
Performance Analysis of a Deductive Database with a Semantic Web
Reasoning Engine: ConceptBase and Racer

Simone A. Ludwig, Craig Thompson, Kristofor Amundson

Department of Computer Science, University of Saskatchewan, Canada
ludwig@cs.usask.ca

Abstract

Knowledge engineering is a discipline concerned

with constructing and maintaining knowledge bases to
store knowledge of various domains and using the
knowledge by automated reasoning techniques to solve
problems in domains that ordinarily require human
logical reasoning. Therefore, the two key issues in
knowledge engineering are how to construct and
maintain knowledge bases, and how to reason out new
knowledge from known knowledge effectively and
efficiently. The objective of this paper is the evaluation
of a Deductive Database system with a Semantic Web
reasoning engine. For each system a knowledge base
is implemented in such a way that comparable
performance measurements can be performed. The
performance and scalability are evaluated for class
and instance queries.

1. Introduction

Knowledge engineering is a discipline concerned
with constructing and maintaining knowledge bases to
store knowledge of the real world in various domains
and using the knowledge by automated reasoning
techniques to solve problems in domains that
ordinarily require human logical reasoning. Therefore,
the two key issues in knowledge engineering are how
to construct and maintain knowledge bases, and how to
reason out new knowledge from known knowledge
effectively and efficiently.

Knowledge-based systems (KBS) use human
knowledge to solve problems which normally requires
human intelligence. A KBS shell is a software
environment containing a knowledge acquisition
system, the knowledge base itself, inference engine,
explanation subsystem and user interface. The core
components are the knowledge base (human
knowledge represented by e.g. IF-THEN rules) and the
inference engine (forward or backward chaining).

MYCIN [1] is an example of a rule-based expert
system which was designed for the diagnosis of

infectious blood diseases. MYCIN has been developed
without using a modeling framework, opposed to a few
frameworks which were developed to help during the
knowledge engineering process such as CLIPS (C
Language Integrated Production System) [2] or JESS
(Java Expert Systems Shell) [3]. CLIPS is a productive
development and delivery expert system tool which
provides a complete environment for the construction
of rule and/or object based expert systems. JESS is a
rule engine and scripting environment written in Java.
With JESS, one can build software that has the
capacity to "reason" using knowledge supplied in the
form of declarative rules. JESS uses an enhanced
version of the Rete algorithm [4] to process rules
which is a very efficient mechanism for solving the
difficult many-to-many matching problem.
CommonKADS [5] is known for having a structure of
the Expertise Model and Model-based and Incremental
Knowledge Engineering (MIKE) [6], which relies on
formal and executable specification of the expertise
model as the result of the knowledge acquisition phase.

Another approach for reasoning is Deductive
Databases, where data is described by logical formulas,
usually in a restricted subset of first-order logic. These
formulas are intended to specify part of the external
world relevant to the application at hand, called the
application world. Thus, a Deductive Database is a
logical representation of the application world.
Therefore, the semantics of Deductive Databases are
based on mathematical logic. A user queries a
Deductive Database by submitting a goal. Goals are
also logical formulas. A correct answer to a goal
provides values for the variables of the goal that make
this query logically follow from the database. Hence,
the semantics of query answering in Deductive
Databases is based on the notion of logical
consequences developed in mathematical logic.
Besides formulas specifying the database and queries,
a Deductive Database can also contain integrity
constraints: logical conditions which the database must
satisfy at any given moment [7].

The latest reasoning technology for the Web is the
Semantic Web, which vision is to make the Web

machine-readable, allowing computers to integrate
information and services from diverse sources to
achieve the goals of end users. It allows to reason
about the content when Web pages and services are
augmented with descriptions of their content. Semantic
Web technologies are used in many ways to transform
the functionality of the Web by enriching metadata for
Web content to improve search and management;
enriching descriptions of Web services to improve
discovery and composition; providing common access
wrappers for information systems to make integration
of heterogeneous systems easier; and exchanging
semantically rich information between software agents.
Ontology languages [8] were created to augment data
with metadata. The most recent ontology for the Web
is called OWL (Web Ontology Language). OWL
builds on a rich technical tradition of both formal
research and practical implementation.

This research was motivated by the fact that
reasoning on the Web becomes ever more important
due to the advancement of Web services and service
computing on the whole. However, not much research
has been conducted into the evaluation of the
performance and scalability of reasoning on the Web.
Furthermore, no comparison between an established
reasoning tool, namely the deductive database, has
been done. The objective of this paper is the evaluation
of a Deductive Database system with a Semantic Web
reasoning engine. For each system a knowledge base is
implemented in such a way that comparable
performance measurements can be performed.

