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Abstract—Workflow composition is a very important issue for 
service-oriented environments. In particular, the composition 
of services based on quality of service (QoS) attributes has 
been gaining attention. The user can describe the request of a 
workflow in terms of QoS attributes, i.e., the user aims for 
specific service performance, e.g. low waiting time, high 
reliability and availability, which are based on different service 
level plans provided by the providers. Past research has 
addressed this workflow composition problem classifying them 
into single-objective and multi-objective optimization solutions. 
Most of the research has employed the single-objective 
approach whereby the different objectives, i.e., QoS attributes, 
are aggregated by a weighted approach. Fewer research 
approaches have used the multi-objective approach, whereby 
several solutions are produced by a set of Pareto solutions that 
have equivalent quality to satisfy specific service level 
agreements. However, no comparison has been done 
investigating both approaches. Therefore, this paper addresses 
this shortcoming by an analysis of both, measuring the success 
ratio as well as the execution time of two Genetic algorithm 
implementations (single-objective and multi-objective) applied 
to the workflow composition problem. 

Genetic algorithm; quality of service; service level 
agreements; workflow composition; pareto-efficiency 

I.  INTRODUCTION 
Even though the web was initially intended for human 

use, however, it can be said, that the web has evolved over 
the years, in particular with the introduction of web services. 
Web services introduced a higher-level functionality to make 
the web dynamic, as well as it enabled configurable software 
applications to improve productivity. Service-based 
applications consist of three components, which are provider, 
consumer and registry. Providers publish their services in 
registries, whereas consumers invoke the services after 
looking them up in the registry [1].  

A service-oriented environment has special 
characteristics that distinguishes it from other computing 
environments: (i) the environment is dynamic - indicating 
that service providers are non-persistent and may become 
unavailable unpredictably. This means the environment will 
change over time as the system operates. The same principle 
is applied for service consumers; (ii) the number of service 
providers is unbounded; (iii) services are owned by various 
stakeholders with different aims and objectives. There may 

be unreliable, insecure or even malicious service providers; 
(iv) there is no central authority that can control all the 
service providers and consumers; (v) service providers and 
consumers are self-interested. In a service rich environment, 
it is necessary to provide support for automated service 
discovery. This is necessary to enable direct interaction 
between software sub-systems (acting as consumers and 
providers). 

Due to the changing nature of service-oriented 
environments, the ability to locate services of interest in such 
an open, dynamic, and distributed environment has become 
an essential requirement. Traditional approaches to service 
discovery and selection have generally relied on the 
existence of pre-defined registry services, which contain 
descriptions that follow some shared data model. Often the 
description of a service is also very limited in such registry 
services, with little or no support for problem-specific 
annotations that describe properties of a service. 

Current service-oriented architecture standards mainly 
rely on functional properties, however, the service registries 
lack mechanisms for managing services’ non-functional 
properties. Such non-functional properties are expressed in 
terms of QoS parameters. QoS for web services allows 
consumers to have confidence in the use of services by 
aiming to experience good service performance, such as 
waiting time, reliability, and availability. It is difficult for 
service consumers to choose services from service registries, 
which contain hundreds of similar web services, given that 
the selection is only based on functional properties (even 
though they differ in the QoS values they deliver). In 
addition, QoS properties are dynamic in nature, and 
therefore, mechanisms are necessary for managing the 
dynamic changes of QoS properties [2].  

A service level agreement (SLA) is a contract between a 
service provider and a service consumer, which captures the 
agreed-upon terms with respect to quality of service (QoS) 
parameters. Considering a service-oriented computing 
environment, capabilities are shared via the implementation 
of web services exposed by a service provider. When a 
service requester requires a specific functionality, which 
cannot be provided by one single service, the composition of 
multiple services needs to be done thereby creating a 
workflow. In addition, the composition of web services 
should not only be functionally compatible, but also should 
be compatible with regards to the defined service levels. 



