
Using Artificial Life Techniques for Distributed Grid Job
Scheduling

Azin Moallem and Simone A. Ludwig
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

{a.moallem, ludwig}@cs.usask.ca

ABSTRACT
Grids are an emerging infrastructure providing distributed
access to computational and storage resources. Handling
many incoming requests at the same time and distributing
the workload efficiently is a challenge which load balanc-
ing algorithms address. Current load balancing implemen-
tations for the Grid are central in nature and therefore prone
to the single point of failure problem. This paper introduces
two distributed artificial life-inspired load balancing algo-
rithms using Ant Colony Optimization and Particle Swarm
Optimization. Distributed load balancing stands out as a
robust algorithm in regard to any topology changes in the
network. The implementation details are given and evalua-
tion results show the efficiency of the two distributed load
balancing algorithms.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Graph and tree search strategies, Heuristic methods, Schedul-
ing.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Distributed load balancing, artificial life, ant colony opti-
mization, particle swarm optimization.

1. INTRODUCTION
With the rapid growth of data and computational needs,

distributed systems are gaining more attention to solve the
problem of large-scale computing [24]. There are several op-
tions for establishing distributed systems in which the Grid
Systems [17] are the most common ones used for distributed
applications [24]. Workload and resource management are
two essential functions provided at the service level of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

Grid software infrastructure [4]. Resource management and
scheduling are key components in addressing the issues of
task allocation and load balancing in Grids [23]. In com-
puter networking, load balancing is a technique (usually
performed by load balancers) to spread work between two
or more computers, network links, CPUs, hard drives, or
other resources, in order to achieve optimal resource utiliza-
tion, throughput, and response time1. The load balancing
mechanism aims to spread the load on each computing node
equally, maximizing the utilization and minimizing the to-
tal task execution time. In order to achieve these goals,
the load balancing mechanism should be ’fair’ in distribut-
ing the load across the computing nodes; this implies that
the difference between the ”heaviest-loaded” node and the
”lightest-loaded” node should be minimized [20].

Methods used in dynamic load balancing can be roughly
divided into three classes, i.e., centralized, distributed (de-
centralized) and hybrid. Each of these classes has its advan-
tages and disadvantages depending on a number of factors,
e.g., the size of the system, dynamic behavior, etc. [25].
However, all centralized approaches have the common dis-
advantage that they need to have global information about
the state of the system at each point in time. On the other
hand, having all the load balancing information in one node
brings up the risk of loosing all the critical data in case of a
failure. Accordingly, there has been a great effort in recent
years in developing distributed load balancing algorithms
while trying to minimize all the communication needs re-
sulting from the distributed nature.

One of the recent trends in designing these distributed dy-
namic load balancing algorithms involve the use of artificial
life techniques. As artificial life techniques have proved to
be powerful in optimization problems they are a good can-
didate for load balancing as we aim to minimize the load
between the ”heaviest” and ”lightest” node. Job scheduling
is known to be NP-complete, therefore the use of heuristics
is an inevitable approach in order to cope with its difficulties
in practice [15].

Among artificial life techniques ”social insect systems” are
impressive in many ways, but two aspects are of particu-
lar interest. First, they are outstandingly robust. They
function smoothly even though the colony may be continu-
ously growing, or may suffer a sudden reduction in numbers
through an accident, predation, or experimental manipula-
tion, or may spontaneously split into two distinct colonies
of half the size [14]. They routinely cope with gross and

1http://www.answers.com/topic/load-balancing-
computing

minor disturbances of habitat and with seasonal variations
in food supply [21]. Second, they are tiny insects with no or
very small memory and computational ability yet they are
surviving in our complex real world because of their large
numbers. Robustness gives us the ability to deal with the
dynamic topology of today’s networks as nodes may come
and go arbitrarily; and being ”simple” provides us with the
efficiency we need in dealing with large scale systems.

