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Abstract 

 
Knowledge engineering is a discipline concerned 

with constructing and maintaining knowledge bases to 
store knowledge of various domains and using the 
knowledge by automated reasoning techniques to solve 
problems in domains that ordinarily require human 
logical reasoning. Therefore, the two key issues in 
knowledge engineering are how to construct and 
maintain knowledge bases, and how to reason out new 
knowledge from known knowledge effectively and 
efficiently. The objective of this paper is the evaluation 
of a Deductive Database system with a Semantic Web 
reasoning engine. For each system a knowledge base 
is implemented in such a way that comparable 
performance measurements can be performed. The 
performance and scalability are evaluated for class 
and instance queries.  
 
1. Introduction 
 

Knowledge engineering is a discipline concerned 
with constructing and maintaining knowledge bases to 
store knowledge of the real world in various domains 
and using the knowledge by automated reasoning 
techniques to solve problems in domains that 
ordinarily require human logical reasoning. Therefore, 
the two key issues in knowledge engineering are how 
to construct and maintain knowledge bases, and how to 
reason out new knowledge from known knowledge 
effectively and efficiently. 

Knowledge-based systems (KBS) use human 
knowledge to solve problems which normally requires 
human intelligence. A KBS shell is a software 
environment containing a knowledge acquisition 
system, the knowledge base itself, inference engine, 
explanation subsystem and user interface. The core 
components are the knowledge base (human 
knowledge represented by e.g. IF-THEN rules) and the 
inference engine (forward or backward chaining). 

MYCIN [1] is an example of a rule-based expert 
system which was designed for the diagnosis of 

infectious blood diseases. MYCIN has been developed 
without using a modeling framework, opposed to a few 
frameworks which were developed to help during the 
knowledge engineering process such as CLIPS (C 
Language Integrated Production System) [2] or JESS 
(Java Expert Systems Shell) [3]. CLIPS is a productive 
development and delivery expert system tool which 
provides a complete environment for the construction 
of rule and/or object based expert systems. JESS is a 
rule engine and scripting environment written in Java. 
With JESS, one can build software that has the 
capacity to "reason" using knowledge supplied in the 
form of declarative rules. JESS uses an enhanced 
version of the Rete algorithm [4] to process rules 
which is a very efficient mechanism for solving the 
difficult many-to-many matching problem. 
CommonKADS [5] is known for having a structure of 
the Expertise Model and Model-based and Incremental 
Knowledge Engineering (MIKE) [6], which relies on 
formal and executable specification of the expertise 
model as the result of the knowledge acquisition phase.  

Another approach for reasoning is Deductive 
Databases, where data is described by logical formulas, 
usually in a restricted subset of first-order logic. These 
formulas are intended to specify part of the external 
world relevant to the application at hand, called the 
application world. Thus, a Deductive Database is a 
logical representation of the application world. 
Therefore, the semantics of Deductive Databases are 
based on mathematical logic. A user queries a 
Deductive Database by submitting a goal. Goals are 
also logical formulas. A correct answer to a goal 
provides values for the variables of the goal that make 
this query logically follow from the database. Hence, 
the semantics of query answering in Deductive 
Databases is based on the notion of logical 
consequences developed in mathematical logic. 
Besides formulas specifying the database and queries, 
a Deductive Database can also contain integrity 
constraints: logical conditions which the database must 
satisfy at any given moment [7]. 

The latest reasoning technology for the Web is the 
Semantic Web, which vision is to make the Web 



machine-readable, allowing computers to integrate 
information and services from diverse sources to 
achieve the goals of end users. It allows to reason 
about the content when Web pages and services are 
augmented with descriptions of their content. Semantic 
Web technologies are used in many ways to transform 
the functionality of the Web by enriching metadata for 
Web content to improve search and management; 
enriching descriptions of Web services to improve 
discovery and composition; providing common access 
wrappers for information systems to make integration 
of heterogeneous systems easier; and exchanging 
semantically rich information between software agents. 
Ontology languages [8] were created to augment data 
with metadata. The most recent ontology for the Web 
is called OWL (Web Ontology Language). OWL 
builds on a rich technical tradition of both formal 
research and practical implementation. 