The paper is outlined as follows. In Section 2, both
systems, ConceptBase and Racer are described. In
Section 3, the knowledge base, queries, measurement
methodology and setup are outlined. Section 4 presents
the performance analysis of both systems exploring the
load time and the scalability of classes and instances.
The findings and conclusions are given in Section 5.

2. Description of Both Systems

ConceptBase was chosen as the Deductive Database
system to compare with the Semantic Web reasoning
engine Racer. The two systems are described in more
details in the subsections below.

2.1. ConceptBase

ConceptBase has been used in a number of
applications at various universities in Europe. The
ConceptBase system, developed since 1987, seeks to
combine deductive rules with a semantic data model
based on Telos [9] (described further below). The

system also provides support for integrity constraints
[10]. ConceptBase is free software available for
download, and the user interface is java based.
Furthermore, ConceptBase uses the client-server
architecture, and has a fairly extensive Application
Programming Interface (API) for writing clients in
Java, C or C++.

ConceptBase is a deductive object-oriented
database management program intended for conceptual
modeling. It uses O-Telos which is a version of the
logical knowledge representation language Telos,
which includes deductive and object-oriented features.
O-Telos is based on Datalog, which is a subset of
Prolog.

ConceptBase allows for logical, graphical and
frame views of databases. The ConceptBase graph
editor allows one to visualize the relationships in the
database, as well as adding and modifying the classes,
individuals, and relationships. Queries are represented
as classes that have membership constraints. Within
the database, all classes, instances, attributes, rules and
constraints are represented as objects that may be
updated at any time. However, there is not an option to
cascade changes, so it is easy to add information at any
time, but it can be difficult to remove information.

2.2. Semantic Web Technologies: Protégé and
Racer

The Semantic Web technology used to create an
ontology to represent the application domain was
Protégé [11], a Java-based, free ontology editor
developed by Stanford Medical Informatics at the
Stanford University School of Medicine. It provides a
knowledge base that allows the user to create formal
rules for a knowledge representation system to reason
through. After developing a taxonomy and creating
rules the ontology can be exported in OWL format,
which is similar to XML in syntax and includes the
descriptions of the classes and individuals along with
their explicit relationships. Protégé also provides a
Java API that allows OWL files to be imported and
represented as Java classes. The API has the capability
to connect to a knowledge representation system, such
as RACER (Renamed ABox and Concept Expression
Reasoner) [12], allowing implicit relationships to be
found.

RACER is commercial software developed by
RACER Systems and was used for this research
investigation. This software is capable of reasoning
through Description Logic TBoxes (subsumption,
satisfiability, classification) and ABoxes (retrieval,
tree-conjunctive query answering using an XQuery-

like syntax), such as the ones that are created using
Protégé and exported in the OWL format.

3. Evaluation

In order to perform a comparison analysis of Racer
and ConceptBase, a knowledge base was implemented
in both systems. Queries were chosen which return the
same results to evaluate class and instance queries. The
measurement methodology and setup are described
below.

3.1. Knowledge Base

The knowledge base / ontology used for the

evaluation is an extension of the pizza ontology
supplied with Protégé.

Table 1. Ontology description of scaling classes

Ontology
size

Number of
classes

File size
Racer
(in KB)

File size
ConceptBase
(in KB)

1 263 279 27

2 495 565 54

3 727 869 82

4 959 1189 109

5 1191 1536 137

6 1423 1897 163

7 1655 2280 191

8 1887 2683 219

9 2119 3105 246

10 2351 3553 273

The ontology contains classes describing pizzas and

ingredients, as well as sandwiches and salads. The
dishes (pizzas, sandwiches, salads) were defined in
terms of the ingredients they contain. All subclasses in
the ontology were given instances, and in some cases
higher level classes had instances, so there are nearly
as many instances as classes. Some dishes were
defined to describe specific foods, such as a BLT
(Bacon Lettuce Tomato) sandwich, other dishes such
as vegetarianPizza were defined to be any pizza
without meat or fish. The classes describing specific
foods were given necessary conditions, for example,
this pizza must have mozzarella as a topping. The
other classes, such as vegetarianPizza, were given
necessary and sufficient conditions, meaning that any
pizza that had no meat or fish would be considered a
vegetarianPizza. Thus, the classes that met the

necessary and sufficient conditions would be
subsumed, creating an inferred hierarchy of classes.

