1, C2, C1, C2 respectively, for the
splits shown in Figure 3.

Fig. 3. Discretization Example

D. GP-K and GP-D
We propose two methods to achieve higher accuracy values

for the classification of GP. The first method is based on using
K-Means in combination with GP (GP-K), and the other is
using GP together with the discretization process (GP-D).
These techniques are used to transform the produced numeric
output of the GP to a class label by storing the produced values
from a program (classifier) in a data vector, and then applying
the transformation process on it.

In GP-K, the K-Means clustering algorithm is applied on
the GP program output, then the accuracy or fitness of this
program is computed using the number of records that are in
the correct cluster. The process to compute the fitness of each
program and to apply the program (equation) on the data
records works as follows. The result of GP for each record (a
number) is recorded and stored in a data vector. After that, K-
Means is applied on this resulting data vector, and the number
of K clusters is defined (that is the same as the number of
classes in the original dataset). Majority voting is used on the
resulting clusters to define the label of the cluster (class label).
Then, after labeling the clusters, the records that are incorrectly
appearing in the cluster are counted and represent the
misclassified records by calculating the accuracy using
Equation 6.

Accuracy = 100%*
AllRecords#

)iedRecordsMisclassif# - AllRecords(# (6)

For GP-K, we found that the best number of iterations to
run K-Means is 500, as it gives good accuracy values and does
not affect the execution time too much (more iterations implies
a larger execution time). However, K-Means may stop before
reaching 500 iterations in case no changes occurred during
consecutive iterations.

GP-D completes the same process by first applying the GP
program on the data records, and then recording the output
number by storing it into a data vector. Afterwards, the
supervised discretization is applied on this data vector. The
discretization was applied using the one implemented by the
WEKA data mining software [23], where a vector of the
outputs and its class labels are sent to the discretization
component. The result from the discretization is a range value
instead of a numeric value. After that, all the records in the
same range are collected, and then based on the class label for
the maximum number of records in the range the class label for
that range is defined. The accuracy is also calculated using
Equation 6.

IV. EXPERIMENTS AND RESULTS
To evaluate the proposed techniques and see how effective

they are in improving the accuracy of the GP, experiments were
performed using the Java Genetic Algorithms Package (JGAP)
[24] on two types of datasets, one with binary classes (true and
false), and the other with multiple classes (multiclass).

A. Datasets
The experiments are applied on two types of datasets [25].

The binary datasets are the Wisconsin Diagnostic Breast
Cancer (WDBC) dataset that predicts the two breast cancer
diagnoses of benign and malignant, the Hepatitis dataset
contains data of whether a person lived or died, the Heart
datasets refers to the presence of heart disease in patients, and
the Diabetes dataset is the Pima Indians Diabetes Database and
the diagnostic investigated is whether the patient shows signs
of diabetes or not. The details of these datasets including the
number of features, and the number of records contained are
shown in Table I.

The second type of datasets that were used are multiclass
datasets that include the Dermatology dataset, which
determines the type of Eryhemato-Squamous disease, the
Lymph dataset, which is about the Lymphography disease, the
Splice dataset contains Primate splice-junction gene sequences
(DNA) with associated imperfect domain theory, and the CTG
dataset consists of fetal Cardiotocograms (CTGs) records. The
CTG dataset has two outcome categories, the first one classifies
a morphologic pattern (CTG-Class), and the second is related
to the fetal state (CTG-NSP). All details including the number
of features and records of these datasets are shown in Table II.

B. Experimental Settings
The experiments were conducted as follows. First of all,

feature selection was performed on the datasets using the
WEKA software [23], which reduced the number of features as
shown in the brackets in Table I for the binary datasets, and in
Table II for the multiclass datasets, respectively. The attribute
selection method in WEKA is a supervised attribute filter that
allows various search and evaluation methods to be combined
[23]. Secondly, our GP algorithm was run using the following
settings: population size = 500, number of generations = 1000,
crossover probability = 0.5, mutation probability = 0.1,
maximum initial depth = 5, maximum crossover depth = 8,

function probability = 8, dynamize arity probability = 0.05,
new chromosome percentage = 0.2. 37 functions are used, and
14 of them are variables and constants. The experiments are
applied on the standard GP (GP), the proposed GP-K and GP-D
using 66% of the datasets for training and the remaining 34%
for testing.