This research was motivated by the fact that 
reasoning on the Web becomes ever more important 
due to the advancement of Web services and service 
computing on the whole. However, not much research 
has been conducted into the evaluation of the 
performance and scalability of reasoning on the Web. 
Furthermore, no comparison between an established 
reasoning tool, namely the deductive database, has 
been done. The objective of this paper is the evaluation 
of a Deductive Database system with a Semantic Web 
reasoning engine. For each system a knowledge base is 
implemented in such a way that comparable 
performance measurements can be performed. 

The paper is outlined as follows. In Section 2, both 
systems, ConceptBase and Racer are described. In 
Section 3, the knowledge base, queries, measurement 
methodology and setup are outlined. Section 4 presents 
the performance analysis of both systems exploring the 
load time and the scalability of classes and instances. 
The findings and conclusions are given in Section 5. 
 
2. Description of Both Systems 
 

ConceptBase was chosen as the Deductive Database 
system to compare with the Semantic Web reasoning 
engine Racer. The two systems are described in more 
details in the subsections below. 

 
2.1. ConceptBase 
 

ConceptBase has been used in a number of 
applications at various universities in Europe. The 
ConceptBase system, developed since 1987, seeks to 
combine deductive rules with a semantic data model 
based on Telos [9] (described further below). The 

system also provides support for integrity constraints 
[10]. ConceptBase is free software available for 
download, and the user interface is java based. 
Furthermore, ConceptBase uses the client-server 
architecture, and has a fairly extensive Application 
Programming Interface (API) for writing clients in 
Java, C or C++. 

ConceptBase is a deductive object-oriented 
database management program intended for conceptual 
modeling. It uses O-Telos which is a version of the 
logical knowledge representation language Telos, 
which includes deductive and object-oriented features. 
O-Telos is based on Datalog, which is a subset of 
Prolog.  

ConceptBase allows for logical, graphical and 
frame views of databases. The ConceptBase graph 
editor allows one to visualize the relationships in the 
database, as well as adding and modifying the classes, 
individuals, and relationships. Queries are represented 
as classes that have membership constraints. Within 
the database, all classes, instances, attributes, rules and 
constraints are represented as objects that may be 
updated at any time. However, there is not an option to 
cascade changes, so it is easy to add information at any 
time, but it can be difficult to remove information. 
 
2.2. Semantic Web Technologies: Protégé and 
Racer 
 

The Semantic Web technology used to create an 
ontology to represent the application domain was 
Protégé [11], a Java-based, free ontology editor 
developed by Stanford Medical Informatics at the 
Stanford University School of Medicine. It provides a 
knowledge base that allows the user to create formal 
rules for a knowledge representation system to reason 
through. After developing a taxonomy and creating 
rules the ontology can be exported in OWL format, 
which is similar to XML in syntax and includes the 
descriptions of the classes and individuals along with 
their explicit relationships. Protégé also provides a 
Java API that allows OWL files to be imported and 
represented as Java classes. The API has the capability 
to connect to a knowledge representation system, such 
as RACER (Renamed ABox and Concept Expression 
Reasoner) [12], allowing implicit relationships to be 
found. 

RACER is commercial software developed by 
RACER Systems and was used for this research 
investigation. This software is capable of reasoning 
through Description Logic TBoxes (subsumption, 
satisfiability, classification) and ABoxes (retrieval, 
tree-conjunctive query answering using an XQuery-



like syntax), such as the ones that are created using 
Protégé and exported in the OWL format. 
 
3. Evaluation 
 

In order to perform a comparison analysis of Racer 
and ConceptBase, a knowledge base was implemented 
in both systems. Queries were chosen which return the 
same results to evaluate class and instance queries. The 
measurement methodology and setup are described 
below. 
 
3.1. Knowledge Base 

 
The knowledge base / ontology used for the 

evaluation is an extension of the pizza ontology 
supplied with Protégé.  
 