Another artificial life technique which performs well in op-
timization problems is Particle Swarm Optimization (PSO).
PSO is a stochastic search method that was developed by
Kennedy and Eberhart in 1995 [13]. The algorithm is an
evolutionary algorithm (EA) that imitates the sociological
behavior of a flock of birds or a group of people. In bird
flocking, the population benefits from sharing of information
of each individual’s discovery and past experience within the
whole population. Each individual (called particle) in the
population (called swarm) will ”fly” over the search space
to search for the global minima [18]. PSO is easily imple-
mented as it uses numerical encoding and it is proved to
have fast convergence speed [16].

This research proposes and compares two new approaches
for distributed load balancing inspired by Ant Colony and
PSO. In the Ant Colony approach each job submitted in-
vokes an ant and the ant searches through the network to
find the best node to deliver the job to. Ants leave informa-
tion related to the nodes they have seen as a pheromone in
each node which helps other ants to find their paths more
efficiently. In the particle swarm approach each node in the
network is considered to be a particle and it tries to opti-
mize its load locally by sending or receiving jobs from its
neighbors. This process being done locally for each node,
results in a partially global optimum of the load within the
entire network given time constraint limitations.

The rest of this paper is organized as follow: An overview
of related work done in similar areas is provided in Section
2. Brief descriptions of the Ant Colony and PSO techniques
are provided in Section 3. The proposed load balancing
algorithms are described in Section 4. Section 5 shows ex-
perimental results to demonstrate how good the algorithms
work and finally Section 6 and 7 are dedicated to conclusion
and future endeavors of this research.

2. RELATED WORK
There is a lot of research done in the area of centralized

load balancing. As many approaches are out of the scope
of this research, we only provide a brief overview of relevant
ones.

Subrata et al. [23] used Genetic Algorithms and Tabu
search for performing centralized load balancing simulations.
They have proved that the two techniques work quite well
compared to some classical algorithms like Min-min, Max-
min and Sufferage in terms of time makespan. In [6] an
agent-based load balancing algorithm is proposed and is
applied to drug discovery and design. The algorithm per-
forms well in meeting QoS (Quality of Service) parameters,
however as there is a global information repository which
maintains the global information of all the resources in the
Grid the same problem as in all centralized approaches exist,
which is the single point of failure. BDII 1 is another cen-
tralized information system which provides the most recent

1https://twiki.cern.ch/twiki//bin/view/EGEE/BDII

information about the Grid resources to the users. However
being a centralized unit with huge computational needs and
frequent updates, there still exists a single point of failure
in the system.

Research in the area of distributed load balancing is di-
verse. One of the investigations, similar to the algorithm
we propose in this paper, is Messor [19]. Montresor et al.
have used an ant colony approach to develop a framework
called Anthill which provides an environment for designing
and implementing Peer-to-Peer systems. They have devel-
oped Messor which is a distributed load balancing applica-
tion based on Anthill and they have performed some simu-
lations to show how well Messor works. However, they have
not addressed the problem of topology changes in the net-
work and do not provide evidence comparing their approach
with other approaches in distributed load balancing. In [3]
a very similar approach to Messor and also our research is
provided for load balancing and different performance opti-
mization strategies are carried out. However, they do not
compare their results with other distributed load balancing
strategies.

Another related and similar research is done by Al-Dahoud
et al. in which each node sends a colored colony through-
out the network [2]. This approach helps in preventing ants
of the same nest from following the same route and hence
enforcing distribution over the nodes in the network. How-
ever, the research does not provide any evidence whether
this approach has improved load balancing efficiency.

Cao [5] proposes an agent-based load balancing approach
in which an agent-based Grid management infrastructure is
coupled with a performance-driven task scheduler that has
been developed for local Grid load balancing. This work
addresses the problem of load balancing in a global Grid
environment. A genetic algorithm based scheduler has been
developed for fine-grained load balancing at the local level.
This is then coupled with an agent-based mechanism that
is applied to balance the load at a higher level. Agents
cooperate with each other to balance workload in the global
Grid environment using service advertisement and discovery
mechanisms [5]. In their research, the scalability is of great
importance as they are using a genetic algorithm approach
in the local level load balancing part. However, the genetic
algorithm may be a bottleneck for the system at that stage.

