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Abstract—Rule discovery is an important classification
method that has been attracting a significant amount of
researchers in recent years. Rule discovery or rule mining
uses a set of IF-THEN rules to classify a class or category.
Besides the classical approaches, many rule mining approaches
use biologically-inspired algorithms such as evolutionary algo-
rithms and swarm intelligence approaches. In this paper, a
Particle Swarm Optimization based discrete implementation
with a local search strategy (DPSO-LS) was devised. The local
search strategy helps to overcome local optima in order to
improve the solution quality. Our DPSO-LS uses the Pittsburgh
approach whereby a rule base is used to represent a ‘particle’.
This rule base is evolved over time as to find the best possible
classification model. Experimental results reveal that DPSO-LS
outperforms other classification methods in most cases based
on rule size, TP rates, FP rates, and precision.

Keywords-Rule classification, Pittsburgh approach, particle
swarm optimization, local strategy.

I. INTRODUCTION

In this current information age, a tremendous expansion
in the volume of data is seen that is being generated and
stored. Given this tremendous amount of data, efficient and
effective tools need to be present to analyze and reveal
valuable knowledge that is hidden. The objective of the field
of knowledge discovery and data mining are the discovery of
knowledge that is not only correct, but also comprehensible.

Several data mining tasks have emerged that include clas-
sification, clustering, regression, dependence modeling, etc.
The classification task is characterized by the organization of
data into given classes. It is also known as supervised classi-
fication whereby given class labels are ordered to objects in
the data collection. In general, classification approaches use
a training set in which all objects are already associated with
their corresponding class labels. The classification algorithm
then learns from the training set data and builds a model.
This model is then used to classify unseen data and assign
a class label to each data item.

Rule discovery is an important classification method that
has been attracting a significant amount of researchers in
recent years. It uses a set of IF-THEN rules to classify a class
or category in a natural way. A rule consists of antecedents
and a consequent. The antecedents of the rule consist of a

set of attribute values and the consequent of the rule is the
class which is predicted by that rule.

Frequently used classification methods include decision
trees, neural network, and naive Bayes classification, etc. [1].
Decision trees specify the sequences of decisions that need
to be made accompanied by the resulting recommendation.
Typically, a decision-tree learning approach uses a top-down
strategy. Information gain was introduced as a ”goodness”
criterion first in a decision tree algorithm known as ID3 [2].
However, since then, ID3 has been further improved and is
now known as C4.5 [3]. These improvements include meth-
ods for dealing with numeric attributes, missing values, and
noisy data. Neural networks is another method frequently
used in data mining. It is a black box system with layers of
neurons that learn the task by applying the input and output
values. Neural networks are seen as data driven self-adaptive
methods. They can adjust themselves to the data without any
explicit specification for the underlying model [4]. Naive
Bayes learning is one particular strategy belonging to the
category of neural networks. It is a statistical method for
classification, which is based on applying the Bayes theorem
with naive independence assumptions [5].

This paper introduces a rule-mining algorithm that is
based on a biologically-inspired algorithm. In particular, a
particle swarm optimization approach is used to extract rules
as a model for the prediction of classes.

The remainder of the paper is organized as follows. In
Section II, related work is discussed. Our proposed algorithm
is introduced in detail in Section III. The experimental setup
and results are described in Section IV. The conclusion and
future work is discussed in Section V.

II. RELATED WORK

Related work in classification rule mining using biology-
inspired algorithms mainly include evolutionary algorithms
and swarm intelligent approaches. Genetic algorithm (GA)
based concept learning uses either the Pittsburgh approach
or the Michigan approach [6]. For the Pittsburgh approach,
every individual in the GA is a set of rules that represents a
complete solution to the learning problem. For the Michigan
approach on the other hand, each individual represents a
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single rule that provides only a partial solution to the overall
learning task.

GA-based concept learning has been widely used for rule
mining. In [6], a GA-based algorithm is proposed to discover
comprehensive IF-THEN rules. It uses a flexible chromo-
some encoding where each chromosome corresponds to a
classification rule. In addition, a hybrid decision tree/genetic
algorithm is used to discover small disjunct rules in [7].
A decision-tree algorithm is used to classify examples be-
longing to large disjuncts, while a new GA is designed for
classifying examples belonging to small disjuncts.