Table 1. Ontology description of scaling classes 

Ontology 
size 

Number of 
classes 

File size 
Racer 
(in KB) 

File size 
ConceptBase
(in KB) 

1 263 279 27 

2 495 565 54 

3 727 869 82 

4 959 1189 109 

5 1191 1536 137 

6 1423 1897 163 

7 1655 2280 191 

8 1887 2683 219 

9 2119 3105 246 

10 2351 3553 273 

 
The ontology contains classes describing pizzas and 

ingredients, as well as sandwiches and salads. The 
dishes (pizzas, sandwiches, salads) were defined in 
terms of the ingredients they contain. All subclasses in 
the ontology were given instances, and in some cases 
higher level classes had instances, so there are nearly 
as many instances as classes. Some dishes were 
defined to describe specific foods, such as a BLT 
(Bacon Lettuce Tomato) sandwich, other dishes such 
as vegetarianPizza were defined to be any pizza 
without meat or fish. The classes describing specific 
foods were given necessary conditions, for example, 
this pizza must have mozzarella as a topping. The 
other classes, such as vegetarianPizza, were given 
necessary and sufficient conditions, meaning that any 
pizza that had no meat or fish would be considered a 
vegetarianPizza. Thus, the classes that met the 

necessary and sufficient conditions would be 
subsumed, creating an inferred hierarchy of classes. 

ConceptBase on the other hand, required a slightly 
different modeling technique. It is not possible to 
create an inferred class hierarchy, thus, in order to 
have similar reasoning capabilities to the Protégé 
ontology, queryClasses were used. Query classes have 
constraints describing which individuals may be 
members of the query class. Thus, with the vegetarian 
pizza example, members of the vegetarian pizza query 
class were defined to be any individual that did not 
have meat, or fish, as an ingredient. 
 

Table 2. Ontology description of scaling instances 
(number of classes fixed to 263) 

Ontology 
size 

Number of 
instances 

File size 
Racer  
(in KB) 

File size 
ConceptBase
(in KB) 

1 217 305 46 

2 434 321 65 

3 651 348 84 

4 868 375 104 

5 1085 402 123 

6 1302 433 142 

7 1519 454 162 

8 1736 480 181 

9 1953 507 200 

10 2170 542 220 

 
As knowledge bases consist of classes and 

instances, the investigation will only focus on class 
and instance reasoning. In order to measure how good 
both systems scale, we expanded the ontologies in two 
directions; (1) scaling of classes and (2) scaling of 
instances. Table 1 and 2 show the properties of the 
different ontology sizes used for this investigation. 
Table 1 contains 10 different ontology sizes, whereby 
the number of classes is increasing with the size 
without containing any instances. For the scaling of 
instances, the class structure of the size 1 ontology 
(Table 1) is fixed to 263 classes for all different 
instance ontology sizes. 
 
3.2. API and Queries 
 

The ConceptBase API provides methods to ‘tell’ 
files to the ConceptBase server, retrieve a named class 
or individual, find instances of a class or query a class, 
retrieve attributes of classes or individuals, retrieve 
superclasses and subclasses, find the class that an 



individual belongs to, and get generalizations and 
specializations from a class. Additionally, several 
Boolean operations are provided for testing the 
relationships between classes, or instances, such as 
isSuperclassOf or isExplicitInstanceOf. There 
appeared to be many methods that returned the same, 
or very similar results in different formats, such as 
newline delimited, or comma delimited. The redundant 
queries in ConceptBase returned the same classes, but 
in different formats, e.g., subclasses can be returned in 
ConceptBase code syntax, or as a string with one class 
per line, or with all classes on one line separated by 
commas, or as a hashset, depending on what the user 
want to do with the subclasses. Attributes in 
ConceptBase are tied directly to the class they 
represent, so all information about attributes is gained 
through the appropriate class, or instance. The useful 
methods for obtaining information from the database 
can be found in the ICBclient and ITelosObjectSet 
classes. 

