
Single-Objective versus Multi-Objective Genetic Algorithms for Workflow
Composition based on Service Level Agreements

Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

simone.ludwig@ndsu.edu

Abstract—Workflow composition is a very important issue for
service-oriented environments. In particular, the composition
of services based on quality of service (QoS) attributes has
been gaining attention. The user can describe the request of a
workflow in terms of QoS attributes, i.e., the user aims for
specific service performance, e.g. low waiting time, high
reliability and availability, which are based on different service
level plans provided by the providers. Past research has
addressed this workflow composition problem classifying them
into single-objective and multi-objective optimization solutions.
Most of the research has employed the single-objective
approach whereby the different objectives, i.e., QoS attributes,
are aggregated by a weighted approach. Fewer research
approaches have used the multi-objective approach, whereby
several solutions are produced by a set of Pareto solutions that
have equivalent quality to satisfy specific service level
agreements. However, no comparison has been done
investigating both approaches. Therefore, this paper addresses
this shortcoming by an analysis of both, measuring the success
ratio as well as the execution time of two Genetic algorithm
implementations (single-objective and multi-objective) applied
to the workflow composition problem.

Genetic algorithm; quality of service; service level
agreements; workflow composition; pareto-efficiency

I. INTRODUCTION
Even though the web was initially intended for human

use, however, it can be said, that the web has evolved over
the years, in particular with the introduction of web services.
Web services introduced a higher-level functionality to make
the web dynamic, as well as it enabled configurable software
applications to improve productivity. Service-based
applications consist of three components, which are provider,
consumer and registry. Providers publish their services in
registries, whereas consumers invoke the services after
looking them up in the registry [1].

A service-oriented environment has special
characteristics that distinguishes it from other computing
environments: (i) the environment is dynamic - indicating
that service providers are non-persistent and may become
unavailable unpredictably. This means the environment will
change over time as the system operates. The same principle
is applied for service consumers; (ii) the number of service
providers is unbounded; (iii) services are owned by various
stakeholders with different aims and objectives. There may

be unreliable, insecure or even malicious service providers;
(iv) there is no central authority that can control all the
service providers and consumers; (v) service providers and
consumers are self-interested. In a service rich environment,
it is necessary to provide support for automated service
discovery. This is necessary to enable direct interaction
between software sub-systems (acting as consumers and
providers).

Due to the changing nature of service-oriented
environments, the ability to locate services of interest in such
an open, dynamic, and distributed environment has become
an essential requirement. Traditional approaches to service
discovery and selection have generally relied on the
existence of pre-defined registry services, which contain
descriptions that follow some shared data model. Often the
description of a service is also very limited in such registry
services, with little or no support for problem-specific
annotations that describe properties of a service.

Current service-oriented architecture standards mainly
rely on functional properties, however, the service registries
lack mechanisms for managing services’ non-functional
properties. Such non-functional properties are expressed in
terms of QoS parameters. QoS for web services allows
consumers to have confidence in the use of services by
aiming to experience good service performance, such as
waiting time, reliability, and availability. It is difficult for
service consumers to choose services from service registries,
which contain hundreds of similar web services, given that
the selection is only based on functional properties (even
though they differ in the QoS values they deliver). In
addition, QoS properties are dynamic in nature, and
therefore, mechanisms are necessary for managing the
dynamic changes of QoS properties [2].

A service level agreement (SLA) is a contract between a
service provider and a service consumer, which captures the
agreed-upon terms with respect to quality of service (QoS)
parameters. Considering a service-oriented computing
environment, capabilities are shared via the implementation
of web services exposed by a service provider. When a
service requester requires a specific functionality, which
cannot be provided by one single service, the composition of
multiple services needs to be done thereby creating a
workflow. In addition, the composition of web services
should not only be functionally compatible, but also should
be compatible with regards to the defined service levels.

This paper addresses the comparison of a single-objective
versus a multi-objective approach to the workflow
composition problem. The single-objective Genetic
algorithm (GA) approach uses a weighted method to
combine the QoS parameters, and the multi-objective GA
approach uses the idea of pareto-efficient solutions to find an
appropriate selection of services for the workflows.