Other similar research, which have benefited from the Ant
colony’s power, mostly focus on load balancing in routing
problems and are introduced in [21, 22]. In [22] the research
provides a survey of four different routing algorithms: ABC,
AntNet, ASGA and SynthECA and MACO. In [21], the ant
colony approach in telecommunication networks is used.

Some researchers have considered job migration in their
load balancing algorithms. However, job migration is far
from trivial in practice. It involves collecting all system
states (e.g. virtual Memory image, process control blocks,
unread I/O buffer, data pointers, timers etc.) of the job
which is large and complex. Several studies have shown that:
(1) job migration is often difficult to achieve in practice, (2)
the operation is generally expensive in most systems, and (3)
there are no significant benefits of such a mechanism over
those offered by non-migratory counterparts. These are the
reasons why we are not concerned with job migrations for
our approach [23].

Literature using PSO for distributed load balancing is less
rich compared to Ant Colony load balancing. One similar

research to what we propose here is done in [1], where a
fuzzy based PSO approach is proposed. A position matrix
indicates a fuzzy potential scheduling solution. However,
the approach is a central approach and does not take into
account the arrival of new jobs in a distributed architecture.

3. OPTIMIZATION APPROACHES

3.1 Ant Colony Optimization
Some social insect systems in nature can present an in-

telligent collective behavior although they are composed of
simple individuals with limited capabilities. The intelli-
gent solutions to problems naturally emerge from the self-
organization and indirect communication of these individ-
uals. These systems, such as the Ant Colony, provide im-
portant techniques that can be used in the development of
distributed artificial intelligent systems.

In the early 1990s, Ant Colony Optimization (ACO) [9,
11, 12] was introduced by Dorigo et al. as a novel nature-
inspired meta-heuristic for the solution of hard combinato-
rial optimization (CO) problems [10]. The inspiring source
of ACO is the foraging behavior of real ants. Ants use a
signaling communication system based on the deposition of
pheromone over the path they follow, marking their trail.
Pheromone is a hormone produced by ants that establishes
a sort of indirect communication among them. Basically, an
isolated ant moves at random, but when it finds a pheromone
trail, there is a high probability that this ant will decide to
follow the trail1.

A single ant has no global knowledge about the task it is
performing. The ant’s actions are based on local decisions
and are usually unpredictable. The intelligent behavior nat-
urally emerges as a consequence of the self-organization and
indirect communication between the ants. This is usually
called Emergent Behavior or Emergent Intelligence. Indi-
rect communication between the ants via pheromone trails
enables them to find the shortest paths between their nest
and food sources1. This characteristic of real ant colonies
is exploited in artificial ant colonies in order to solve CO
problems [8].

What makes the ant colony approach especially interest-
ing for the distributed load balancing problem is the dis-
tributed nature. Other artificial life techniques like genetic
algorithms, tabu search or the classical PSO, though be-
ing quite powerful for optimization problems, they have one
drawback when being used in distributed environments; the
solutions found by these algorithms should be compared
with each other to be evaluated based on their usefulness
(i.e. fitness) which in turn however prevents a completely
distributed approach. On the other hand ants begin to move
toward the optimized solution by communicating indirectly
through the environment with other local ants and this com-
munication brings convergence with increasing number of
iterations.

Besides the ability of indirect communication via leaving
pheromone trails, ants are capable of other complex behav-
iors without any intelligence incorporated in them. One
of them is the ability of ants to cluster objects (like dead
corpses) in their nests. At the first glance they may seem
to be directed by a leader to cluster objects. However, the
ants exhibit a very simple behavior which enables them to

1http://ai-depot.com/CollectiveIntelligence/Ant.html

Figure 1: The flow chart of an ant behavior capable
of clustering objects.

cluster objects without any intelligence. Figure 1 shows a
flow chart of an ant which moves around randomly until it
encounters an object; if the ant is carrying an object it will
drop the object, otherwise it picks it up and continues on
its way [19].

