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ABSTRACT
Service discovery is a critical task in distributed computing archi-
tectures for finding a particular service instance. Semantic anno-
tations of services help to enrich the service discovery process.
Semantic registries are an important component for the discovery
of services and they allow for semantic interoperability through
ontology-based query formulation and dynamic mapping of termi-
nologies between system domains. This paper evaluates two se-
mantic registries – OWLJessKB implementation and instanceStore
– to determine the suitability of these with regards to the perfor-
mance of loading ontologies, the query response time and the over-
all scalability for use in mathematical services.

Categories and Subject Descriptors: I.2 [Computing Methodolo-
gies]: Artificial Intelligence.

General Terms: Measurements, Performance.

Keywords: semantics, service registries, service discovery, ontolo-
gies, mathematical services.

1. INTRODUCTION
As the Internet provides connectivity and information richness

over great distances at any time, it has created a dynamic, open and
convenient environment for social and business development. It
not only provides the opportunity for new commercial endeavours
utilising the Web, but also opens up new opportunities for the old,
static, locally based businesses to adopt a new business paradigm
and new organisational forms. The Internet has also opened up
modes of interaction and dynamic organisational configurations that
were previously inconceivable within a wide array of human and
business activities. Yet, most of the interactions taking place are
managed by humans. The computer science community envisions
the future of the interaction on the Internet to be automated and
performed by software agents that replace the role of humans. A
service in a Service-Oriented Architecture (SOA) is a contractually
defined behaviour that can be implemented and provided by a com-
ponent (service provider) for use by another component (service
consumer).

Services perform functions, which can be anything from sim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCP’07, June 26, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-717-9/07/0006 ...$5.00.

ple requests to complicated business processes. They allow organ-
isations to expose their core competencies programmatically over
the Internet using standard languages and protocols, and be im-
plemented via a self-describing interface based on open standards
which permits software applications to interact with the service au-
tomatically. Service-oriented environments have special character-
istics that distinguish them from other computing environments as
follows. The environment is dynamic meaning that service providers
might become unavailable and new service providers offering new
services might go online. This means the environment will change
over time as the system operates. The same principle is applied
for service consumers. Service consumers can use a service and
goes offline immediately. The number of service providers is un-
bounded, given that service providers can join the environment at
any time. Services are owned by various stakeholders with differ-
ent aims and objectives. There may be incompetent, unreliable or
even malicious service providers which make the environment in-
secure. There is no central authority that can control all the service
providers and consumers. In addition, it is assumed that service
providers and consumers are self-interested.

The ability to locate services of interest in an open, dynamic,
and distributed environment has become an essential requirement
in many distributed systems. Traditional approaches to service dis-
covery have generally relied on the existence of pre-defined reg-
istry services, which contain descriptions that follow some shared
ontology. Often the description of a service is also very limited
in existing registry services, with little or no support for problem-
specific annotations that describe properties of a service. Semantic
registries attempt to overcome this limitation, and provide: (1) a
rich semantic description based on an ontology; (2) reasoning ca-
pability that can be applied to the semantic description. Semantic
matching generally focuses on the problem of identifying services
on the basis of the capabilities that they provide. Such matching
is provided through a language to express the capabilities of ser-
vices, and the specification of a matching algorithm between ser-
vice advertisements and service requests. The use of standards in
representation techniques and application-specific concepts play an
important part in such service descriptions.