TABLE I. BINARY DATASETS

Dataset Classes Features (Filtered) Records
Breast 2 31 (11) 568
Diabetes 2 8 (4) 768
Heart 2 13 (9) 269
Hepatitis 2 19 (10) 155

TABLE II. MULTICLASS DATASETS

Dataset Classes Features (Filtered) Records
Lymph 4 19 (10) 148
Splice 3 61 (22) 3190
Dermatology 6 33 (19) 366
CTG_NSP 3 22 (7) 2126
CTG_Class 10 22 (11) 2126

C. Results
To evaluate the results of the proposed GP algorithms, they

are compared with standard GP measuring the accuracy and
execution time. Moreover, a comparison with state-of-the-art
classifiers was done to measure how well our algorithms
compared to the ones known in the literature.

Table III shows the average with standard deviation for 30
runs, as well as the best accuracy results of the standard GP,
and the proposed approaches GP-K and GP-D applied to the
binary datasets for the training and testing phases.

We can infer from Table III that GP-K and GP-D show
improvements compared to the accuracy of GP. For the breast
cancer dataset, the GP obtained a testing accuracy of 92.85%,
whereas GP-K and GP-D achieved 95.39% and 97.54%,
respectively. Similarly, for the Diabetes, Heart and Hepatitis
datasets, GP-K showed improvements over the original GP,
whereby GP-D scored best.

TABLE III. ACCURACY FOR BINARY DATASETS

Datasets
Breast Diabetes Heart Hepatitis

Training Testing Training Testing Training Testing Training Testing

GP

Avg. 95.85 92.85 76.02 75.84 86.65 73.04 87.81 82.52

Std. ±1.07 ±1.90 ±0.99 ±1.25 ±1.91 ±4.19 ±1.72 ±2.88

Best 97.86 95.88 77.87 78.63 89.27 81.52 91.18 86.79

GP-K

Avg. 97.76 95.39 77.52 78.34 88.93 76.34 88.20 86.03

Std. ±0.58 ±0.86 ±0.29 ±0.82 ±0.51 ±3.38 ±0.83 ±2.35

Best 98.66 96.91 78.26 80.15 90.40 81.52 90.20 90.57

GP-D

Avg. 98.66 97.54 78.46 80.07 89.94 80.50 94.05 88.55

Std. ±0.16 ±0.48 ±0.62 ±1.00 ±0.43 ±2.56 ±0.88 ±1.10

Best 99.20 98.45 79.84 82.44 90.96 85.87 96.08 90.57

TABLE IV. ACCURACY FOR MULTICLASS DATASETS

Datasets
Lymph Splice Dermatology CTG-NSP CTG-Class

Train. Testing Train. Testing Train. Testing Train. Testing Train. Testing

GP

Avg. 83.71 73.07 71.59 70.98 74.43 72.32 84.38 83.53 47.56 44.74

Std. ±3.13 ±4.45 ±4.10 ±4.19 ±5.13 ±5.29 ±0.99 ±1.83 ±3.40 ±4.81

Best 90.72 82.35 82.30 82.90 87.14 82.40 87.24 87.83 54.10 52.97

GP-K

Avg. 86.84 76.01 75.60 74.21 91.58 79.46 85.03 83.49 65.59 61.03

Std. ±1.10 ±2.94 ±3.48 ±4.59 ±2.11 ±4.05 ±0.72 ±1.19 ±1.41 ±2.79

Best 88.66 80.39 87.45 86.91 95.44 86.40 86.60 86.86 69.43 65.98

GP-D

Avg. 89.97 78.36 91.24 86.22 97.28 86.24 90.12 88.33 73.50 64.09

Std. ±1.43 ±2.15 ±0.78 ±4.35 ±1.05 ±4.64 ±0.65 ±1.05 ±1.40 ±5.06

Best. 91.75 84.31 92.35 90.69 99.17 96.00 91.17 90.32 76.41 73.17

Looking at the training accuracy, for the breast cancer
dataset, GP obtained an accuracy of 95.85%, with the best
value (from the 30 runs) of 97.86%. However, GP-K’s best
value is 98.66%, GP-D’s average is 98.66%, and its best value
is 99.20%. The same trend is found for the other binary
datasets, where GP-K slightly improves GP’s accuracy (3%-
4%), and GP-D outperforms both GP and GP-K by 5%-8%
compared to GP. It can also be seen that both GP-K and GP-D
have a smaller standard deviation compared to GP, which
indicates that they are more robust.