3.2 Particle Swarm Optimization
One of the advantages of the PSO technique over other so-

cial behavior-inspired techniques is its implementation sim-
plicity. Yet, as it is a new technique, it has not been widely
used and in particular it is not used for dynamic distributed
Grid job scheduling.

In a PSO system, multiple candidate solutions coexist and
collaborate simultaneously. Each solution candidate, called
a ’particle’, flies in the problem search space (similar to the
search process for food of a bird swarm) looking for the op-
timal position to land. A particle, as time passes through
its quest, adjusts its position according to its own ’experi-
ence’ as well as according to the experience of neighboring
particles [7].

Two factors characterize the status of a particle in the
search space: its position and velocity. The m-dimensional
position for the ith particle in the kth iteration can be de-
noted as xi(k) = xi1(k), xi2(k), ..., xim(k).

Similarly, the velocity (i.e., distance change) is also an m-
dimensional vector which for the ith particle in the kth it-
eration can be described as vi(k) = vi1(k), vi2(k), ..., vim(k).

The particle updating mechanism for a flying particle fly-
ing can be formulated as Equation 1 and 2:

vk+1
id = w∗vk

id+c1∗rand1∗[pbest−xk
id]+c2∗rand2∗[gbest−xk

id]
(1)

xk+1
id = xk

id ∗ vk+1
id (2)

In which vk
id, called the velocity for particle i in the kth

iteration, represents the distance to be traveled by this par-
ticle from its current position, xk

id represents the particle
position in the kth iteration, pbest represents its best pre-
vious position (i.e. its experience), and gbest represents the

NodeIp Load
192. 168. 35. 25 0.8
... ...

Table 1: Load table information in nodes

best position among all particles in the population. rand1

and rand2 are two random functions with a range [0,1]. c1

and c2 are positive constant parameters called acceleration
coefficients (which control the maximum step size the par-
ticle can achieve). The inertia weight w, is a user-specified
parameter that controls the impact of previous historical
values of particle velocities on its current one.

A larger inertia weight pressures towards global explo-
ration while a smaller inertia weight pressures toward fine-
tuning the current search area. Suitable selection of the in-
ertia weight and acceleration coefficients can provide a bal-
ance between the global and the local search. Equation 1 is
used to calculate the particle’s new velocity according to its
previous velocity and to the distances of its current position
from both its own best historical position and its neighbors’
best position. Then the particle flies toward a new position
according to Equation 2 [7].

4. PROPOSED LOAD BALANCING
APPROACHES

4.1 Ant Colony Load Balancing
A new load balancing algorithm was developed by merg-

ing the idea of how ants cluster objects with their ability to
leave trails on their paths so that it can be a guide for other
ants passing their way. In the proposed algorithm, when a
job is submitted to the Grid from any node in the network,
an ant is invoked to search for the best node (i.e. the light-
est node) to deliver the job to. As the ant is moving from
one node in the network to another, it collects statistical
information about the load of the nodes it has visited and
carries this information from node to node. Each ant leaves
this statistical information in each node as a trail so that
other ants can use this information in order to decide which
path to take to reach to ”lighter” regions in the network.

Ants build up a table in each node as shown in Table
2. This table acts like pheromone an ant leaves while it is
moving and guides other ants to choose better paths rather
than wandering randomly in the network. Looking at the
information provided in these tables ants tend to go toward
nodes which are less loaded. Entries of the table are the
nodes that ants have visited on their way to deliver their
jobs and their load information.