Many applications in computational science make use of numer-
ical algorithms, either developed as part of the project or obtained
from third parties – examples include libraries from the Numeri-
cal Algorithms Group (NAG). The complexity of such algorithms
can vary from simple matrix solving to more complex data analysis
– such as clustering or classification techniques. Furthermore, the
ability to access such algorithms as Web Services allows easy inte-
gration of such capability within an existing application. This also
provides a loose coupling between the application and the numer-
ical algorithm. To enable mathematical objects to be exchanged
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between computer programs in an unambiguous manner (stored in
a database or published on the worldwide web), the OpenMath [1]
standard was introduced. The main part of OpenMath is the idea of
a “Content Dictionary” (CD) – defining a collection of symbols that
may be used in a mathematical formula, and their associated mean-
ing and relationships. Essentially, a CD is a small, specialized on-
tology which may be extended as new symbols are introduced into
mathematics. OpenMath may be used to encode the mathemati-
cal part of a problem to be solved – such as a differential equation
or an integral. Furthermore, OpenMath may be used to describe
properties of a mathematical service, by defining sets of symbols
which are understood by the service, and those used to represent
the result.

Both the MONET (Mathematics on the NET) [2] and GENSS
(Grid-Enabled Numerical and Symbolic Services) [3] projects in-
volve mathematical problem solving through service discovery and
composition. Both involve the use of OpenMath to describe ser-
vice capability and user queries. Mathematical capability descrip-
tions turn out to be both a blessing and a curse: precise service
description is possible thanks to the use of the semantic mark-up
provided by OpenMath [1], but service matching can rapidly turn
into intractable (symbolic) mathematical calculations unless care is
taken.

The aim of this paper is to evaluate two semantic registries –
instanceStore and OWLJessKB – to compare their scalability and
response time for mathematical services. These two registries were
chosen for this evaluation as they both provide description logic
(DL) reasoning which is an important necessity in the area of math-
ematical service matching.

The paper is organised as follows. Section 2 describes the MONET
ontologies used for this performance evaluation of the two semantic
registries. In section 3 the measurement setup is described by in-
troducing the target systems and the methodology used. Section 4
shows the measurement results outling the performance for loading
the ontology, query and scalability. A conclusion of the findings is
given in section 5.

2. MONET ONTOLOGIES

Figure 1: Relationship between MONET Ontologies

Interactions between ontologies1 (the Ontology Web Language
(OWL) is used to describe each ontology) that form part of the
MONET project [4] can be found in Figure 1, and include:

• GAMS (Guide to Available Mathematical Software): pro-
vides an on-line index of available mathematical software,

1http://www.cs.usask.ca/faculty/ludwig/monet.owl

with each software library classified according to the type of
problem it solves. The GAMS ontology is a simple class hi-
erarchy. For example, one-dimensional quadrature is a sub-
class of quadrature, similarly one-dimensional quadrature over
a finite interval is a subclass of one-dimensional quadrature
etc.

• Symbolic: extends GAMS with support for symbolic com-
putation. The symbolic ontology has been extended with a
small taxonomy of the GAMS “O” category (symbolic com-
putation systems).

• OpenMath: an XML-based encoding format for the repre-
sentation of mathematical expressions and objects. Terms
(referred to as “Constants”) of the language have semantics
attached to them and are called symbols (e.g., sin, integral,
matrix, etc.), and groups of related symbols are defined in
content dictionaries.

• Hardware: is used to describe either machine types or indi-
vidual machines. The idea is that a user might request that a
service run on a particular architecture (e.g. Sun Enterprise
10000), a general class of machine (e.g. shared memory), or
a machine with a certain number of processors.

• Software: allows a user to express a preference for a service
that makes use of a particular software library.

• Problems: may be described in terms of inputs and out-
puts, pre-conditions and post-conditions, and make use of
pre-defined XML schema [5]. Within this ontology, each
problem is represented as a class, which can have proper-
ties indicating bibliography entries and their generalizations.
The most interesting property is openmath head whose
range is an object from the OpenMathSymbol class. This
represents a particular symbol which can be used to construct
an instance of the problem in question.

• Algorithms: there are two sub-classes in this ontology: (1)
Algorithm: which describes well-known algorithms for math-
ematical computations, and (2) Complexity: which provides
classes necessary for representing complexity information
associated with an Algorithm.

• Directives: this ontology is a collection of classes which
identify the task that is performed by the service as described
in [5] – example to decide, solve or prove a particular math-
ematical expression.