The Protégé API allows the user to find descendant 
classes, classify the taxonomy, compute the inferred 
hierarchy, compute the inferred types of all 
individuals, retrieve ancestor classes, retrieve 
equivalent classes, retrieve subclasses, find individuals 
belonging to a class, determine the subsumption 
relationship between two classes, return the superclass 
of a class, get sub properties, get inverse properties, 
return the inferred equivalent classes, get the inferred 
subclasses, get the inferred superclasses, maximum 
and minimum cardinalities of properties, determine if 
subclasses are disjoint, determine if a class has a 
superclass, return the name of an instance, return the 
namespace of the ontology, return a list of the possible 
rdf properties, and return rdf types. Properties in 
Protégé are independent of classes and instances, and 
thus may be queried directly. The useful methods for 
gaining information about the model were spread 
across several classes in the API, namely, 
ProtegeOWLReasoner, RDFProperty, OWLProperty, 
OWLNamedClass and OWLIndividual. Among these 
classes, there seemed to be several redundant methods. 
This is because OWLProperty inherits from 
RDFProperty and therefore has all the same methods, 
plus a few more. ProtegeOWLReasoner and 
OWLNamedClass have some methods with the same 
results, the difference is that ProtegeOWLReasoner 
calls RACER, whereas OWLNamedClass uses the 
results from the last time the reasoner was used.  

The main type of reasoning of a knowledge base 
can be divided into two categories, class and instance 
reasoning. In order to perform a fair analysis of these 
systems, equivalent queries existent in both systems 
which perform the same type of reasoning were 

chosen: Query 1 and 2 are class queries, and query 3 
and 4 are instance queries. 

Query 1 returns all subclasses belonging to a 
particular class: getDescendentClasses (Racer); 
getAllSubclassesOf (ConceptBase). 

Query 2 returns the superclasses of a particular 
class: getSuperClasses (Racer); 
getExplicitSuperClasses (ConceptBase). 

Query 3 returns all individuals that are members of 
a particular class: getIndividualsBelongingToClass 
(Racer); getAllInstancesOf (ConceptBase). 

Query 4 returns all classes that an individual or an 
instance belongs to: getIndividualTypes (Racer); 
getClassificationOf (ConceptBase). 
 
3.3. Methodology 
 

Bash scripts were used to automate all the 
measurement runs. The process for each measurement 
was as follows: start Racer or the ConceptBase server, 
run the java query, and close Racer or ConceptBase 
server to clear the cache. This process was repeated 30 
times (to guarantee normal distribution) for each 
query. The Java query file used to perform a query 
would start by loading the data model into Racer or the 
ConceptBase server. Then, the java method 
System.nanoTime was used immediately before and 
after the query, and the difference was calculated to 
estimate the performance of the query. Each time the 
java program was executed it would perform only one 
query, in order to avoid caching issues across queries. 
System.nanoTime was found to give results with a 
higher precision than System.currentTimeMillis, 
especially as several of the queries took less than one 
millisecond to execute. 
 
3.4. Measurement Setup 
 

The following measurement setup was used for this 
investigation: 
• Hardware configuration (Lenovo M55 with 

2.4GHz Intel Core2 CPUs and 2GB of RAM; no 
hyperthreading). 

• Software configuration (Mandriva Linux 2008.1; 
Java 1.6.0_03; latest versions of ConceptBase 7.1, 
Protégé 3.4 and Racer 1.9.2.) 

 
4. Results 
 

The evaluation was performed as follows. First, the 
load times for loading the different ontologies into 
memory are measured. Afterwards, the scalability of 
classes and instances are evaluated. 



4.1. Load Time of Different Ontology Sizes 
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Before queries are run in both Racer and 

ConceptBase, the knowledge base or ontology needs to 
be loaded into memory first. Figure 1 shows the load 
time in seconds for increasing ontology sizes. Two 
distinctions are made here for either scaling of classes 
or instances. The scaling of Racer shows a linear 
distribution with increasing ontology sizes, whereby 
the scaling of classes has a greater impact on the 
performance than the scaling of instances. The scaling 
of classes has a gradient of 0.3, whereas the scaling of 
instances has a gradient of 0.07. The load time for 
ConceptBase has a slightly different distribution. The 
scaling of instances seems to be linear; however, the 
scaling of classes follows a quadratic distribution. The 
query times for the scaling of classes are also larger 
than for the scaling of instances as also observed for 
Racer. Comparing both systems it can be concluded 
that the load time of ConceptBase is greater by a factor 
of 3.01 for the scaling of classes, but is almost similar 
for the scaling of instances with a factor of 0.95. 
 