The accuracy results for the multiclass datasets are shown
in Table IV. We can see that GP-D achieves the highest
accuracy for all datasets, and GP-K improves the accuracy of
standard GP. For example, for the Splice dataset, GP’s
accuracy is 70.98%, GP-K’s is 74.21% and GP-D’s is 86.22%.
For the Dermatology dataset, GP’s accuracy is 72.32%, GP-K’s
is 79.46% and GP-D’s is 86.24%. The maximum improvement
that was achieved was for the CTG-class dataset, where GP’s
accuracy is 44.74%, GP-K’s is 61.03% (increased by 16%),
and GP-D’s is 64.09% (increased by 19% compared to GP’s
accuracy).

Looking at the best results accomplished while testing the
datasets, the accuracy values obtained on the Lymph dataset are
82.35%, 80.39%, 84.31% for GP, GP-K, and GP-D,
respectively. However, the difference for the Splice dataset is
larger where 82.90%, 86.91% and 90.69% were measured. The
difference between the best accuracy values of the GP, GP-K
and GP-D for the Dermatology and the CTG-NSP datasets are
smaller (close to what is shown for Lymph), while for the
CTG-Class dataset, GP’s best value is 52.97%, GP-K is
65.98%, GP-D is 73.17%. Moreover, commenting on the
standard deviation of the testing process, the values for the
Lymph dataset are ±4.45, ±2.94, and ±2.15 for GP, GP-D and
GP-K, respectively. For the other datasets, the values for GP,
GP-K and GP-D are in the same range, besides for the binary
datasets, where the values are either smaller or no change is
observed.

For the training phase, the results show the same trend as
for the testing phase comparing GP, GP-K and GP-D.
However, they have higher values compared to the testing
phase. GP achieved average accuracy results of 90.72%,
82.90%, 87.14%, 87.24%, 54.10% on the Lymph, Splice,
Dermatology, CTG-NSP, and CTG-Class datasets,
respectively. However, GP-K obtained 88.66%, 87.45%,

95.44%, 86.60% and 69.43%. GP-D on the other hand
achieved scores of 89.97%, 91.24%, 97.28%, 90.12% and
73.50%. In addition, the best values are much higher, where for
the same order of datasets GP-D obtained 91.75%, 92.35%,
99.17%, 91.17%, and 76.41%.

The running time results are shown in Figure 4 (drawn
using the logarithmic scale to adapt to the large difference
between small and large datasets), where we can see that GP-K
has a slightly longer running time than GP, while GP-D’s
running time is much longer compared to GP. For example, for
the breast cancer dataset GP took 55.70 seconds, GP-K took
60.44 seconds, and GP-D took 367.80 seconds. For the binary
datasets, and the Lymph and Dermatology, the running times
are similar to the breast cancer dataset, whereas for Splice,
CTG-NSP and CTG-Class the difference of GP-D is much
larger. The difference in running time increases when the
number of records gets larger (compare the number of records
of Splice: 3190 with CTG: 2126).

Fig. 4. Running time results for GP, GP-K and GP-D

The reason for this longer running time of GP-D, is that

GP-D uses the discretization method as stated in [16] by
calculating the information gain for each possible split point. If
the dataset has for example 2126 records, then there are 2126
possible split points. In addition, this discretization process is
done for every program (classifier) when its fitness is
calculated, therefore, for a population size of 500, the
discretization portion is executed 500 times per generation.
Although GP-D has a longer running time compared to GP and

GP-K, however, a substantial improvement in accuracy is
achieved, as well as the robustness of the algorithm is
increased. However, if time is of essence, GP-K can be used
since it has a higher accuracy than standard GP with a
comparable running time.