• Theory: this ontology collects classes that represent avail-
able formalized theories in digital libraries of mathematics.

• Bibliography: represents entries in well-known indices such
as Zentralblatt MATH [6] and MathSciNet [7] and allows
them to be associated with particular algorithms.

• Encoding: this ontology contains a (small) collection of classes
which represent the formats used for encoding mathematical
objects.

• Monet: imports all the ontologies described above.

3. MEASUREMENT SETUP
A set of measurements are described that: (1) evaluate the time

it takes to load the MONET ontologies – briefly described in sec-
tion 2, (2) the associated query response times, (3) the overall scal-
ability of two semantic registries. Scalability analysis involved in-
creasing the number of services hosted in the registry to 100,000.
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3.1 Target Systems

3.1.1 OWLJessKB Implementation
For the GENSS project a mathematical matchmaker 2 was devel-

oped [8]. It is based on OWLJessKB – a memory-based reasoning
tool that may be used over ontologies specified in OWL. To store
service descriptions, a MySQL database was used, residing on a
different machine. OWLJessKB uses the Java Expert System Shell
(JESS) [9] as its underlying reasoner. The OWLJessKB implemen-
tation loads multiple ontologies (the location of each is specified
as a URL) into memory from a remote Web server. Reasoning in
this instance involves executing one or more JESS rules over the
ontology. JESS makes use of the Rete algorithm [10], which is in-
tended to improve the speed of forward-chained rule systems (this
is achieved by limiting the effort required to recompute the conflict
set after a rule is fired). However, it has high memory requirements
due to the loading of the ontology into the Rete object. Once it is
created and set, it is fast to call rules and queries in order to infer the
semantic relations of the ontology loaded. A key limiting factor in
OWLJessKB is the time to load the ontology into primary memory
(RAM), and the total RAM size on the host platform.

3.1.2 instanceStore
A DL knowledge base (KB) is made up of two parts: a termi-

nological part (the terminology or Tbox), and an assertional part
(the Abox). Each part consists of a set of axioms. The Tbox asserts
facts about concepts (sets of objects) and roles (binary relations be-
tween objects), usually in the form of inclusion axioms. The Abox
asserts facts about individuals (single objects), usually in the form
of instantiation axioms [11]. The instanceStore [12] is a Java appli-
cation for performing efficient and scalable DL reasoning over in-
dividuals. The OWL ontology is parsed into a Java OWLOntology
object as opposed to the OWLJessKB Implementation where the
ontology is loaded into memory. The instanceStore system tackles
the problem of requiring vast volumes of individuals by applying
a well-known idea in knowledge representation, namely support-
ing reasoning by means of databases. Assertions over individuals
are stored in a database, together with information inferred using a
DL reasoner over the position in the ontological taxonomy of their
corresponding descriptions. This allows the system to reduce the
amount of reasoning to pure terminological reasoning, while main-
taining soundness and completeness (provided that no relation be-
tween individuals exists). The instanceStore is an implementation
having the ontologies and the database (Hypersonic [13]) stored
locally (i.e. hosted on one machine).

3.2 Methodology
Two semantic registry implementations instanceStore version 1.4.1 3

and OWLJessKB version owljesskb20040223.jar 4 were tested. The
test environment included an Intel Pentium III processor 996MHz,
512MB RAM, and a Windows XP Professional, running Java SDK
1.5.0 and Jess 6.1p8.

3.2.1 Measurements - Loading ontologies
These measurements include memory tests for OWLJessKB as

heap size values were set for the loading of different ontology sizes.
Additional measurements were carried out to evaluate the perfor-
mance of loading the ontologies for the OWLJessKB implementa-
tion and the instanceStore.