The remainder of this paper is structured as follows:
Section 2 describes related work and motivates the work
conducted in this paper. In Section 3, the two approaches
being evaluated are described in detail. Section 4 presents the
experiments and discusses the results. The concluding
section summarizes the findings and gives an account to
future work.

II. RELATED WORK
Related work in the area of composition of workflows

with particular focus on QoS is multifaceted. A framework
for QoS-based web service contracting is proposed in [3].
The framework consists of an extensible model that defines
domain-dependent and domain-independent QoS attributes,
as well as a method to establish the contract phase is
proposed. A matchmaking algorithm ranks the services that
are functionally equivalent based on their ability to fulfill the
requirements.

A dynamic web service selection and composition
approach is described in [4]. The approach determines a
subset of web services to be invoked during runtime in order
to orchestrate a composite web service successfully. A finite
state machine model is used to describe the permitted
invocation sequences of the web service operations, and a
reliability measure is aggregated for the web service
operations.

The workflow service selection problem has received a
lot of attention whereby many linear-programming
approaches have been used [5,6]. In [7], complex workflow
patterns are used to address the service selection problem.
Linear programming is used to solve the optimization
problem using an aggregation function for different QoS
attributes.

In [8], a quality-driven web service composition
approach is outlined applying linear programming. A global
planning approach is employed to optimally select
component services during the execution of a composite
service. However, given that it is an exact method is does not
scale very well for growing search spaces [9].

Genetic algorithm approaches have been applied to solve
the QoS-aware service composition problem. Most of the
approaches use the aggregated single-objective genetic
algorithm approach by combining several objectives into a
single objective value. There are different aggregation
functions, sometimes also referred to as ranking function,
used in literature that are linear normalization [10], vector
normalization [10], and max-min [2] normalization. Linear
normalization simply divides the values of each different
QoS parameter by its maximum value in the case of
maximization. For the case of minimization, the minimum is
divided by the value of the QoS parameter. For vector
normalization the values of the QoS parameters are divided

by its norm. For minimization, one is divided by the QoS
parameters as well as by its norm. The max-min
normalization subtracts the minimum value of an attribute
from each value of the QoS attributes and then divides the
difference by the range of the attributes in the case of
maximization; for minimization, the QoS value is subtracted
by the maximum QoS value divided by the difference of the
range of the QoS attributes. In this paper, we are using the
max-min approach.

In [11], a genetic algorithm approach is used for four
QoS parameters. Basic GA-parameters are varied such as
mutation rate, number of generations, fitness function,
penalty factor, as well as a comparison of the GA-approach
to other heuristics is done. The study reveals that the GA
offers a good overall performance, however, not as good
when compared to the other heuristics such as branch-and-
bound and exhaustive search. This is surprising as GA
usually reaches very close to the optimal solution. Their
work however does not address SLA.

In [9], another GA approach is discussed. They are using
five QoS attributes and include a factor measuring the ratio
of the generations, and the maximum generations as well in
their fitness function. Similar to the approach above, no SLA
is addressed. Their empirical study compares the GA
approach with linear programming. They point out that the
linear programming approach does not handle non-linear
functions, which the GA method can. Another major point
they make is that the GA scales well when the number of
services increases.

There are also some multi-objective based approaches to
tackle the workflow composition problem. In [12], a multi-
objective non-dominated sorting GA (NSGA-II) is proposed.
A set of Pareto optimal solutions is created that satisfy the
user requirements. Their experimental results show that by
using NSGA-II, several feasible solutions can be returned to
the user allowing the user to select the appropriate solution.

[13] also implements a NSGA-II algorithm for the
implementation of an optimal composition. Four QoS
attributes are used of which reputation is tackled with a fuzzy
logic based method. Again, no SLA is used.

In [14], a multi-objective approach to address the service
composition problem with a SLA-aware approach is
introduced. Three QoS parameters are considered and the
fitness value of the multi-objective approach is based on
domination rank and density. The domination rank increases
the fitness value, whereas the density factor decreases the
fitness value. The SLA-aware part of the approach on the
concept of different service levels, i.e. Platinum, Gold and
Silver is outlined. The simulation results present the different
service levels outlining the maximum, minimum, average
and lower bound values for all QoS parameters. However,
there is no mention regarding execution time or scalability,
and therefore, the suitability of the approach is not discussed.