This paper addresses the comparison of a single-objective 
versus a multi-objective approach to the workflow 
composition problem. The single-objective Genetic 
algorithm (GA) approach uses a weighted method to 
combine the QoS parameters, and the multi-objective GA 
approach uses the idea of pareto-efficient solutions to find an 
appropriate selection of services for the workflows. 

The remainder of this paper is structured as follows: 
Section 2 describes related work and motivates the work 
conducted in this paper. In Section 3, the two approaches 
being evaluated are described in detail. Section 4 presents the 
experiments and discusses the results. The concluding 
section summarizes the findings and gives an account to 
future work. 

II. RELATED WORK 
Related work in the area of composition of workflows 

with particular focus on QoS is multifaceted. A framework 
for QoS-based web service contracting is proposed in [3]. 
The framework consists of an extensible model that defines 
domain-dependent and domain-independent QoS attributes, 
as well as a method to establish the contract phase is 
proposed. A matchmaking algorithm ranks the services that 
are functionally equivalent based on their ability to fulfill the 
requirements. 

A dynamic web service selection and composition 
approach is described in [4]. The approach determines a 
subset of web services to be invoked during runtime in order 
to orchestrate a composite web service successfully. A finite 
state machine model is used to describe the permitted 
invocation sequences of the web service operations, and a 
reliability measure is aggregated for the web service 
operations. 

The workflow service selection problem has received a 
lot of attention whereby many linear-programming 
approaches have been used [5,6]. In [7], complex workflow 
patterns are used to address the service selection problem. 
Linear programming is used to solve the optimization 
problem using an aggregation function for different QoS 
attributes.  

In [8], a quality-driven web service composition 
approach is outlined applying linear programming. A global 
planning approach is employed to optimally select 
component services during the execution of a composite 
service. However, given that it is an exact method is does not 
scale very well for growing search spaces [9]. 

Genetic algorithm approaches have been applied to solve 
the QoS-aware service composition problem. Most of the 
approaches use the aggregated single-objective genetic 
algorithm approach by combining several objectives into a 
single objective value. There are different aggregation 
functions, sometimes also referred to as ranking function, 
used in literature that are linear normalization [10], vector 
normalization [10], and max-min [2] normalization. Linear 
normalization simply divides the values of each different 
QoS parameter by its maximum value in the case of 
maximization. For the case of minimization, the minimum is 
divided by the value of the QoS parameter. For vector 
normalization the values of the QoS parameters are divided 

by its norm. For minimization, one is divided by the QoS 
parameters as well as by its norm. The max-min 
normalization subtracts the minimum value of an attribute 
from each value of the QoS attributes and then divides the 
difference by the range of the attributes in the case of 
maximization; for minimization, the QoS value is subtracted 
by the maximum QoS value divided by the difference of the 
range of the QoS attributes. In this paper, we are using the 
max-min approach.  

In [11], a genetic algorithm approach is used for four 
QoS parameters. Basic GA-parameters are varied such as 
mutation rate, number of generations, fitness function, 
penalty factor, as well as a comparison of the GA-approach 
to other heuristics is done. The study reveals that the GA 
offers a good overall performance, however, not as good 
when compared to the other heuristics such as branch-and-
bound and exhaustive search. This is surprising as GA 
usually reaches very close to the optimal solution. Their 
work however does not address SLA. 

In [9], another GA approach is discussed. They are using 
five QoS attributes and include a factor measuring the ratio 
of the generations, and the maximum generations as well in 
their fitness function. Similar to the approach above, no SLA 
is addressed. Their empirical study compares the GA 
approach with linear programming. They point out that the 
linear programming approach does not handle non-linear 
functions, which the GA method can. Another major point 
they make is that the GA scales well when the number of 
services increases. 

There are also some multi-objective based approaches to 
tackle the workflow composition problem. In [12], a multi-
objective non-dominated sorting GA (NSGA-II) is proposed. 
A set of Pareto optimal solutions is created that satisfy the 
user requirements. Their experimental results show that by 
using NSGA-II, several feasible solutions can be returned to 
the user allowing the user to select the appropriate solution. 