Evolutionary approaches for automated discovery of cen-
sored production rules, augmented production rules and
comprehensible decision rules are introduced in [8], [9],
[10], respectively. The proposed GA-based approaches, sim-
ilarly, use a flexible chromosome encoding, where each
chromosome corresponds to an augmented production rule, a
comprehensible decision rule or a censored production rule.

With regards to swarm intelligence approaches, a clas-
sification algorithm called Ant-Miner, first introduced in
[11], has been applied successfully on rule classification
problems. Particle Swarm Optimization (PSO) is another
approach inspired by nature. However, most of the swarm
intelligence algorithms for rule classification are based on
the Michigan approach ([13], [15]).

PSO has been proven to be able to achieve a faster conver-
gence than the GA algorithm [16]. In addition, it has been
experimentally shown that the PSO algorithm scales well
and is not highly sensitive to the population size [16]. As
far as the authors’ knowledge is concerned, due to the lack
of flexibility of the Pittsburgh approach [14], the Pittsburgh-
based PSO algorithm on rule classification is rarely used
in literature. On the other hand, the Michigan approach
usually requires some changes in the definition of the PSO
algorithm to repel a particle from its neighbor [14] in order
to avoid convergences of particles. In addition, the Michigan
approach aims to optimize each rule’s quality individually,
and does not take the interaction between other rules [15]
into the account. In [16], the knowledge acquisition with a
Pittsburgh-based swarm-intelligence approach is introduced.
A learning strategy of a fuzzy-rule-based meta-scheduler
is analyzed and compared with other scheduling strategies.
The results of the Pittsburgh approach outperformed other
strategies such as GA. In the light of its simplicity and
capability to control convergence, the Pittsburgh-based PSO
is a promising strategy that can outperform most of the clas-
sical classification algorithms. For this purpose, a discrete
particle swarm optimization (DPSO-LS) implementation is
investigated with a local strategy for solving the classifica-
tion problem. In addition, since PSO is known to get easily
stuck in local optima, an improvement with a local strategy
is introduced.

III. DISCRETE PARTICLE SWARM OPTIMIZATION WITH

LOCAL SEARCH STRATEGY (DPSO-LS)

PSO was introduced by Eberhart and Kennedy [12] and
is based on the analogy of the behavior of flocks of birds or
schools of fish. Although the PSO algorithm was proposed
for continuous space problems, however, many real-world
datasets use categorical data, and therefore, we considered
this in the classification task formulation. In classical PSO,
swarm individuals are called particles, and the population
is called the swarm. Each particle has its own position,
velocity and historical information. The particles fly through
the search space by using the historical information to steer
towards local or global optima.

Specifically, a Discrete Particle Swarm Optimization
(DPSO-LS) for the classification rule mining problem is
proposed. A Rule Base (RB) as a whole represents a
‘particle’. Each RB is denoted as a matrix, where each
row describes a classification rule. The rules are IF-THEN
rules that have conjunctive antecedents and one consequent.
Hence, the 𝑖𝑡ℎ particle is presented as follows:

𝑃𝑖 =

∣
∣
∣
∣
∣
∣
∣
∣

𝑎𝑖1,1 𝑎𝑖1,2 ... 𝑎𝑖1,𝑛 𝑐𝑖1
𝑎𝑖2,1 𝑎𝑖2,2 ... 𝑎𝑖2,𝑛 𝑐𝑖2
... ... ... ... ...

𝑎𝑖𝑚,1 𝑎𝑖𝑚,2 ... 𝑎𝑖𝑚,𝑛 𝑐𝑖𝑚

∣
∣
∣
∣
∣
∣
∣
∣

(1)

where 𝑎𝑖𝑚𝑛 represents the 𝑛𝑡ℎ antecedent in the 𝑚𝑡ℎ rule
of the 𝑖𝑡ℎ particle. 𝑐𝑖𝑚 is the 𝑚𝑡ℎ consequent of the 𝑖𝑡ℎ

particle. 𝑚 is the number of rules and 𝑛 is the number of
antecedents. The antecedents are denoted as feature variables
while the consequent is the class labels. Thus, a particle
consists of 𝑚 rules, where each rule has 𝑛 antecedents and
1 consequent.