As the number of jobs submitted to the network increases,
the ants can take up a huge amount of bandwidth of the
network, so moving ants should be as simple and small-sized
as possible. To do this instead of carrying the job while the
ant is searching for a ”light” node, it carries the source node
information and a unique job id. By doing this, whenever
an ant reaches its destination the job can be downloaded
from the source when needed. Results can also be uploaded
to the source node directly.

The pseudo-code of a ”typical” ant behavior in its initial-
ization and running phases can be seen in Algorithms 4.1
and 4.2. Some details are not included in the pseudo codes

to simplify and stress on the main parts.
As shown in Algorithm 4.1, when a job is sent to a node

an ant is initialized. The ant first chooses its destination
node according to the information provided in the local load
balancing table built by other ants. The ant pays attention
that the chosen node should be a valid node (an invalid node
is a node that existed sometime in the network but it is not
there anymore according to a failure).

Algorithm 4.1: initialize()

destNode← find destination node(load table)
while !valid(destNode)

do{
remove from localtable(destNode)
destNode← find destination node(load table)

run()

As the topology of the network may change, the ant up-
dates the load balancing table and repeats this process until
it finds a valid node. Thus, the dynamic topology problem
is addressed as an issue of self organization inside the algo-
rithm. The ant proceeds to the next step when a valid node
is found, moving toward the destination. Details of this
phase are shown in the pseudo code given in the Algorithm
4.2. In this phase, the ant moves toward the destination
node and while it is going from node to node it adds the
information of visited nodes to its own history (updareHis-
tory()) and also updates local tables in the nodes on its path
(updateLocalTable(currentNode)). To improve performance,
in a random fashion, the ant chooses one of the neighbors
on its path instead of its predefined destination in case the
neighbor is ”lighter” than the destination node.

Algorithm 4.2: run()

sourceNode, destNode
if step! = maximum number of steps

then


updateHistory()
updateLocaltable(currentNode);
destNode← getHistoryORNeighbourhood()
step + +

else submitjob(destNode)

4.2 Particle Swarm Load Balancing
We propose a new approach for scheduling jobs in the

Grid using the idea of PSO described in Section 3.2. In this
approach all the nodes in the Grid are considered a flock
and each node is a particle in this flock. Thus, the position
of each node in the flock can be determined by its load. The
velocity of each position can be defined by the load difference
the node has compared to its other neighbor nodes and the
particle moves toward the best neighbor by sending some
of the assigned jobs to it. In case of a tie no jobs will be
exchanged. As mentioned in Section 3.2, the velocity of each
particle can be formulated as in Equation 1.

As we are dealing with a dynamic environment, the nature
of the problem being solved is changing with time. We do
not want to rely on previous history of the solutions found as

in a classical PSO algorithm; therefore in our approach we
propose w and c2 to have the value 0 and c1 to have the value
1. As the environment of the search space in a dynamic Grid
is dynamically changing; using gbest will help the particle to
move toward its current best neighbors, which is the benefit
to be used for load balancing. Thus, the velocity will be the
difference between the loads of two nodes. As the load dif-
ference between nodes increases, the velocity also increases.
Thus, more jobs will be exchanged accordingly in order to
bring the Grid to an equilibrium more quickly. The algo-
rithm selforganizes in dealing with topology changes as it
sends messages to its current neighbors and makes decisions
in real time.

Taking into account that all nodes are exchanging their
loads in parallel, will bring the network to a partial global
optima very quickly. Each node will submit some of its jobs
to one of its neighbors which has the minimum load among
all. If all its neighbors are busier than the node itself, no
job is submitted by the current node.

The experience of each particle which helps in moving it
toward the best solution as in a classical approach was left
out deliberately. The reason is the dynamicity of job arrivals
in the Grid which makes each particle’s past experience use-
less. Algorithm 4.3 shows the pseudo code for PSO which
runs in parallel in all nodes.