[13] also implements a NSGA-II algorithm for the 
implementation of an optimal composition. Four QoS 
attributes are used of which reputation is tackled with a fuzzy 
logic based method. Again, no SLA is used.  

In [14], a multi-objective approach to address the service 
composition problem with a SLA-aware approach is 
introduced. Three QoS parameters are considered and the 
fitness value of the multi-objective approach is based on 
domination rank and density. The domination rank increases 
the fitness value, whereas the density factor decreases the 
fitness value. The SLA-aware part of the approach on the 
concept of different service levels, i.e. Platinum, Gold and 
Silver is outlined. The simulation results present the different 
service levels outlining the maximum, minimum, average 
and lower bound values for all QoS parameters. However, 
there is no mention regarding execution time or scalability, 
and therefore, the suitability of the approach is not discussed.  

No comparison between the single-objective and multi-
objective workflow composition has been conducted. Also, 
not many of the provided research investigations have 
outlined the performance in terms of execution time, and 
addressed the scalability of the workflow composition 
problem. In addition, only one related evolutionary research 



approach used SLA. Therefore, a thorough analysis of a 
single-objective and multi-objective GA approach is 
conducted, as well as SLA is considered in this paper. 

III. GA APPROACHES 

A. Workflow Example 
In order to show how abstract workflows are provided 

with the help of the workflow DB and the user’s input 
request, the following sample workflow as shown in Figure 1 
is provided, showing the abstract as well as the concrete 
services.  

 
Figure 1.  Example of an image processing workflow. 

The figure displays an example of the processing of an 
image [19]. The process is as follows: the image is first read 
in (AS1), and converted to Grey scale (AS2), then it is 
thresholded (AS3), i.e., image pixels less than a certain 
amount is set to black and everything higher is set to white. 
The difference is then taken between this image and an 
image where the white lines are thinned out, i.e., detail is 
taken away (AS4). The resulting image is produced, by 
taking the difference between the detail of the white parts, 
which were pruned by the ShrinkWhite unit resulting in an 
outline of an image, and saved as a new compound 
component (AS5).  

The concrete services (CSxy) for each abstract service 
(ASx) provide the same functional, but different non-
functional properties; i.e., QoS attributes. Selecting the 
services of a workflow based on QoS parameters requires an 
algorithm that can optimize the assignment of concrete 
services for a workflow for a given abstract workflow 
description. Furthermore, we are considering that multiple 
requests are being served at the same time. Given that 
performance in a service-oriented environment is of essence, 
we argue that we do not need to have optimal assignments, 
but close to optimal assignments should be found within a 
reasonable time. 

B. Quality of Service Metric and Objective Function 
There are many measures available for different QoS 

criteria, however, we consider the following four generic 
quality criteria for single services, also referred to as QoS 
parameters: reliability, availability, execution duration, and 

execution price. The first two QoS parameters are to be 
maximized, whereas the last two are to be minimized. 

The reliability 

€ 

q1 (s)  of a service is the fraction of 
requests correctly responded to within a maximum expected 
time frame. Reliability is a measure related to the hardware 
and software configuration of Web services and their 
network connections. Reliability values are computed from 
past data measuring the successful executions in relation to 
the overall number of executions.  

The availability 

€ 

q2 (s) of a service is the fraction of time 
that the service is accessible. It measures the total amount of 
time in which the service is available during the last defined 
period of time (threshold is set by administrator).  

The execution duration 

€ 

q3 (s) denotes the expected delay 
in seconds from the moment a request is made until the 
moment when the results are returned. Services advertise 
their processing time or provide methods to inquire about it. 

The execution price 

€ 

q4 (s)  represents the amount of 
money a user has to pay for executing a service. Web service 
providers usually advertise the execution price directly or 
they provide methods to inquire about it. 