A comparison of the accuracy of GP, GP-K and GP-D with
other well-known classification methods on the same datasets
is shown in Tables V and VI, where the numbers in bold are the
highest values, and the values in bold and italic are the second
highest values. The following classifiers were used and are
described below:
• Bayes Network (BN): learning algorithm using various

search algorithms and quality measures.
• Naive Bayes (NB): class for a classifier using estimator

classes.
• J48: contains a class for generating a pruned or un-pruned

C4.5 decision tree.
• IBK: K-nearest neighbors classifier, which can select an

appropriate value of K based on cross-validation and also
performs distance weighting.

• MP: multilayer perceptron is a classifier that uses back
propagation to classify instances.

• K*: is an instance-based classifier, that is, the class of a test
instance is based upon the class of those training instances
similar to it, as determined by some similarity function.

• JRip: implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIPPER).

• SMO: implements John Platt's sequential minimal
optimization algorithm for training a support vector
classifier.
All these algorithms were applied using the WEKA data

mining software [16] with 10 fold cross-validation.
The binary dataset results are shown in Table V. GP-D

outperforms all other classifiers with an average accuracy of
97.54% for the Breast dataset. However, for the Diabetes
dataset, NB has the highest accuracy of 84.38%, whereas
standard GP has 75.84%, GP-K and GP-D have average
accuracy values of 78.34% and 80.07%, respectively,

outperforming the K* and JRip results. For the Heart dataset,
GP-D achieves the highest average accuracy of 80.50%, and
the best accuracy of 85.87%. GP-K obtains an accuracy of
76.34% and outperforms a number of other classifiers such as
J48, BN, IBK, K*, JRip, and MP. For the Hepatitis dataset, GP-
D also achieves the highest accuracy of 88.55% with the best
value of 90.57%, again outperforming all other classifiers.
Moreover, GP-K also outperforms all other classifiers with an
accuracy of 86.03% (best value of 90.57%). In summary, GP-D
obtains the highest accuracy values for the binary datasets in 3
out of 4 cases, whereby GP-K has the highest average accuracy
value on the Hepatitis dataset, as well as outperforming some
of the other classifiers.

For the multiclass datasets, GP-D shows competitive values
compared to the other classifiers, such as the Lymph dataset,
where GP’s best accuracy is 84.31%. Also, for the
Dermatology and CTG-NSP datasets, GP-D’s best value is
96.00%, which is somewhat close to the best result of 97.81%
for Dermatology, and 90.32% (best 92.94%) for CTG-NSP.
GP-K did not achieve close scores as GP-D did; however, it
definitely improved the standard GP.

A statistical two-tailed Z-Test was applied on the average
results of the 30 runs for GP-K compared to standard GP as
well as for GP-D compared with standard GP using a
significance level of 5%. The Z-Test results show that GP-K
and GP-D achieve significant accuracy improvements on all
datasets except for GP-K when applied on CTG-NSP.

V.CONCLUSION
This paper proposed two approaches in order to improve

the accuracy of GP for the classification task, in particular for
multiclass classification problems. The first proposed approach,
GP-K, makes use of the K-Means clustering algorithm to
transform the GP output from a numeric value to a class label.
The second approach, GP-D, performs the same transformation
process by applying the discretization method on every
classifier.

TABLE V. ACCURACY RESULTS FOR BINARY DATASET COMPARED WITH OTHER CLASSIFIERS

Datasets GP GP-K GP-D J48 BN NB IBK K* JRip SMO MP

Breast 92.85 (95.88) 95.39 (96.91) 97.54 (98.45) 93.48 95.95 94.54 95.24 95.59 95.07 96.65 97.00

Diabetes 75.84 (78.63) 78.34 (80.15) 80.07 (82.44) 81.41 83.27 84.38 80.66 78.43 78.81 84.01 81.41

Heart 73.04 (81.52) 76.34 (81.52) 80.50 (85.87) 74.86 75.52 77.47 68.35 69.92 74.73 76.82 75.52

Hepatitis 82.52 (86.79) 86.03 (90.57) 88.55 (90.57) 81.93 83.22 85.16 81.29 83.87 78.70 83.22 81.29