No comparison between the single-objective and multi-
objective workflow composition has been conducted. Also,
not many of the provided research investigations have
outlined the performance in terms of execution time, and
addressed the scalability of the workflow composition
problem. In addition, only one related evolutionary research

approach used SLA. Therefore, a thorough analysis of a
single-objective and multi-objective GA approach is
conducted, as well as SLA is considered in this paper.

III. GA APPROACHES

A. Workflow Example
In order to show how abstract workflows are provided

with the help of the workflow DB and the user’s input
request, the following sample workflow as shown in Figure 1
is provided, showing the abstract as well as the concrete
services.

Figure 1. Example of an image processing workflow.

The figure displays an example of the processing of an
image [19]. The process is as follows: the image is first read
in (AS1), and converted to Grey scale (AS2), then it is
thresholded (AS3), i.e., image pixels less than a certain
amount is set to black and everything higher is set to white.
The difference is then taken between this image and an
image where the white lines are thinned out, i.e., detail is
taken away (AS4). The resulting image is produced, by
taking the difference between the detail of the white parts,
which were pruned by the ShrinkWhite unit resulting in an
outline of an image, and saved as a new compound
component (AS5).

The concrete services (CSxy) for each abstract service
(ASx) provide the same functional, but different non-
functional properties; i.e., QoS attributes. Selecting the
services of a workflow based on QoS parameters requires an
algorithm that can optimize the assignment of concrete
services for a workflow for a given abstract workflow
description. Furthermore, we are considering that multiple
requests are being served at the same time. Given that
performance in a service-oriented environment is of essence,
we argue that we do not need to have optimal assignments,
but close to optimal assignments should be found within a
reasonable time.

B. Quality of Service Metric and Objective Function
There are many measures available for different QoS

criteria, however, we consider the following four generic
quality criteria for single services, also referred to as QoS
parameters: reliability, availability, execution duration, and

execution price. The first two QoS parameters are to be
maximized, whereas the last two are to be minimized.

The reliability

€

q1 (s) of a service is the fraction of
requests correctly responded to within a maximum expected
time frame. Reliability is a measure related to the hardware
and software configuration of Web services and their
network connections. Reliability values are computed from
past data measuring the successful executions in relation to
the overall number of executions.

The availability

€

q2 (s) of a service is the fraction of time
that the service is accessible. It measures the total amount of
time in which the service is available during the last defined
period of time (threshold is set by administrator).

The execution duration

€

q3 (s) denotes the expected delay
in seconds from the moment a request is made until the
moment when the results are returned. Services advertise
their processing time or provide methods to inquire about it.

The execution price

€

q4 (s) represents the amount of
money a user has to pay for executing a service. Web service
providers usually advertise the execution price directly or
they provide methods to inquire about it.

The QoS vector

€

q(s) of a service

€

s is defined as follows:

€

q(s) = (q1 (s),q2 (s),q3 (s),q4 (s)) .
However, in this study we are concerned not only with

single services, but with complete workflows, and therefore
the QoS parameters of the single services have to be
aggregated. We assume in our study that we are only using
sequential workflows. Therefore, the availability

€

Q1 (wf) and
reliability

€

Q2 (wf) of a workflow

€

wf is calculated as the
product of each single service’s availability and reliability
respectively. The execution duration

€

Q3 (wf) , and execution
price

€

Q4 (wf) of a workflow

€

wf is the average of each single
service’s execution duration and service cost respectively.

Therefore, the QoS vector

€

Q(wf) of a workflow

€

wf is
denoted as:

€

Q(wf) = (Q1 (wf),Q2 (wf),Q3 (wf),Q4 (wf)).
Our goal is to maximize the selection of services within a

workflow based on the QoS parameters. In addition, we are
maximizing

€

N workflows at the same time.
The single objective function for reliability and

availability is:

€

f obj =
Qi ,j −Q j

min

Q j
max −Q j

min

and the single objective function for execution duration
and execution price is:

€

f obj =
Q j
max −Qi ,j

Q j
max −Q j

min

whereby we define

€

Qij to be the value for workflow

€

i
and the

€

j th QoS parameter, and we define

€

Q j
max to be the

maximum score any of the considered services achieves for
the

€

j th QoS parameter as defined above, i.e.,

€

Q j
max =max s∈S q j (s) where

€

S is the set of all possible
services. And similarly,

€

Q j
min to be the minimum score any

of the considered services achieves for the

€

j th QoS
parameter (

€

Q j
min =min s∈S q j (s)).