Algorithm 4.3: run()

minNode← find minimumLoadNode inNeighbour()
delta← (currentLoad−minNodeLoad)/2
if delta > 0

then

{
for i← delta to 0
minNode.submitJob()

5. EXPERIMENTAL RESULTS
By providing some experimental results we will compare

the performance of the Ant colony and PSO algorithms with
the random approach. In the first set of experiments the
makespan and the communication overhead is measured and
compared. The fairness of the algorithms, their average vari-
ance and scalability are measured in the second set of ex-
periments. In order to build the topology of the network
with a specific number of nodes we first build a minimum
spanning tree out of a specified number of nodes and then
by adding random links to the tree we get our final topology.
As the network and its configuration are created randomly
(although they are roughly the same as their construction
method is the same) the same experiment can not be re-
peated twice, therefore we have used the average of ten runs
in our experiments. Each machine has one processor with
the speed defined in MHZ and each job has a length which
is defined in millions of instructions. Thus, the time each
job will take to run on a processor can be forecasted. For
the implementation of a scheduling algorithm inside each
resource, a First Come First Served (FCFS) algorithm is
used.

In the first set of experiments we compare the Ant-Coloy
algorithm’s makespan with both the PSO and the random
approach. The random approach assigns the jobs randomly
within the network. The makespan is defined as the amount
of time taken from when the first job is sent to the network

Figure 2: Average makespan of different approaches.

Figure 3: Average number of communications of dif-
ferent approaches.

until the last job gets returned. Figure 2, shows a one hun-
dred node network in which 400 jobs with random lengths
are sent to random locations in the network. The average
makespan of different approaches are shown in this figure.

Figure 3, plots the number of communications needed for
each approach to fulfill the task of job scheduling. In PSO
each node tries to communicate with its neighbors to balance
its load by submitting or receiving jobs.

As can be concluded from Figures 2 and 3, the random
approach performs really poorly in terms of makespan, how-
ever, it does not have any communication overhead in the
network. PSO and Ant colony perform nearly the same
comparing their makespan, but PSO always wins over the
Ant Colony approach, however, it uses a huge amount of
bandwidth in the network as a job is transferred from one
machine to another several times until it gets executed. It
is not necessary to send the job several times as it uses up
a huge bandwidth; we can simply send a unique job ID to
the source node and when the job has reached its final des-
tination and is ready to get executed it can be downloaded
from the source node.

A good load balancing algorithm is one which is ”fair”.
A fair algorithm is an algorithm for which the difference
between the ”heaviest” and ”lightest” node is minimized.
We are experimenting with a 100 node network and jobs
are sent to the network at random time intervals. Figure
4, shows the average load difference between the ”heaviest”
and ”lightest” node for the different approaches. As shown
in the figure, PSO wins over other approaches in terms of
the fairness measure, meaning that the difference between

Figure 4: Load difference between heaviest and
lightest node of different approaches.

Figure 5: Average variance for different approaches.

the ”heaviest” and ”lightest” node is minimized in PSO. Ant
Colony is performing slightly worse than PSO but still much
better than the random approach.

On the other hand a good load balancing algorithm is one
in which the load related to the nodes is equally distributed.
The performance of the algorithm can be measured by calcu-
lating the deviation from the average load for all the nodes.
This can be done by calculating the variance given in Equa-
tion 3. Comparing each algorithm’s deviation with other
algorithms is a measure of how fair the algorithm is.

variance =

√∑n
i=1(load− loadi)2

n
(3)

As can be seen in Figure 5, for PSO all nodes are near
the expected average load node at a given timestamp in the
network. Ant colony is also performing fairly good. We
would assume all nodes in the network have an equal com-
putational ability; however, different computational abilities
do not affect the performance of the algorithm. We would
need to leave more information in load tables being built in
nodes and hence decided against it.