The QoS vector 

€ 

q(s)  of a service 

€ 

s is defined as follows: 

€ 

q(s) = (q1 (s),q2 (s),q3 (s),q4 (s)) . 
However, in this study we are concerned not only with 

single services, but with complete workflows, and therefore 
the QoS parameters of the single services have to be 
aggregated. We assume in our study that we are only using 
sequential workflows. Therefore, the availability 

€ 

Q1 (wf )  and 
reliability 

€ 

Q2 (wf )  of a workflow 

€ 

wf  is calculated as the 
product of each single service’s availability and reliability 
respectively. The execution duration 

€ 

Q3 (wf ) , and execution 
price 

€ 

Q4 (wf )  of a workflow 

€ 

wf  is the average of each single 
service’s execution duration and service cost respectively.  

Therefore, the QoS vector 

€ 

Q(wf )  of a workflow 

€ 

wf  is 
denoted as: 

€ 

Q(wf ) = (Q1 (wf ),Q2 (wf ),Q3 (wf ),Q4 (wf )). 
Our goal is to maximize the selection of services within a 

workflow based on the QoS parameters. In addition, we are 
maximizing 

€ 

N  workflows at the same time.  
The single objective function for reliability and 

availability is: 

€ 

f obj =
Qi ,j −Q j

min

Q j
max −Q j

min  

and the single objective function for execution duration 
and execution price is: 

€ 

f obj =
Q j
max −Qi ,j

Q j
max −Q j

min  

whereby we define 

€ 

Qij  to be the value for workflow 

€ 

i  
and the 

€ 

j th QoS parameter, and we define 

€ 

Q j
max  to be the 

maximum score any of the considered services achieves for 
the 

€ 

j th QoS parameter as defined above, i.e., 

€ 

Q j
max =max s∈S q j (s)  where 

€ 

S  is the set of all possible 
services. And similarly, 

€ 

Q j
min  to be the minimum score any 

of the considered services achieves for the 

€ 

j th QoS 
parameter (

€ 

Q j
min =min s∈S q j (s)). 



Given that the different service levels need to be taken 
into account we have to define the following constraints: 

€ 

Qij ≥Q j (p) for j = 1,2  
and 

€ 

Qij ≤Q j (p) for j = 3,4  
whereby 

€ 

Q j (p)  is the 

€ 

j th QoS value given the chosen 
service level plan 

€ 

p . 
The overall objective function for the optimization of the 

workflows is the following: 

€ 

f obj =max w j
Qi ,j −Q j

min

Q j
max −Q j

min
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Note that the individual QoS parameters are treated 
differently depending on whether its value is minimized or 
maximized. Normalized scores are used and each QoS 
parameter can be weighted differently by parameter 

€ 

w j . 

C. Service Level Plan 
We define the SLA for each user category’s reliability, 

availability, execution duration, and execution cost 
accordingly.  

TABLE I.  NORMALIZED SERVICE LEVELS FOR DIFFERENT SERVICE 
PLANS 

 Reliability Availability Time Cost 
Platinum 0.6 0.5 0.7 0.5 
Silver 0.7 0.7 0.5 0.65 
Gold 0.8 0.9 0.3 0.8 

 
Table 1 outlines the different service level plans (SLP) 

with normalized service level agreement values that are 
available to the users. Three different user categories are 
defined as Platinum, Silver and Gold. 

D. Single-objective GA Approach (GA) 
A GA is a heuristic used to find approximate solutions to 

difficult-to-solve problems by applying the principles of 
evolutionary biology to computer science problems. GAs use 
biologically-derived techniques such as inheritance, 
mutation, natural selection, and recombination (or crossover) 
[15]. GAs are typically implemented as a computer 
simulation in which a population of solutions (or individuals) 
to an optimization problem evolve towards better solutions. 
This is possible as each solution is a chromosome, which can 
undergo genetic modification. 