The values of every antecedent, which are feature values
of the variable, is enumerated consecutively starting from 1.
For instance, if an antecedent has 5 discrete feature values, it
will be enumerated as {1, 2, 3, 4, 5}. In this way, 0 means the
antecedent can be any value in the rule, or in other words,
0 indicates the variable absence in the rule. Thus, a rule
with all its antecedents having a value of 0 is not allowed.
In addition, the constraints of the swarm position updating
process need to be considered since the particle might fly
outside the solution space:

𝑎𝑖𝑗,𝑘 ∈ [0, 𝑁𝐹𝑖𝑛], 𝑗 ∈ {1, 2, ...,𝑚} (2)

𝑘 ∈ {1, 2, ..., 𝑛} (3)

𝑐𝑖𝑗 ∈ [1, 𝑁𝐹𝑜𝑢𝑡] (4)

where 𝑁𝐹𝑖𝑛 and 𝑁𝐹𝑜𝑢𝑡 represent the number of discrete
values for an antecedent and a consequent, respectively. The
𝑖𝑡ℎ particle’s velocity matrix is denoted as follows:
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𝑉𝑖 =

∣
∣
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𝑣𝑖1,1 𝑣𝑖1,2 ... 𝑣𝑖1,𝑛 𝑣𝑖1,𝑛+1

𝑣𝑖2,1 𝑣𝑖2,2 ... 𝑣𝑖2,𝑛 𝑣𝑖2,𝑛+1

... ... ... ... ...
𝑣𝑖𝑚,1 𝑣𝑖𝑚,2 ... 𝑣𝑖𝑚,𝑛 𝑣𝑖𝑚,𝑛+1

∣
∣
∣
∣
∣
∣
∣
∣

(5)

where 𝑣𝑖𝑗,𝑘 ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥], 𝑗 ∈ {1, 2, ...,𝑚}, and the
velocity matrix has the same dimension as the position ma-
trix. 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the minimum and maximum values
allowed for the velocity, respectively. More specifically, we
use a change vector �⃗�𝑖, which is the change vector for the
𝑖𝑡ℎ particle, with the same dimension of the velocity matrix.

�⃗�𝑖 =

∣
∣
∣
∣
∣
∣
∣
∣

𝑣𝑖1,1 𝑣𝑖1,2 ... 𝑣𝑖1,𝑛 𝑣𝑖1,𝑛+1

𝑣𝑖2,1 𝑣𝑖2,2 ... 𝑣𝑖2,𝑛 𝑣𝑖2,𝑛+1

... ... ... ... ...
𝑣𝑖𝑚,1 𝑣𝑖𝑚,2 ... 𝑣𝑖𝑚,𝑛 𝑣𝑖𝑚,𝑛+1

∣
∣
∣
∣
∣
∣
∣
∣

(6)

The values of �⃗�𝑖 are randomly assigned by 1, 2 and
3, where 1, 2 and 3 are denoted as three directions. 1 is
denoted as the direction of the particle’s move from the
current position to the local best position. 2 is denoted as the
direction of the particle’s move toward from current position
to the global best position. 3 is denoted as the direction
of the particle’s move from the current position to other
position randomly within a range. The three directions are
randomly assigned by following the ratios 𝜔1, 𝜔2, and 𝜔3

(𝜔1 < 𝜔2 < 𝜔3). As shown in Equation 7, the sum of the
ratios should be equal to one.

By adopting the concept of change vector, the velocity
of the particle can be updated by considering the local
best position, global best position and random changes. In
our specific case, the local best position is the local best
rule base that has been found by the particle so far. The
global best position is the best rule base that has been found
through iterations. Precisely, as shown in Equation 8, for the
𝑖𝑡ℎ particle, 𝑉1(𝑡) is the difference between the local best
position and the current position, while �⃗�𝑖 are assigned to 1,
and the rest of the values in the matrix are set to 0. Similarly,
𝑉2(𝑡) is the difference between the global best position and
the current position, while �⃗�𝑖 are assigned to 2. Values of
𝑉3(𝑡) are randomly assigned within the range (see Equation
9), while values of �⃗�𝑖 are assigned to 3.