TABLE VI. ACCURACY RESULTS FOR MULTICLASS DATASET COMPARED WITH OTHER CLASSIFIERS

Datasets GP GP-K GP-D J48 BN NB IBK K* JRip SMO MP

Lymph 73.07 (82.35) 76.01 (80.39) 78.36 (84.31) 78.37 79.72 80.40 77.70 81.75 77.02 81.08 79.72

Splice 70.98 (82.90) 74.21 (86.91) 86.22 (90.69) 93.54 96.14 92.06 68.24 77.86 94.07 85.20 89.78

Dermatology 72.32 (82.40) 79.46 (86.40) 86.24 (96.00) 95.35 97.81 97.81 96.72 97.54 94.26 97.81 96.72

CTG-NSP 83.53 (87.83) 83.49 (86.86) 88.33 (90.32) 92.94 89.46 84.43 92.09 91.90 91.95 88.19 89.51

CTG-Class 44.74 (52.97) 61.03 (65.98) 64.09 (73.17) 82.83 78.50 71.49 80.66 81.93 82.07 76.81 79.82

A comparison of the standard GP with the proposed

approaches was conducted using binary and multiclass datasets
measuring the accuracy and running time. Overall, it was
shown that both, GP-K and GP-D, improve the accuracy of
standard GP, however, this comes at the cost of a longer
running time. GP-K only has a slightly longer running time, but
GP-D takes a very long time to run. In addition, for the binary
datasets, GP-K and GP-D were found to be more robust
compared to standard GP as shown by the standard deviation.
Comparing the proposed approaches with other known
classifiers, it was found that GP-D outperforms 3 of 4
classifiers for the binary datasets, and for the multiclass higher
accuracy values than GP were achieved with some competitive
values compared to the know classifiers.

Given that both GP-K and GP-D have longer running times
than GP, preliminary tests were run keeping the running time
for standard GP the same as GP-D in order to see the effect on
the accuracy. The tests were applied on the Breast dataset with
30 runs. GP was run for 6,000 iterations instead of 1,000
(running time on average was 373.02 seconds close to 367.8
seconds for GP-D). The average accuracy of GP improved
from 92.85% to 94.36%. GP-D has an average accuracy of
97.54%, which is still much better than standard GP. However,
more experiments are necessary to confirm the same trend on
all other datasets.

Future work involves finding a way to keep the high
accuracy and good robustness of GP-D, while at the same time
shorten the running time. This might be done by parallelizing
the proposed approach, or by limiting the discretization process
to be run only on every other classifier in the population.

REFERENCES
[1] L.C. Jain and A. Ghosh, “Evolutionary Computation in Data Mining

(Studies in Fuzziness and Soft Computing)”, Springer-Verlag New
York, Inc., Secaucus, NJ, 2005

[2] P. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining”,
Addison-Wesley, May 2005. (ISBN:0-321-32136-7)

[3] H. Jabeen and A.R. Baig. “Review of Classification Using Genetic
Programming”. International Journal of Engineering Science and
Technology, vol. 2. no. 2. pp.94-103, 2010

[4] A.E. Eiben, and J.E. Smith, “Introduction To Evolutionary Computing”,
Springer, Natural Computing Series, 1st edition, 2003.

[5] S.A. Ludwig and S. Roos, “Prognosis of Breast Cancer using Genetic
Programming”, Proceedings of 14th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems
(KES), Cardiff, Wales, UK, September 2010.

[6] A. Song, T. Loveard, and V. Ciesielski. “Towards genetic programming
for texture classification”. In M. Stumptner, D. Corbett, and M. Brooks,
editors, Proceedings of the 14th International Joint Conference on
Artificial Intelligence AI 2001: Advances in Artificial Intelligence, vol.
2256 of Lecture Notes in Computer Science, pp. 461-472, Springer-
Verlag. Adelaide, Australia, Dec. 10-14, 2001.

[7] W. A. Tackett. “Genetic programming for feature discovery and image
discrimination”, In S. Forrest, editor, Proceedings of the 5th
International Conference on Genetic Algorithms, ICGA-93, pp. 303-309,
Morgan Kaufmann , University of Illinois at Urbana-Champaign, 17-21
July, 1993.