2http://agentcities.cs.bath.ac.uk:8080/genss axis/GENSSMatchmaker
3http://sourceforge.net/project/showfiles.php?group id=95954
4http://edge.cs.drexel.edu/assemblies/software/owljesskb/

3.2.2 Measurements - Query response times
The following four different query types were chosen:

(1) Simple assertion: Find all instances of a class x;
(2) Simple assertion: Verify whether instance x exists;
(3) Assertion individual: Confirm if constraint y is satisfied via a
single object;
(4) Assertion aggregate: Confirm if constraint y is satisfied for an
entire group.

3.2.3 Measurements - Scalability
These measurements involved analyzing the performance of query

response times for populated registries, starting with 100 services
stored and going up to 100,000 services. Hence, scalability is eval-
uated as the change in query response behaviour as additional ser-
vices were added to the registry.

4. MEASUREMENT RESULTS

4.1 Loading Ontology Performance
The previously described MONET ontologies (Figure 1) were

chosen for the performance measurements. The MONET ontolo-
gies consist of 2031 classes, 78 slots and 10 facets. When increas-
ing the ontology size, only the classes within the ontology were
considered and expanded. Different ontology sizes were used hav-
ing the number of classes as shown in Table 1.

Table 1: Ontology Sizes
Ontology size No. of classes

1 2031
1.5 3046
2 4062

2.5 5077
3 6092

3.5 7107
4 8122

During preliminary measurement tests it was found that the OWL-
JessKB implementation needs the heap size in the Java Virtual Ma-
chine to be modified to load all different ontology sizes. The first
set of measurements were undertaken to investigate the necessary
heap size required for the different ontologies. Figure 2 shows the
memory heap size for varying ontology sizes. It shows a linear dis-
tribution starting from 109MB for ontology size 1 and ending at
847MB for ontology size 4. The regression line and the derived
equation shown in the figure allow to calculate the memory heap
size needed for a particular ontology size.

The maximum heap size in both target systems was set to 1 GB,
which was found to be a sufficient value for OWLJessKB mea-
surements shown in Figure 2. The following set of measurements
compare the load time of the OWLJessKB implementation and the
instanceStore. Ten test runs were conducted for each ontology size
and target system. Figure 3 shows that the instanceStore loads
the ontologies much faster than the OWLJessKB implementation.
The growth rate in loading times for OWLJessKB is significantly
higher than the instancestore – this indicates that OWLJessKB re-
quires loading of the entire ontology into RAM prior to analysis –
although this is primarily a one-off cost at initialization time.

4.2 Query Performance
The next set of measurements were carried out having four queries:

41



Figure 2: Memory heap size of OWLJessKB

Figure 3: Comparison of load time

• Query 1: Query for services with GAMS classification GamsB
(simple assertion finding all instances of a class x)

• Query 2: Query for services with RootFinding algorithm
(simple assertion asking whether instance x exists; example
query see below)

• Query 3: Query for services running on a single processor
(assertion individual)

• Query 4: Query for services whose platform is not parallel
(assertion aggregate)

Tested were the response times of varying ontology sizes for both
target systems. The maximum heap size in both target system was
set to 1 GB. For each query and each target system ten test runs
were conducted and the average values were taken.

Queries for the OWLJessKB implementation need to be speci-
fied in the JESS notation, which is the following:

(defquery query-sub-class "Find all sub-classes"
(triple
(predicate "http://www.w3.org/2000/01/rdf-schema#

subClassOf")
(subject "http://monet.nag.co.uk/owl#

service_algorithm")
(object ?y)))

The queries for the instanceStore need to be defined in OWL Ab-
stract Syntax (AOWL) [14], which is supposedly far more concise

and human readable when expressing the fragments of an ontol-
ogy. An example of one of the chosen queries in AOWL (which is
query 2 for finding services with RootFinding algorithm) looks as
follows:

restriction(
<http://monet.nag.co.uk/owl#service_implementation>
someValuesFrom( restriction(
<http://monet.nag.co.uk/owl#service_algorithm>
someValuesFrom(<http://monet.nag.co.uk/algorithm#

Root_Finding>))))

A service stored in both the instanceStore and the OWLJessKB im-
plementation is nagopt – fitting the GAMS taxonomy G1a1a [2]
(a variant of unconstrained optimisation) and using OpenMath as
its I/O format. In this case the description also indicates that the
service uses NAG’s implementation of the safeguarded quadratic-
interpolation algorithm.