𝜔1 + 𝜔2 + 𝜔3 = 1 (7)

𝑉 (𝑡+ 1) = 𝑉1(𝑡)⊕ 𝑉2(𝑡)⊕ 𝑉3(𝑡) (8)

𝑉3(𝑡) ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] (9)

where ⊕ denotes an addition between matrices. After the
velocity matrix has been calculated, the particle position can
be computed as follows:

𝑃 (𝑡+ 1) = 𝑃 (𝑡)⊕ 𝑉 (𝑡+ 1) (10)

Thus, the process is repeated until it reaches the desired
number of iterations. The historical information, such as

global best position and local best position, is stored. It has
to be mentioned that the particle size remains unchanged
through the whole optimization process. The size of a
rule base is known apriori from other existing algorithms
[16] and set accordingly. This is also the case for the
Michigan approach where the size of a rule set need to
be predefined. In addition, it has to be highlighted that
the proposed algorithm does not face weight modification
through the optimization of the rule base. Finally, each
particle is updated using Equation 10. Hence, the range of
constraints, as given in Equations 2-4, are considered within
the update process.

A. Definition of Overall Fitness

We propose a rule selection method where the number
of classification rules included in each rule set is fixed as
a predefined number. That is, each rule set with a specific
number of rules (a rule base) is a particle. Thus, the overall
fitness function of the rule set can be defined as follows:

𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑆) = 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝐶𝑃 (𝑆)

∣𝑆∣ (11)

where NCP(S) is the number of instances that have been
correctly classified in the data set S, and ∣𝑆∣ is the number
of instances in the training data set S. 𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is defined to
measure the overall performance of a rule base as a solution
that can correctly classify training patterns. The higher the
value of the coverage, the better the solution.

B. Local Mutation Strategy

Since PSO in general can get easily stuck in a local
optima, a local strategy need to be devised that is run after
certain number of iterations have passed. In particular, the
local strategy that was devised for DPSO-LS makes use of
mutation. Since a ‘particle’ is a rule base that has a good
performance there still might exist some bad rules. In the
light of overcoming the shortage of the Pittsburgh approach
with poor quality individuals and to avoid getting stuck in
local optima, the proposed local strategy modifies the worst
rule of the best rule base, that is the global best position, in
order to improve the overall performance every 20 iterations.
Thus, for each selected worst rule, we mutate one value
of the antecedent randomly within the constraints to see
whether it has improved the overall performance or not. If
it improves the performance, we stop and replace the worst
rule with the new rule. Otherwise, we continue mutating
randomly until we have found a new rule or until we have
mutated a maximum of 10 times.

The equation to measure the quality of every rule uses the
Laplace-corrected precision [15] equation, which is given
below:

𝑓𝑙𝑜𝑐𝑎𝑙 =
1 + 𝑇𝑃

1 + 𝑇𝑃 + 𝐹𝑃
(12)

where 𝑇𝑃 is the number of true positives, and 𝐹𝑃 is the
number of false positives. Specifically, TP is the number of
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instances that match both the rule antecedent and the rule
consequent. FP is the number of instances that match the
rule antecedent, but do not match the consequent. After we
have obtain the best rule base (the global best position), a
pruning process is applied to prune the bad rules from the
rule base. We use Equation 12 to prune the bad rules when
the 𝑓𝑙𝑜𝑐𝑎𝑙 values are less than 0.1 in every run.

C. Algorithm Steps

The steps of the proposed DPSO-LS algorithm can be
described as follows:

∙ Step 1: Initialization phase - The input data set needs
to be split into training set and test set. The parameters
of the DPSO-LS algorithm need to be initialized. A set
of particles are initialized randomly. In the phase of
initialization, each rule base is initialized by assigning
values to half of the variables. That is, only half of the
antecedents are randomly assigned features values, the
rest of the antecedents are assigned value 0.

∙ Step 2: Fitness evaluation - We use Equation 11 to
measure the goodness of a particle in the swarm.

∙ Step 3: Local and global best position computation -
A local best position of every particle is selected with
the best fitness values that have been recorded so far.
The best position of the swarm is compared with the
current global best position, if it is greater than the
global best values, the global position is updated with
the best position found so far.

∙ Step 4: Velocity update - The velocity of each particle
is updated by Equation 8. As mentioned before, the
velocity is updated by considering the personal best
position, global best position and random changes.

∙ Step 5: Position update - The position of each particle
is updated simply according to Equation 10.

∙ Step 6: Mutation - For every 20 iterations, the worst
rule of the global best position is selected and the
antecedents of the selected rule are mutated 10 times
at random.

∙ Step 7: Iteration - If the stopping criterion has not been
met, go back to Step 2. Otherwise, go to Step 8.