ConceptBase on the other hand, required a slightly
different modeling technique. It is not possible to
create an inferred class hierarchy, thus, in order to
have similar reasoning capabilities to the Protégé
ontology, queryClasses were used. Query classes have
constraints describing which individuals may be
members of the query class. Thus, with the vegetarian
pizza example, members of the vegetarian pizza query
class were defined to be any individual that did not
have meat, or fish, as an ingredient.

Table 2. Ontology description of scaling instances
(number of classes fixed to 263)

Ontology
size

Number of
instances

File size
Racer
(in KB)

File size
ConceptBase
(in KB)

1 217 305 46

2 434 321 65

3 651 348 84

4 868 375 104

5 1085 402 123

6 1302 433 142

7 1519 454 162

8 1736 480 181

9 1953 507 200

10 2170 542 220

As knowledge bases consist of classes and

instances, the investigation will only focus on class
and instance reasoning. In order to measure how good
both systems scale, we expanded the ontologies in two
directions; (1) scaling of classes and (2) scaling of
instances. Table 1 and 2 show the properties of the
different ontology sizes used for this investigation.
Table 1 contains 10 different ontology sizes, whereby
the number of classes is increasing with the size
without containing any instances. For the scaling of
instances, the class structure of the size 1 ontology
(Table 1) is fixed to 263 classes for all different
instance ontology sizes.

3.2. API and Queries

The ConceptBase API provides methods to ‘tell’
files to the ConceptBase server, retrieve a named class
or individual, find instances of a class or query a class,
retrieve attributes of classes or individuals, retrieve
superclasses and subclasses, find the class that an

individual belongs to, and get generalizations and
specializations from a class. Additionally, several
Boolean operations are provided for testing the
relationships between classes, or instances, such as
isSuperclassOf or isExplicitInstanceOf. There
appeared to be many methods that returned the same,
or very similar results in different formats, such as
newline delimited, or comma delimited. The redundant
queries in ConceptBase returned the same classes, but
in different formats, e.g., subclasses can be returned in
ConceptBase code syntax, or as a string with one class
per line, or with all classes on one line separated by
commas, or as a hashset, depending on what the user
want to do with the subclasses. Attributes in
ConceptBase are tied directly to the class they
represent, so all information about attributes is gained
through the appropriate class, or instance. The useful
methods for obtaining information from the database
can be found in the ICBclient and ITelosObjectSet
classes.

The Protégé API allows the user to find descendant
classes, classify the taxonomy, compute the inferred
hierarchy, compute the inferred types of all
individuals, retrieve ancestor classes, retrieve
equivalent classes, retrieve subclasses, find individuals
belonging to a class, determine the subsumption
relationship between two classes, return the superclass
of a class, get sub properties, get inverse properties,
return the inferred equivalent classes, get the inferred
subclasses, get the inferred superclasses, maximum
and minimum cardinalities of properties, determine if
subclasses are disjoint, determine if a class has a
superclass, return the name of an instance, return the
namespace of the ontology, return a list of the possible
rdf properties, and return rdf types. Properties in
Protégé are independent of classes and instances, and
thus may be queried directly. The useful methods for
gaining information about the model were spread
across several classes in the API, namely,
ProtegeOWLReasoner, RDFProperty, OWLProperty,
OWLNamedClass and OWLIndividual. Among these
classes, there seemed to be several redundant methods.
This is because OWLProperty inherits from
RDFProperty and therefore has all the same methods,
plus a few more. ProtegeOWLReasoner and
OWLNamedClass have some methods with the same
results, the difference is that ProtegeOWLReasoner
calls RACER, whereas OWLNamedClass uses the
results from the last time the reasoner was used.

The main type of reasoning of a knowledge base
can be divided into two categories, class and instance
reasoning. In order to perform a fair analysis of these
systems, equivalent queries existent in both systems
which perform the same type of reasoning were

chosen: Query 1 and 2 are class queries, and query 3
and 4 are instance queries.

Query 1 returns all subclasses belonging to a
particular class: getDescendentClasses (Racer);
getAllSubclassesOf (ConceptBase).

Query 2 returns the superclasses of a particular
class: getSuperClasses (Racer);
getExplicitSuperClasses (ConceptBase).