Given that the different service levels need to be taken
into account we have to define the following constraints:

€

Qij ≥Q j (p) for j = 1,2
and

€

Qij ≤Q j (p) for j = 3,4
whereby

€

Q j (p) is the

€

j th QoS value given the chosen
service level plan

€

p .
The overall objective function for the optimization of the

workflows is the following:

€

f obj =max w j
Qi ,j −Q j

min

Q j
max −Q j

min

j=1

2

∑ + w j
Q j
max −Qi ,j

Q j
max −Q j

min

j=3

4

∑

i=1

N

∑

Note that the individual QoS parameters are treated
differently depending on whether its value is minimized or
maximized. Normalized scores are used and each QoS
parameter can be weighted differently by parameter

€

w j .

C. Service Level Plan
We define the SLA for each user category’s reliability,

availability, execution duration, and execution cost
accordingly.

TABLE I. NORMALIZED SERVICE LEVELS FOR DIFFERENT SERVICE
PLANS

 Reliability Availability Time Cost
Platinum 0.6 0.5 0.7 0.5
Silver 0.7 0.7 0.5 0.65
Gold 0.8 0.9 0.3 0.8

Table 1 outlines the different service level plans (SLP)

with normalized service level agreement values that are
available to the users. Three different user categories are
defined as Platinum, Silver and Gold.

D. Single-objective GA Approach (GA)
A GA is a heuristic used to find approximate solutions to

difficult-to-solve problems by applying the principles of
evolutionary biology to computer science problems. GAs use
biologically-derived techniques such as inheritance,
mutation, natural selection, and recombination (or crossover)
[15]. GAs are typically implemented as a computer
simulation in which a population of solutions (or individuals)
to an optimization problem evolve towards better solutions.
This is possible as each solution is a chromosome, which can
undergo genetic modification.

In this study, each chromosome has the following
structure:

SLP CS1 CS2 CS3 SLP CS1 CS2 CS3 CS4 …

2 13 26 31 1 18 23 37 42 …

A gene within the chromosome consists of integers,

whereby the first number characterizes the SLP, and the
following integers are the concrete services of the workflow.
The first digit from the left of a concrete service (CS)
characterizes the abstract service number; the second
describes the specific concrete service implementation. The
number of services the abstract workflow consists of

determines the length of the gene. For example, the first
workflow consists of 3 services, the second of 4 services, etc.
The service level guides the fitness calculations as described
in the previous subsection, i.e., the fitness value is
determined depending on the service level. For this study, we
consider workflows up to 5 services, having 10 concrete
services available for each of the 10 abstract services.

The process of the optimization starts with a population
of completely randomly generated individuals. In each
generation, the fitness of each population member is
evaluated. The fittest individuals, in terms of best fitness
value, e.g. from an archive population, where the best
solutions found so far are saved. As even the quality of
solutions can range widely, particularly in earlier
generations, members compete in tournaments, with winners
forming a mating pool. Two parents are randomly selected
from the pool, and undergo cycle crossover [16] and
mutation to form two children. This is repeated until the new
population of size N is filled. The new population is
evaluated; its members compete for inclusion in the archive,
and the process repeats until either a set number of
generations are completed, stagnation, or termination criteria
are met.

Configurable parameters in the implementation include
number of iterations as termination criterion, tournament size
(the size of the tournament used to select parents), crossover
probability, effected positions (how many positions are set to
crossover in the crossover mask), and mutation probability.

E. Multi-objective GA Approach (NSGA-II)
For the multi-objective approach NSGA-II was

implemented. NSGA-II is a fast elitist non-dominated sorting
genetic algorithm [17]. In NSGA-II [18] the most fit
individuals from the union of archive and child populations
are determined by a ranking mechanism (or crowded
comparison operator) composed of two parts. The first part
‘peels’ away layers of non-dominated fronts, and ranks
solutions in earlier fronts as better. The second part computes
a dispersion measure, the crowding distance, to determine
how close a solution's nearest neighbors are, with larger
distances being better. It is employed here to search for
better workflow compositions, which guide the evolutionary
process toward solutions with better objective values.