In this study, each chromosome has the following 
structure: 

 
SLP CS1 CS2 CS3 SLP CS1 CS2 CS3 CS4 … 

2 13 26 31 1 18 23 37 42 … 
 
A gene within the chromosome consists of integers, 

whereby the first number characterizes the SLP, and the 
following integers are the concrete services of the workflow. 
The first digit from the left of a concrete service (CS) 
characterizes the abstract service number; the second 
describes the specific concrete service implementation. The 
number of services the abstract workflow consists of 

determines the length of the gene. For example, the first 
workflow consists of 3 services, the second of 4 services, etc. 
The service level guides the fitness calculations as described 
in the previous subsection, i.e., the fitness value is 
determined depending on the service level. For this study, we 
consider workflows up to 5 services, having 10 concrete 
services available for each of the 10 abstract services. 

The process of the optimization starts with a population 
of completely randomly generated individuals. In each 
generation, the fitness of each population member is 
evaluated. The fittest individuals, in terms of best fitness 
value, e.g. from an archive population, where the best 
solutions found so far are saved. As even the quality of 
solutions can range widely, particularly in earlier 
generations, members compete in tournaments, with winners 
forming a mating pool. Two parents are randomly selected 
from the pool, and undergo cycle crossover [16] and 
mutation to form two children. This is repeated until the new 
population of size N is filled. The new population is 
evaluated; its members compete for inclusion in the archive, 
and the process repeats until either a set number of 
generations are completed, stagnation, or termination criteria 
are met.  

Configurable parameters in the implementation include 
number of iterations as termination criterion, tournament size 
(the size of the tournament used to select parents), crossover 
probability, effected positions (how many positions are set to 
crossover in the crossover mask), and mutation probability. 

E. Multi-objective GA Approach (NSGA-II) 
For the multi-objective approach NSGA-II was 

implemented. NSGA-II is a fast elitist non-dominated sorting 
genetic algorithm [17]. In NSGA-II [18] the most fit 
individuals from the union of archive and child populations 
are determined by a ranking mechanism (or crowded 
comparison operator) composed of two parts. The first part 
‘peels’ away layers of non-dominated fronts, and ranks 
solutions in earlier fronts as better. The second part computes 
a dispersion measure, the crowding distance, to determine 
how close a solution's nearest neighbors are, with larger 
distances being better. It is employed here to search for 
better workflow compositions, which guide the evolutionary 
process toward solutions with better objective values.  

Non-dominated solutions are desirable in the sense that it 
is impossible to find another solution in the set, which 
improves the value on any objective (i.e., QoS parameters) 
without simultaneously degrading the quality of the other 
objective, and is formally defined as follows:  

Let 

€ 

o1 , 

€ 

o2 ,…, 

€ 

on  be the objective functions that are to be 
maximized. Let 

€ 

S  be the set of obtained solutions. 

€ 

s ∈ S  is 
dominated by 

€ 

t ∈ S  (denoted   

€ 

t  s) if 

€ 

∃j , 

€ 

j ∈ {1,...,n} , such 
that 

€ 

o j (t) > o j (s)  and 

€ 

∀i , 

€ 

1≤ i ≤ n , 

€ 

o j (t) ≥ oi (s) . A non-
dominated solution is therefore any solution 

€ 

s ∈ S , which is 
not dominated by any other 

€ 

t ∈ S . 
The implemented NSGA-II algorithm differs from the 

previous GA as follows. After random initialization and the 
crossover/mutation phase, all individuals are ordered into 
non-dominated sets. First, a set of individuals that are not 



dominated is computed. Then, the non-dominated 
individuals are removed from the set of individuals for which 
non-domination is computed. After this, the reduced set is 
used to find the next non-dominated solutions, i.e., those 
solutions only dominated by the first set. The non-dominated 
sets get higher non-dominated set values. The search for non-
dominated sets is called iteratively until enough individuals 
make up a generation and are sorted into non-dominated sets. 
Sets themselves are sorted using the crowding distance. 
Crowding distance is only computed within non-dominated 
sets. To compute the crowding distance, the following steps 
are followed for each objective: 