Query 3 returns all individuals that are members of
a particular class: getIndividualsBelongingToClass
(Racer); getAllInstancesOf (ConceptBase).

Query 4 returns all classes that an individual or an
instance belongs to: getIndividualTypes (Racer);
getClassificationOf (ConceptBase).

3.3. Methodology

Bash scripts were used to automate all the
measurement runs. The process for each measurement
was as follows: start Racer or the ConceptBase server,
run the java query, and close Racer or ConceptBase
server to clear the cache. This process was repeated 30
times (to guarantee normal distribution) for each
query. The Java query file used to perform a query
would start by loading the data model into Racer or the
ConceptBase server. Then, the java method
System.nanoTime was used immediately before and
after the query, and the difference was calculated to
estimate the performance of the query. Each time the
java program was executed it would perform only one
query, in order to avoid caching issues across queries.
System.nanoTime was found to give results with a
higher precision than System.currentTimeMillis,
especially as several of the queries took less than one
millisecond to execute.

3.4. Measurement Setup

The following measurement setup was used for this
investigation:
• Hardware configuration (Lenovo M55 with

2.4GHz Intel Core2 CPUs and 2GB of RAM; no
hyperthreading).

• Software configuration (Mandriva Linux 2008.1;
Java 1.6.0_03; latest versions of ConceptBase 7.1,
Protégé 3.4 and Racer 1.9.2.)

4. Results

The evaluation was performed as follows. First, the
load times for loading the different ontologies into
memory are measured. Afterwards, the scalability of
classes and instances are evaluated.

4.1. Load Time of Different Ontology Sizes

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ontology size

Lo
ad

 ti
m

e
in

 s

Scaling classes Racer Scaling classes ConceptBase
Scaling instances Racer Scaling instances ConceptBase

Figure 1. Load time of Racer for scaling of classes and
instances

Before queries are run in both Racer and

ConceptBase, the knowledge base or ontology needs to
be loaded into memory first. Figure 1 shows the load
time in seconds for increasing ontology sizes. Two
distinctions are made here for either scaling of classes
or instances. The scaling of Racer shows a linear
distribution with increasing ontology sizes, whereby
the scaling of classes has a greater impact on the
performance than the scaling of instances. The scaling
of classes has a gradient of 0.3, whereas the scaling of
instances has a gradient of 0.07. The load time for
ConceptBase has a slightly different distribution. The
scaling of instances seems to be linear; however, the
scaling of classes follows a quadratic distribution. The
query times for the scaling of classes are also larger
than for the scaling of instances as also observed for
Racer. Comparing both systems it can be concluded
that the load time of ConceptBase is greater by a factor
of 3.01 for the scaling of classes, but is almost similar
for the scaling of instances with a factor of 0.95.

4.2. Scaling of Classes

Looking at how the performance scales with
increasing ontology sizes (the instance queries would
not make sense when querying an ontology without
instances), Figure 2 shows the queries run in Racer and
ConceptBase (getSuperClasses, getAllSubclassesOf
and getSuperclassesOf all have similar query times). It
is observed, that both queries, getDecendentClasses
and getSuperclasses, scale in a similar fashion with a
quadratic distribution. This is because the same
operation is performed, that is the classification of a

new concept. Racer computes more than is required in
order to answer these particular class queries.
ConceptBase on the other hand shows the
measurements of the similar queries with a linear
distribution. Instead of both queries scaling in a simiar
fashion as in Racer, the query time for subclasses is
higher than for superclasses. It appears that the
performance is dependent on the number of return
values. getAllSubclassesOf returns 31 to 238
subclasses for ontology size 1 and 10 respectively,
while getSuperclassesOf returns only 1 superclass for
all ontology sizes.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ontology size

Q
ue

ry
 ti

m
e

in
 m

s

getSuperclasses Racer getDescendentClasses Racer
getAllSubclassesOf ConceptBase getSuperclassesOf ConceptBase

Figure 2. Query time of Racer for scaling of classes

Comparing the class queries executed in Racer and
ConceptBase, it shows that ConceptBase scales much
better than Racer.