Non-dominated solutions are desirable in the sense that it
is impossible to find another solution in the set, which
improves the value on any objective (i.e., QoS parameters)
without simultaneously degrading the quality of the other
objective, and is formally defined as follows:

Let

€

o1 ,

€

o2 ,…,

€

on be the objective functions that are to be
maximized. Let

€

S be the set of obtained solutions.

€

s ∈ S is
dominated by

€

t ∈ S (denoted

€

t s) if

€

∃j ,

€

j ∈ {1,...,n} , such
that

€

o j (t) > o j (s) and

€

∀i ,

€

1≤ i ≤ n ,

€

o j (t) ≥ oi (s) . A non-
dominated solution is therefore any solution

€

s ∈ S , which is
not dominated by any other

€

t ∈ S .
The implemented NSGA-II algorithm differs from the

previous GA as follows. After random initialization and the
crossover/mutation phase, all individuals are ordered into
non-dominated sets. First, a set of individuals that are not

dominated is computed. Then, the non-dominated
individuals are removed from the set of individuals for which
non-domination is computed. After this, the reduced set is
used to find the next non-dominated solutions, i.e., those
solutions only dominated by the first set. The non-dominated
sets get higher non-dominated set values. The search for non-
dominated sets is called iteratively until enough individuals
make up a generation and are sorted into non-dominated sets.
Sets themselves are sorted using the crowding distance.
Crowding distance is only computed within non-dominated
sets. To compute the crowding distance, the following steps
are followed for each objective:

• sort the individuals by the current objective.
• add the distance to the previous and next individual

in the current objective to the crowding distance.
The sorting is implemented as a non-recursive quicksort

algorithm. The last non-dominated set is truncated if the
number of individuals in all calculated non-dominated sets is
higher than the specified number of individuals. This sorting
of non-dominated sets and truncation of the last set identifies
NSGA-II's elitism. Tournament selection is used as the
selection strategy. The individual with the best (smallest)
non-dominated set wins the tournament. If two or more
individuals share the lowest non-dominated value, the
individual with the highest crowding distance from those
individuals wins.

Configurable parameters in the implementation include
maximum number of iterations, tournament size, crossover
probability, elected positions, mutation probability, and
lowest flag that defines whether the maximum crowding
distance is also added if there is no following individual, i.e.,
end of the sorted list is reached for one objective.

IV. EXPERIMENTS

A. Experimental Setup
Both approaches were implemented using Java.

Experiments were designed to measure the success ratio and
the execution time. The success ratio measures the
percentage of successful workflow compositions in terms of
fulfilled SLA. The algorithms were further analyzed with
regard to the number of iterations, and the number of
individuals used. All measurement points shown are average
results taken from 30 runs to guarantee an equal distribution
and statistical correctness. The data sets for the workflows
and services were randomly generated, whereby workflows
were created consisting of up to 5 abstract services, out of a
pool of 10 concrete services for each of the 10 available
abstract services (equals 100 concrete services). Please note
that we assume that a particular concrete service can be used
in several workflows. There is no maximum number given
regarding how often one particular service can be called
simultaneously.

The following parameter settings have been chosen due
to their superior performance on the workflow composition
problem. The GA/NSGA-II settings were: population size =
100, mutation probability = 0.05, crossover probability = 0.7,
size of the tournament selection = 4, and number of positions
that are selected for crossover = 0.1. The experiments were

conducted on an Intel Core 2 Duo (2.4GHz, 3MB L2 cache)
running the Java Version 1.6.0 JDK Runtime Environment.

B. Experiments and Results
The evaluation was conducted as follows. First, the

success ratio and execution time is measured for increasing
iterations, and then increasing population sizes are evaluated.
Afterwards, the different weight functions are tested. And
finally, experiments consisting of measuring increasing
numbers of workflows are performed.

Figures 2 and 3 show the experiments with increasing
iterations. The population size was set to 10, and the number
of workflows was set to 300.

Figure 2. Success ratio with increasing iterations.