• sort the individuals by the current objective.  
• add the distance to the previous and next individual 

in the current objective to the crowding distance.  
The sorting is implemented as a non-recursive quicksort 

algorithm. The last non-dominated set is truncated if the 
number of individuals in all calculated non-dominated sets is 
higher than the specified number of individuals. This sorting 
of non-dominated sets and truncation of the last set identifies 
NSGA-II's elitism. Tournament selection is used as the 
selection strategy. The individual with the best (smallest) 
non-dominated set wins the tournament. If two or more 
individuals share the lowest non-dominated value, the 
individual with the highest crowding distance from those 
individuals wins.  

Configurable parameters in the implementation include 
maximum number of iterations, tournament size, crossover 
probability, elected positions, mutation probability, and 
lowest flag that defines whether the maximum crowding 
distance is also added if there is no following individual, i.e., 
end of the sorted list is reached for one objective. 

IV. EXPERIMENTS 

A. Experimental Setup 
Both approaches were implemented using Java. 

Experiments were designed to measure the success ratio and 
the execution time. The success ratio measures the 
percentage of successful workflow compositions in terms of 
fulfilled SLA. The algorithms were further analyzed with 
regard to the number of iterations, and the number of 
individuals used. All measurement points shown are average 
results taken from 30 runs to guarantee an equal distribution 
and statistical correctness. The data sets for the workflows 
and services were randomly generated, whereby workflows 
were created consisting of up to 5 abstract services, out of a 
pool of 10 concrete services for each of the 10 available 
abstract services (equals 100 concrete services). Please note 
that we assume that a particular concrete service can be used 
in several workflows. There is no maximum number given 
regarding how often one particular service can be called 
simultaneously.  

The following parameter settings have been chosen due 
to their superior performance on the workflow composition 
problem. The GA/NSGA-II settings were: population size = 
100, mutation probability = 0.05, crossover probability = 0.7, 
size of the tournament selection = 4, and number of positions 
that are selected for crossover = 0.1. The experiments were 

conducted on an Intel Core 2 Duo (2.4GHz, 3MB L2 cache) 
running the Java Version 1.6.0 JDK Runtime Environment.  

B. Experiments and Results 
The evaluation was conducted as follows. First, the 

success ratio and execution time is measured for increasing 
iterations, and then increasing population sizes are evaluated. 
Afterwards, the different weight functions are tested. And 
finally, experiments consisting of measuring increasing 
numbers of workflows are performed. 

Figures 2 and 3 show the experiments with increasing 
iterations. The population size was set to 10, and the number 
of workflows was set to 300.  

 

 
Figure 2.  Success ratio with increasing iterations. 

Figure 2 shows that the success ratio for both algorithms 
increases linearly. NSGA-II has the higher success ratio 
(roughly 1 %) than GA. However, as the execution time in 
Figure 3 reveals, NSGA-II has a steeper increase than GA 
showing that NSGA-II takes much longer than GA, in 
particular for larger numbers of iterations. For example, 
NSGA-II takes 107 milliseconds to run, whereas GA takes 
64 milliseconds for 300 iterations. 

 

 
Figure 3.  Execution time with increasing iterations. 

Figures 4 and 5 show the success ratio and execution 
time for increasing population sizes. The number of 
iterations was set to 100, and the number of workflows was 
set to 300. 



In Figure 4, we can observe that the curves of both 
algorithms, GA and NSGA-II, are crossing each other at 
around a population size of 30. First, NSGA-II has the higher 
success ratio, however after the population size of 30 is 
reached, GA continues to have higher scores. 

Figure 5 shows the execution time confirming once 
again, that NSGA-II’s performance is less than that of the 
GA. 

Figures 6 and 7 investigated different fitness functions. 
Table 2 shows the different weight distributions used. The 
number of iterations was 100, the number of workflows was 
300, and the population size was 100. 

 

 
Figure 4.  Success ratio for increasing population sizes. 