<service name="nagopt">
<classification>

<gams_class>GamsG1a1a</gams_class>
<problem>constrained_minimisation</problem>
<input_format>OpenMath</input_format>
<output_format>OpenMath</output_format>
<directive>find</directive>

</classification>
<implementation>

<software>NAG_C_Library_7</software>
<platform>PentiumSystem</platform>
<algorithm>Safeguarded_Quadratic-Interpolation
</algorithm>

</implementation>
</service>

In Figure 4 and 5 the response time of the four queries are shown for
the OWLJessKB implementation and the instanceStore. It shows
that the response times of the OWLJessKB are much smaller than
the ones of the instanceStore. In both figures no increase in query
response time for larger ontology sizes can be seen, which means
that the ontology size does not increase the query response time.
The average deviation (specifying measurement accuracy) is 1.8
ms for the OWLJessKB implementation, and 703 ms for the in-
stanceStore. Comparing the instanceStore with the OWLJessKB
implementation regarding the query performance shows that the
OWLJessKB implementation performs on average 910 times faster
than the instanceStore.

Figure 4: OWLJessKB Query Performance (Q1, Q4 times iden-
tical after ontology size 2)
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Figure 5: Query Performance of instanceStore

4.3 Scalability Performance
Measurements were taken populating the OWLJessKB imple-

mentation and the instanceStore with an increasing number of ser-
vices/individuals. Ontology size 1 was taken for this set of mea-
surements, with a maximum heap size of 1 GB. Both semantic ser-
vice registries were populated with 100, 200, 500, 1,000, 2,000,
5,000, 10,000, 20,000, 50,000 and 100,000 services (therefore, Fig-
ure 6 and 7 use a logarithmic scale). In Figure 6 a linear distribution
between query time and number of services can be seen. However,
the time measurements for 100, 200 and 500 services in Query 1,
2 and 4 are scattered around 10 ms and 20 ms, this is due to the
measurement accuracy. It can be seen that Query 3 has the high-
est query times for the scalability measurements because the query
performs an assertion of individuals which is more time consum-
ing than the other queries. In Figure 7, a linear distribution can be
seen between the time it takes to search for a service, subject to the
number of services populated in the registry.

Figure 6: Scalability of populated services - OWLJessKB im-
plementation

Comparing the OWLJessKB implementation with the instance-
Store, regarding the scalability of services stored in the registry, it
can be seen that the OWLJessKB implementation performs 1780
times faster than the instanceStore (average for OWLJessKB im-
plementation was 1,374 ms versus 2,445,637 ms for instanceStore).

Figure 7: Scalability of populated services - instanceStore

5. CONCLUSION
The conducted measurements for the two semantic registries re-

vealed that the scalability of the OWLJessKB implementation is
much higher than the instanceStore when searching for a service.
However, the initialization stage, where the ontologies are loaded
into memory is much slower. The initialisation of the OWLJessKB
implementation uses the Rete algorithm, a drawback of which is
its high memory requirements due to the loading of the ontology
into the Rete object. Once it is created and set, it is fast to call
rules and queries in order to infer the semantic relations specified
in the ontology. One other influential factor, which is however a mi-
nor one, is that the instanceStore is a local implementation, which
means that the ontology, database etc., is stored locally, whereas
the OWLJessKB implementation has its ontologies and database
stored on one or more remote machines. In general, the instance-
Store performs better as a semantic registry when different ontolo-
gies constantly need to be loaded, and the OWLJessKB implemen-
tation performs better when a static set of ontologies is used and a
large number of services are stored in the registry. It would be in-
teresting for further work to find the maximum amount of services
which can be stored in both semantic registries.
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