Figure 2 shows that the success ratio for both algorithms
increases linearly. NSGA-II has the higher success ratio
(roughly 1 %) than GA. However, as the execution time in
Figure 3 reveals, NSGA-II has a steeper increase than GA
showing that NSGA-II takes much longer than GA, in
particular for larger numbers of iterations. For example,
NSGA-II takes 107 milliseconds to run, whereas GA takes
64 milliseconds for 300 iterations.

Figure 3. Execution time with increasing iterations.

Figures 4 and 5 show the success ratio and execution
time for increasing population sizes. The number of
iterations was set to 100, and the number of workflows was
set to 300.

In Figure 4, we can observe that the curves of both
algorithms, GA and NSGA-II, are crossing each other at
around a population size of 30. First, NSGA-II has the higher
success ratio, however after the population size of 30 is
reached, GA continues to have higher scores.

Figure 5 shows the execution time confirming once
again, that NSGA-II’s performance is less than that of the
GA.

Figures 6 and 7 investigated different fitness functions.
Table 2 shows the different weight distributions used. The
number of iterations was 100, the number of workflows was
300, and the population size was 100.

Figure 4. Success ratio for increasing population sizes.

Figure 5. Execution times for increasing population sizes.

TABLE II. WEIGHT DISTRIBUTION FOR DIFFERENT FITNESS
FUNCTIONS

 w1 w2 w3 w4
F1 0.25 0.25 0.25 0.25
F2 0.4 0.2 0.2 0.2
F3 0.2 0.4 0.2 0.2
F4 0.2 0.2 0.4 0.2
F5 0.2 0.2 0.2 0.4

Figure 6 shows the success ratio of the different weights

used for the fitness functions. It can be seen that the GA
algorithm is not affected by this, showing stable success
ratios (within the variance of ±0.48% of the measurements)

for all different fitness functions. Similar behavior is
observed for the NSGA-II algorithm. No significant
difference can be seen of the success ratios for the different
fitness functions.

Figure 6. Success ratio for different fitness functions.

Figure 7 shows the execution times for varying fitness
functions. It shows similar execution times for all fitness
functions within the variance of the measurements.

Figure 7. Execution time for different fitness functions.

Figure 8. Success ratio for increasing workflows.

Figures 8 and 9 show the success ratio and execution
time for increasing workflows. The number of iterations was
set to 2000, and the population size was 100.

Figure 8 reveals that the success ratio of GA is higher
than NSGA-II. GA almost achieving 100% for 500
workflows (99.7%), closely followed by NSGA-II scoring
98.1%. However, when the number of the workflows
increases, the wider the gap between GA and NSGA-II
becomes. At iteration 600, NSGA-II scores 95.4% and GA
only 88.6%.

Figure 9 shows the execution time for increasing
workflows with a linear trend of both algorithms. Once
again, NSGA-II is revealing its higher computational cost.

Figure 9. Execution time for increasing workflows.

V. CONCLUSION
Workflow composition is a very important issue for

service-oriented environments. Past research had addressed
this workflow composition problem with single-objective
and multi-objective optimization approaches. Most of the
research had employed the single-objective approach
whereby the different objectives, i.e., QoS attributes, are
aggregated by a weighted approach. Fewer research
approaches used the multi-objective approach, whereby
several solutions are produced by a set of Pareto solutions,
which have equivalent quality to satisfy the service level
agreements.

However, no comparison had been done investigating
both approaches. Therefore, this paper addressed this by
measuring the success ratio as well as the execution time of
two implemented GA approaches. The first was a generic
GA approach for the single-objective version, whereas the
well-known NSGA-II algorithm was implemented as the
multi-objective variant.

As can be seen by the experimental results, the NSGA-II
algorithm has only slightly higher success rates for small
populations sizes and a small number of iterations. However,
overall the generic GA algorithm performs much better both
in terms of success rate as well as execution time when using
standard GA settings (population size of 100, number of
iterations of 100), which also leads to higher success ratios.

Even in the case of different fitness functions with
different weight distributions for each objective, i.e., QoS
attribute, no significant difference can be seen between both
approaches. Usually, multi-objective algorithms are
employed if the weights of the different objectives cannot be

estimated, however, in our case, where we have four
conflicting QoS parameters, the user can easily assign
different weight values. Nevertheless, the different fitness
functions did not have any effect on the success ratio or
execution times of both approaches.