The scalability of any algorithm is of great importance.
Our Ant-colony approach is robust to scaling as a new ant
is invoked in response to each job submitted to the network.
One of the advantages of this approach in which an ant is
invoked in response to submitting a job is that these ants
update the load balancing table in each node and hence im-
prove the performance of the system by updating it more of-
ten when their number is large. In order to understand how
well the Ant Colony algorithm responds to larger scenarios
we have investigated the effect of increasing the number of

Figure 6: Effect of increasing number of jobs on
time.

Approach Equation
Random Y = 115x + 260.5 = [ms]
PSO Y = 72.82x + 138.6 = [ms]
Ant Colony Y = 86.03x + 174.5 = [ms]

Table 2: Load table information in nodes

jobs.
Figure 6, shows how an increase in the number of jobs

will affect the makespan. The horizontal axis shows the
number of jobs sent to the Grid and the vertical axis shows
the time required to run the load balancing algorithm. As
can be seen for PSO and Ant colony the makespan increases
linearly while the number of jobs increases. However, the
gradient of PSO is slightly less than the gradient of the Ant
Colony.

Table 2, lists the regression equations from the measure-
ments shown in Figure 6. PSO scales best with an increasing
number of jobs.

In another set of experiments we examined the effect of
the number of injection points on the performance of the
algorithms. The random approach, as expected, shows a
very bad performance when all jobs are sent to one node in
the Grid. It performs by a factor of 16.35 worse considering
the makespan. Having a mutation factor for the Ant colony
approach enables it to perform as good as random injection
points. A mutation factor makes an ant to decide randomly
with a predefined probability. The particle swarm performs
worse by a factor of 3.1 when having only one injection point
in the system.

6. CONCLUSION
In this research we investigated the use of artificial life

techniques and more specifically social insect systems and
sociological behavior of flocks of birds in designing two new
distributed load balancing algorithms for the Grid. The sim-
ulations show that the algorithms proposed can perform well
for job scheduling in a Grid network where jobs are being
submitted from different sources and at different time inter-
vals. PSO shows better results considering the makespan,
however; it uses up more bandwidth as more communica-
tion is needed than for the Ant Colony. Looking at the
scalability of the algorithms it shows a linear behavior with
an increasing number of jobs. One drawback of the Ant
Colony algorithm is that it does not schedule the jobs well
in scenarios where all the jobs are being sent to one or two

nodes in the network. This can be fixed by including a mu-
tation factor and the ants move randomly with a certain
probability. On the other hand in a normal Grid system in
which jobs are submitted randomly from many nodes, in-
creasing the number of jobs, which results in an increase in
the number of ants, can be an advantage for the algorithm
as the load balancing tables in each node get updated more
frequently.

7. FUTURE WORK
Future research will address the following. Node failures

or congested nodes need to be considered imposing that the
ants have to update/change the tables while delivering their
jobs to specific nodes. Furthermore, if load tables in each
node do not get updated frequently their information may be
outdated which can be considered as pheromone evaporation
in Ant colony. However, the idea needs a deeper analysis.
Moreover, PSO nodes may want to create new connections
in response to losing some of their connections according to
node failures. In addition, investigating the effect of node
failures on the performance of the algorithms also needs to
be investigated.

8. REFERENCES
[1] A. Abraham, H. Liu, W. Zhang, and T. Chang.

Scheduling jobs on computational grids using fuzzy
particle swarm algorithm. In Proceedings of 10th
International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems,
pages 500–507, 2006.

[2] A. Al-Dahoud and M. Belal. Multiple ant colonies for
load balancing in distributed systems. In Proceedings
of The first International Conference on ICT and
Accessibility, 2007.

[3] J. Cao. Self-organizing agents for grid load balancing.
In GRID ’04: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, pages
388–395, Washington, DC, USA, 2004.

[4] J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd.
Grid load balancing using intelligent agents. Future
Gener. Comput. Syst., 21(1):135–149, 2005.

[5] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and
G. R. Nudd. Agent-based grid load balancing using
performance-driven task scheduling. In IPDPS ’03:
Proceedings of the 17th International Symposium on
Parallel and Distributed Processing, page 49.2,
Washington, DC, USA, 2003. IEEE Computer Society.