4.3. Scaling of Instances

Figure 3 shows the linear distribution of query
times for scaling of instances. For Racer, it shows that
the query times for getIndividualBelongingToClass are
higher than for getIndividualTypes queries.
getIndividualTypes looks at a specific individual and
returns all classes of which it is an instance of, whereas
getIndividualsBelongingToClass has to consider all
individuals. The implementation of the operations
seem to be quite different and therefore the result can
be seen in the query times of both queries in Racer.
The instance query, getAllInstancesOf, performed in
ConceptBase shows a quadratic distribution, whereas
the getClassificationOf query shows a linear gradient.
getAllInstancesOf takes longer as the return values
range between 47 to 256 for ontology size 1 to 10
respectively, whereas getClassificationOf returns
always only one return value. The direct comparison of

the query times regarding the scaling of instances of
both systems shows that ConceptBase performs better
than Racer.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Ontology size

Q
ue

ry
 ti

m
e

in
 s

getIndividualTypes Racer getIndividualsBelongingToClass Racer
getAllInstancesOf ConceptBase getClassificationsOf ConceptBase

Figure 3. Query time of Racer for scaling of instances

5. Conclusion

This paper evaluated a Deductive Database system
and a Semantic Web reasoning engine - ConceptBase
and Racer. For each system a knowledge base was
implemented in such a way that comparable
performance measurements could be performed.

The findings revealed that the reasoning capabilities
in Racer are richer. Furthermore, queries in
ConceptBase run much faster than in Racer. The
factors were 61 and 7 for ontology sizes 1 and 10
respectively for ontologies with instances. On the other
hand however, the load time to load the different
ontologies was better in Racer by a factor of 3.01 for
the scaling of classes, but was almost similar for the
scaling of instances for which the factor measured was
0.95. The load time for Racer is linear, whereas the
load time for ConceptBase seems to have a quadratic
growth function. The scaling of classes revealed that
class queries take much longer in Racer than in
ConceptBases as in Racer all consistencies are being
checked before a class query is being performed,
measured by a factor of 470. The growth function for
Racer for the class queries is quadratic, whereas the
growth function for ConceptBase is linear. The scaling
of instance queries showed a better performance for
ConceptBase than for Racer by a factor of 4.8.
However, it seems that ConceptBase is more affected
by string processing of the return values of the queries.
This means that if a large amount of result values are

returned, the performance decreases in ConceptBase,
whereas Racer is not affected by this.

Considering that ontologies are developed
incrementally, adding a relatively small increment to a
large ontology has a great effect for the loading of this
ontology into memory for ConceptBase, whereas the
class and instance queries in Racer will have a greater
performance reduction than ConceptBase.

As reasoning on the Web has seen a steady increase
in the past several years, this evaluation shows that
Web reasoning has to speed and scale up with
technologies existing for many decades such as
deductive databases.

6. References

[1] Shortliffe, E. H., “MYCIN: Computer-Based Medical
Consultations”, Elsevier Press, New York, 1976.

[2] CLIPS Website, Last retrieved April 2009 from
http://www.ghg.net/clips/CLIPS.html.

[3] JESS Website, Last retrieved April 2009 from
http://herzberg.ca.sandia.gov/jess/.

[4] Forgy, C. L., “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”. Artificial
Intelligence, 19(1982) 17-37.

[5] Schreiber, A. T., Wielinga, B.J., de Hoog, R.,
Akkermans, H., and van de Velde, W., “CommonKADS: A
Comprehensive Methodology for KBS Development”, IEEE
Expert, December 1994, 28-37.

[6] Angele, J., Fensel, D., and Studer, R., “Developing
Knowledge-Based Systems with MIKE”, Journal of
Automated Software Engineering, Volume 5, Number 4, pp.
389-418(30), 1998.

[7] Voronkov, A., Chapter 1, Lecture notes on Deductive
Databases, 2002.
http://www.voronkov.com/dresden/2002/chapter_1.ps.

[8] Gruber, T. R., “Toward principles for the design of
ontologies used for knowledge sharing”. Journal of Human-
Computer Studies, Volume 43, Issue 5-6 Nov./Dec. 1995,
Pages: 907-928, 1993.

[9] Jeusfeld, M. and Jarke, M., “From relational to object-
oriented integrity simplification”, Proc. Of Deductive and
Object-Oriented Databases 91. Springer-Verlag, 1991.

[10] Jeusfeld, M. and Staudt, M., “Query optimization in
deductive object bases”. In G. Vossen J.C. Freytag and D.
Maier, editors, Query Processing for Advanced Database
Applications. Morgan-Kaufmann, 1993.

[11] Protégé Website, Last retrieved April 2009 from
http://protégé.stanford.edu.

[12] Racer Website, Last retrieved April 2009 from
http://www.racer-systems.com.