[8] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas. “Discovering
comprehensible classification rules by using genetic programming: a
case study in a medical domain”. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors,

Proceedings of the Genetic and Evolutionary Computation Conference,
vol. 2, pp. 953-958, Morgan Kaufmann, Orlando, Florida, USA, 13-17
July 1999.

[9] C. Estebanez, R. Aler, and J. M. Valls. A method based on genetic
programming for improving the quality of datasets in classification
problems. International Journal of Computer Science and Applications,
vol. 4. no.1. pp.69-80, 2007.

[10] M. Zhang and V. Ciesielski. “Genetic programming for multiple class
object detection”. In N. Foo, editor, 12th Australian Joint Conference on
Artificial Intelligence, vol. 1747 of LNAI, pp. 180-192, Springer-Verlag
Sydney ,Australia, 6-10 Dec. 1999.

[11] M. Zhang, V. Ciesielski, and P. Andreae. “A domain independent
window-approach to multiclass object detection using genetic
programming”, EURASIP Journal on Signal Processing, Special Issue
on Genetic and Evolutionary Computation for Signal Processing and
Image Analysis, vol. 8. pp.841-859, 2003.

[12] W. Smart and M. Zhang. “Probability based genetic programming for
multiclass object classification”. In Proceedings PRICAI 2004, LNAI
vol. 3157, pp. 251-261, Springer-Verlag, 2004.

[13] W.D. Smart, M. Zhang: “Using Genetic Programming for Multiclass
Classification by Simultaneously Solving Component Binary
Classification Problems”. pp. 227-239, EuroGP 2005.

[14] B. Lam and V. Ciesielski. “Discovery of human competitive image
texture feature extraction programs using genetic programming”. In
Kalyanmoy Deb et al., editor, Proceedings of the Conference on Genetic
and Evolutionary Computation (GECCO2004), vol. 2. pp. 1114-1125.
Springer, June 2004.

[15] M. Haralick, K. Shanmugam, and I. Distein, "Texture Features for Image
Classification", IEEE Transactions on Systems, Man, and Cybernetics,
SMC vol. 3. no. 6. pp. 610-621, 1973

[16] M. Zhang and W. Smart, “Multiclass object classification using genetic
programming”. Technical Report CS-TR-04-2, Computer Science,
Victoria University of Wellington, New Zealand, 2004.

[17] R.R.F. Mendes, F.B. Voznika, A.A. Freitas and J.C. Nievola.
“Discovering fuzzy classification rules with genetic programming and
co-evolution”. Principles of Data Mining and Knowledge Discovery
(Proceeding of the 5th European Conference, PKDD 2001) - Lecture
Notes in Artificial Intelligence 2168, pp. 314-325. Springer-Verlag

[18] J. Fitzgerald , C. Ryan, “Drawing boundaries: using individual evolved
class boundaries for binary classification problems”, Proceedings of the
13th annual conference on Genetic and evolutionary computation, July
12-16, 2011, Dublin, Ireland.

[19] A.E. Eiben, and J.E. Smith, “Introduction to Evolutionary Computing”,
Springer, Natural Computing Series, 1st edition, 2003.

[20] R. Poli and W.B. Langdon and N.F. McPhee, “A Field Guide to Genetic
Programming”, with contributions by J.R. Koza, Published via lulu.com
and freely available at http://www.gpeld-guide.org.uk, 2008.

[21] J.B. MacQueen, “Some methods for classification and analysis of
multivariate observations”, Proceeding of the 5th Berkeley Symp.
Probability Statistics, University of California Press, Berkeley, pp. 281–
2971967,.

[22] U.M. Fayyad and K.B. Irani, “Multi-interval discretization of
continuousvalued attributes for classification learning”. In: Thirteenth
International Joint Conference on Articial Intelligence, pp. 1022-1027,
1993.

[23] I.H. Witten; E. Frank, M. A. Hall. “Data Mining: Practical Machine
Learning Tools And Techniques”, 3rd Edition . Morgan Kaufmann, San
Francisco. 2011.

[24] K. Meffert et al.: JGAP - Java Genetic Algorithms and Genetic
Programming Package. Retrieved from http://jgap.sf.net, January 2012.

[25] A. Asuncion and D. Newman, UCI Machine Learning Repository.
(URL). University of California, Irvine, School of Information and
ComputerSciences, 2007.