4.2. Scaling of Classes 
 

Looking at how the performance scales with 
increasing ontology sizes (the instance queries would 
not make sense when querying an ontology without 
instances), Figure 2 shows the queries run in Racer and 
ConceptBase (getSuperClasses, getAllSubclassesOf 
and getSuperclassesOf all have similar query times). It 
is observed, that both queries, getDecendentClasses 
and getSuperclasses, scale in a similar fashion with a 
quadratic distribution. This is because the same 
operation is performed, that is the classification of a 

new concept. Racer computes more than is required in 
order to answer these particular class queries. 
ConceptBase on the other hand shows the 
measurements of the similar queries with a linear 
distribution. Instead of both queries scaling in a simiar 
fashion as in Racer, the query time for subclasses is 
higher than for superclasses. It appears that the 
performance is dependent on the number of return 
values. getAllSubclassesOf returns 31 to 238 
subclasses for ontology size 1 and 10 respectively, 
while getSuperclassesOf returns only 1 superclass for 
all ontology sizes. 
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Comparing the class queries executed in Racer and 
ConceptBase, it shows that ConceptBase scales much 
better than Racer. 
 
4.3. Scaling of Instances 
 

Figure 3 shows the linear distribution of query 
times for scaling of instances. For Racer, it shows that 
the query times for getIndividualBelongingToClass are 
higher than for getIndividualTypes queries. 
getIndividualTypes looks at a specific individual and 
returns all classes of which it is an instance of, whereas 
getIndividualsBelongingToClass has to consider all 
individuals. The implementation of the operations 
seem to be quite different and therefore the result can 
be seen in the query times of both queries in Racer. 
The instance query, getAllInstancesOf, performed in 
ConceptBase shows a quadratic distribution, whereas 
the getClassificationOf query shows a linear gradient. 
getAllInstancesOf takes longer as the return values 
range between 47 to 256 for ontology size 1 to 10 
respectively, whereas getClassificationOf returns 
always only one return value. The direct comparison of 



the query times regarding the scaling of instances of 
both systems shows that ConceptBase performs better 
than Racer. 
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5. Conclusion 
 

This paper evaluated a Deductive Database system 
and a Semantic Web reasoning engine - ConceptBase 
and Racer. For each system a knowledge base was 
implemented in such a way that comparable 
performance measurements could be performed.  

The findings revealed that the reasoning capabilities 
in Racer are richer. Furthermore, queries in 
ConceptBase run much faster than in Racer. The 
factors were 61 and 7 for ontology sizes 1 and 10 
respectively for ontologies with instances. On the other 
hand however, the load time to load the different 
ontologies was better in Racer by a factor of 3.01 for 
the scaling of classes, but was almost similar for the 
scaling of instances for which the factor measured was 
0.95. The load time for Racer is linear, whereas the 
load time for ConceptBase seems to have a quadratic 
growth function. The scaling of classes revealed that 
class queries take much longer in Racer than in 
ConceptBases as in Racer all consistencies are being 
checked before a class query is being performed, 
measured by a factor of 470. The growth function for 
Racer for the class queries is quadratic, whereas the 
growth function for ConceptBase is linear. The scaling 
of instance queries showed a better performance for 
ConceptBase than for Racer by a factor of 4.8. 
However, it seems that ConceptBase is more affected 
by string processing of the return values of the queries. 
This means that if a large amount of result values are 

returned, the performance decreases in ConceptBase, 
whereas Racer is not affected by this. 

Considering that ontologies are developed 
incrementally, adding a relatively small increment to a 
large ontology has a great effect for the loading of this 
ontology into memory for ConceptBase, whereas the 
class and instance queries in Racer will have a greater 
performance reduction than ConceptBase. 

As reasoning on the Web has seen a steady increase 
in the past several years, this evaluation shows that 
Web reasoning has to speed and scale up with 
technologies existing for many decades such as 
deductive databases. 
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