A recommendation is to use a single-objective algorithm
with an aggregated weighted approach, and not a multi-
objective approach in particular considering the processing
time of the optimization process in service-oriented
environments. Also, the success ratio was much higher for
the single-objective approach.

Future work will expand this line of research by taking
the following constraints imposed by the real world setting
into consideration. First of all, service invocations of a
particular service are limited, and therefore, needs to be
taken into account. Furthermore, failure of the service
execution and re-composition needs to be addressed, and a
solution needs to be implemented and tested.

ACKNOWLEDGMENT
This material is based on work supported by North

Dakota EPSCoR and National Science Foundation Grant
EPS-0814442.

REFERENCES
[1] M.N. Huhns, M.P. Singh, Service-Oriented Computing: Key

Concepts and Principles, IEEE Internet Computing 9(1), 75-81, 2005.
[2] L. Taher, H. El Khatib and R. Basha, A framework and QoS

matchmaking algorithm for dynamic web services selection, Second
International Conference on Innovations in Information Technology
(IIT’05), Dubai, UAE, 2005.

[3] M. Comuzzi, B. Pernici, A framework for QoS-based Web service
contracting, ACM Trans. Web, Vol. 3, No. 3. 2009.

[4] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, C.-H. Chen, Dynamic Web
Service Selection for Reliable Web Service Composition, IEEE
Transactions on Services Computing, pp. 104-116, 2008.

[5] T. Yu, Y. Zhang, and K.J. Lin, Efficient Algorithms for Web Services
Selection with end-to-end QoS Constraints, ACM Transactions on the
Web, 1(1), 2007.

[6] D. Ardagna and B. Pernici, Adaptive Service Composition in Flexible
Processes, IEEE Transactions on Software Engineering, 33(6):369–
384, 2007.

[7] D. Schuller, J. Eckert, A. Miede, S. Schulte, R. Steinmetz, QoS-
Aware Service Composition for Complex Workflows, Proceedings of
the 2010 Fifth International Conference on Internet and Web
Applications and Services, 2010.

[8] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.Z. Sheng,
Quality driven web services composition, Proceedings of the 12th
international conference on World Wide Web, 2003.

[9] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, An Approach
for QoS-aware Service Composition based on Genetic Algorithms,
Proceedings of Conference on Genetic and Evolutionary
Computation, 2005.

[10] K. Yoon, C.L. Hwang, Multiple Attribute Decision Making: An
Introduction. Sage Publishers, 1995.

[11] M.C. Jaeger and G. Muehl, QoS-based Selection of Services: The
Implementation of a Genetic Algorithm, Proceedings of Conference
on Communication in Distributed Systems, Workshop on Service-
Oriented Architectures and Service-Oriented Computing, 2007.

[12] Y. Gao, B. Zhang, J. Na, L. Yang, Y. Dai, and Q. Gong, Optimal
Selection of Web Services with End-to-End Constraints, IEEE
International Conference on Grid and Cooperative Computing, 2006.

[13] D.B. Claro, P. Albers, and J. Hao. Selecting Web Services for
Optimal Composition, In IEEE International Conference on Web
Services, Workshop on Semantic and Dynamic Web Processes, 2005.

[14] H. Wada, P. Champrasert, J. Suzuki, K. Oba, Multiobjective
Optimization of SLA-Aware Service Composition, Congress on
Services, pp. 368-375, 2008.

[15] M. Mitchell. An Introduction to Genetic Algorithms (Complex
Adaptive Systems), The MIT Press, ISBN 0-262-63185-7, 1998.

[16] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C.
Whitley, A comparison of genetic sequencing operators, In Rick

Belew and Lashon Booker, editors, Morgan Kaufman, Proceedings of
the Fourth International Conference on Genetic Algorithms, 69-76,
San Mateo, CA, 1991.

[17] K. Deb. Multi-objective optimization using evolutionary algorithms,
Wiley, Chichester, England, 2001.

[18] K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II, In Lecture Notes in Computer Science, volume 1917, 848-
849, 2000.