 
Figure 5.  Execution times for increasing population sizes. 

TABLE II.  WEIGHT DISTRIBUTION FOR DIFFERENT FITNESS 
FUNCTIONS 

 w1 w2 w3 w4 
F1 0.25 0.25 0.25 0.25 
F2 0.4 0.2 0.2 0.2 
F3 0.2 0.4 0.2 0.2 
F4 0.2 0.2 0.4 0.2 
F5 0.2 0.2 0.2 0.4 

 
Figure 6 shows the success ratio of the different weights 

used for the fitness functions. It can be seen that the GA 
algorithm is not affected by this, showing stable success 
ratios (within the variance of ±0.48% of the measurements) 

for all different fitness functions. Similar behavior is 
observed for the NSGA-II algorithm. No significant 
difference can be seen of the success ratios for the different 
fitness functions. 

 

 
Figure 6.  Success ratio for different fitness functions. 

Figure 7 shows the execution times for varying fitness 
functions. It shows similar execution times for all fitness 
functions within the variance of the measurements. 

 

 
Figure 7.  Execution time for different fitness functions. 

 
Figure 8.  Success ratio for increasing workflows. 

Figures 8 and 9 show the success ratio and execution 
time for increasing workflows. The number of iterations was 
set to 2000, and the population size was 100. 



Figure 8 reveals that the success ratio of GA is higher 
than NSGA-II. GA almost achieving 100% for 500 
workflows (99.7%), closely followed by NSGA-II scoring 
98.1%. However, when the number of the workflows 
increases, the wider the gap between GA and NSGA-II 
becomes. At iteration 600, NSGA-II scores 95.4% and GA 
only 88.6%. 

Figure 9 shows the execution time for increasing 
workflows with a linear trend of both algorithms. Once 
again, NSGA-II is revealing its higher computational cost. 

 

 
Figure 9.  Execution time for increasing workflows. 

V. CONCLUSION 
Workflow composition is a very important issue for 

service-oriented environments. Past research had addressed 
this workflow composition problem with single-objective 
and multi-objective optimization approaches. Most of the 
research had employed the single-objective approach 
whereby the different objectives, i.e., QoS attributes, are 
aggregated by a weighted approach. Fewer research 
approaches used the multi-objective approach, whereby 
several solutions are produced by a set of Pareto solutions, 
which have equivalent quality to satisfy the service level 
agreements.  

However, no comparison had been done investigating 
both approaches. Therefore, this paper addressed this by 
measuring the success ratio as well as the execution time of 
two implemented GA approaches. The first was a generic 
GA approach for the single-objective version, whereas the 
well-known NSGA-II algorithm was implemented as the 
multi-objective variant. 

As can be seen by the experimental results, the NSGA-II 
algorithm has only slightly higher success rates for small 
populations sizes and a small number of iterations. However, 
overall the generic GA algorithm performs much better both 
in terms of success rate as well as execution time when using 
standard GA settings (population size of 100, number of 
iterations of 100), which also leads to higher success ratios.  

Even in the case of different fitness functions with 
different weight distributions for each objective, i.e., QoS 
attribute, no significant difference can be seen between both 
approaches. Usually, multi-objective algorithms are 
employed if the weights of the different objectives cannot be 

estimated, however, in our case, where we have four 
conflicting QoS parameters, the user can easily assign 
different weight values. Nevertheless, the different fitness 
functions did not have any effect on the success ratio or 
execution times of both approaches. 

A recommendation is to use a single-objective algorithm 
with an aggregated weighted approach, and not a multi-
objective approach in particular considering the processing 
time of the optimization process in service-oriented 
environments. Also, the success ratio was much higher for 
the single-objective approach. 

Future work will expand this line of research by taking 
the following constraints imposed by the real world setting 
into consideration. First of all, service invocations of a 
particular service are limited, and therefore, needs to be 
taken into account. Furthermore, failure of the service 
execution and re-composition needs to be addressed, and a 
solution needs to be implemented and tested. 
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