[6] S. Chen, W. Zhang, F. Ma, J. Shen, and M. Li. A
novel agent-based load balancing algorithm for grid
computing. In GCC Workshops, pages 156–163, 2004.

[7] T. Chen, B. Zhang, X. Hao, and Y. Dai. Task
scheduling in grid based on particle swarm
optimization. In ISPDC ’06: Proceedings of the Fifth
International Symposium on Parallel and Distributed
Computing, pages 238–245, Washington, DC, USA,
2006. IEEE Computer Society.

[8] J. L. Deneubourg, S. Aron, S. Goss, , and J. M.
Pasteels. The self-organizing exploratory pattern of
the argentine ant. Journal of Insect Behavior,
3(2):159–168, 1990.

[9] M. Dorigo. Optimization, Learning and Natural
Algorithms. PhD thesis, Politecnico di Milano, Italy,

1992.

[10] M. Dorigo and C. Blum. Ant colony optimization
theory: a survey. Theor. Comput. Sci.,
344(2-3):243–278, 2005.

[11] M. Dorigo, V. Maniezzo, and A. Colorni. Positive
feedback as a search strategy. Technical report, 1991.

[12] M. Dorigo, V. Maniezzo, and A. Colorni. The ant
system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26:29–41, 1996.

[13] R. Eberhart and J. Kennedy. A new optimizer using
particle swarm theory. Proceedings of the Sixth
International Symposium on Micro Machine and
Human Science, MHS ’95., pages 39–43, Oct 1995.

[14] N. R. Franks. Army ants: A collective intelligence.
American Scientist, pages 139–145, March 1989.

[15] C. Grosan, A. Abraham, and B. Helvik.
Multiobjective evolutionary algorithms for scheduling
jobs on computational grids. ADIS International
Conference, Applied Computing 2007, Salamanca,
Spain, Nuno Guimares and Pedro Isaias (Eds.), 2007.

[16] J. K. J and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers, 2001.

[17] C. Kesselman and I. Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann
Publishers, November 1998.

[18] D. Liu, K. Tan, and W. Ho. A distributed
co-evolutionary particle swarm optimization
algorithm. IEEE Congress on Evolutionary
Computation, CEC 2007., pages 3831–3838, Sept.
2007.

[19] A. Montresor and H. Meling. Messor: Load-balancing
through a swarm of autonomous agents. In In
Proceedings of the 1st Workshop on Agent and
Peer-to-Peer Systems, 2002.

[20] S. Salleh and A. Y. Zomaya. Scheduling in Parallel
Computing Systems: Fuzzy and Annealing Techniques.
The Springer International Series in Engineering and
Computer Science, 1999.

[21] R. Schoonderwoerd, O. Holland, and J. Bruten.
Ant-like agents for load balancing in
telecommunications networks. In AGENTS ’97:
Proceedings of the first international conference on
Autonomous agents, pages 209–216, New York, NY,
USA, 1997. ACM.

[22] K. M. Sim and W. H. Sun. Ant colony optimization
for routing and load-balancing: survey and new
directions. IEEE Transactions on Systems, Man and
Cybernetics, Part A, 33(5):560–572, Sept. 2003.

[23] R. Subrata, A. Y. Zomaya, and B. Landfeldt. Artificial
life techniques for load balancing in computational
grids. J. Comput. Syst. Sci., 73(8):1176–1190, 2007.

[24] K. Q. Yan, S. C. Wang, C. P. Chang, and J. S. Lin. A
hybrid load balancing policy underlying grid
computing environment. Comput. Stand. Interfaces,
29(2):161–173, 2007.

[25] W. Zhu, C. Sun, and C. Shieh. Comparing the
performance differences between centralized load
balancing methods. IEEE International Conference on
Systems, Man, and Cybernetics, 1996., 3:1830–1835
vol.3, Oct 1996.