∙ Step 8: Output and pruning - The best global position
is generated as an output. The poor quality rules of the
output are pruned if the fitness value of that rule is less
than 0.1.

∙ Step 9: Testing - The pruned output from Step 8 is
used to classify the test set in order to measure the
performance.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

As far as the performance evaluation is concerned for
the proposed DPSO-LS algorithm, a comparison with other
rule classification algorithms JRip, PART and decision tree

algorithm J48 is performed. The algorithms are summarized
as follows:

∙ JRip is a RIPPER rule learning algorithm [18]. JRip is
based on association rules with reduced error pruning
(REP), and integrates reduced error pruning with a
separate-and-conquer strategy. It is a very common and
effective technique found in decision tree algorithms.

∙ PART is created by Frank and Witten [17] for a partial
decision tree. PART combines the separate-and-conquer
strategy of RIPPER with the decision tree. It works
by building a rule and removing its cover until all the
instances are covered.

∙ J48 is a decision tree implementation induced by the
C4.5 algorithm, which is developed by Quinlan [3]. It
learns decision trees for the given data by constructing
them in a top-down way.

The experiments are conducted on a number of datasets
taken from the UCI repository. The experiments are im-
plemented on an ASUS desktop (Intel(R) Dual Core I3
CPU @3.07 GHz, 3.07 GHz) of Matlab Version 7.13.
All measurements are tested 10 times using 10-fold cross
validation [4]. Each data set is divided into 10 partitions.
Nine partitions of the data set are used as the training data
and one partition is selected as the test data.

Parameter Values
Swarm Size 25

Maximum Iteration 100
(𝜔1, 𝜔2, 𝜔3) (0.2, 0.3, 0.5)

[𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥] [-1, 1]

Table I
PARAMETERS AND THEIR VALUES OF THE DPSO AND DPSO-LS

ALGORITHMS.

Table I shows the parameters and their values used for
our DPSO-LS algorithm. Normally, a large swarm size
requires less iterations to reach a convergence in PSO. In
our proposed algorithm, the swarm size is chosen as 25,
and the maximum number of iterations for each run is set
to 100. The description of the selected data sets used are
summarized in terms of number of attributes, number of
instances and number of classes as shown in Table II. The
6 data sets are listed alphabetically, where data set Breast-L
and Breast-W are abbreviations for Ljubljana Breast Cancer
and Wisconsin Breast Cancer, respectively. Measured are the

Data Set Attributes Instances Classes
Balance-scale 4 625 3

Breast-L 9 286 2
Breast-W 9 699 2

Car 6 1728 4
Lymphography 18 146 4

Tic-Tac-Toe 9 958 2

Table II
DATASETS USED FOR THE EXPERIMENTS.
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rule size, the weighted average TP rates and FP rates, as well
as the precision.

B. Comparison and Results of the Different Algorithms

As we have mentioned before, the DPSO can easily get
stuck in local optima. In order to see the performance
improvements of the local strategy, we compare DPSO
(without local strategy) and DPSO-LS (with local strategy)
by running them 10 times for 100 iterations each. The
average coverage of the 10 runs is listed in TABLE III. The
corresponding two-tailed Student’s t-test with a significance
level of 5% is applied. The results show that the proposed
DPSO-LS can achieve better coverage in all the cases.
However, DPSO-LS only shows significant improvements
in 3 of 6 cases.

Data Set DPSO(%) DPSO-LS(%) Significant
Balance-scale 77.27 ± 3.72 83.39 ± 3.2 Yes

Breast-L 82.57 ± 2.63 86.71 ± 1.07 Yes
Breast-W 91.43 ± 4.25 94.2 ± 4.3 No

Car 94.92 ± 5.06 97.3 ± 4.4 No
Lymphography 76.23 ± 3.51 80.1 ± 3.6 Yes

Tic-Tac-Toe 100 ± 0.0 100 ± 0.0 No

Table III
AVERAGE COVERAGE OF DPSO AND DPSO-LS IN 100 ITERATIONS.

In Figure 1, we see the coverage of DPSO-LS compared
to DPSO, JRip, PART and J48. Error bars are shown on
the histograms of the DPSO-LS and DPSO (for the other
algorithms, no variants were reported). In most of the cases,
the DPSO-LS algorithm has a higher coverage. Although the
Breast-W data set does not show a better result, the values
of the other four algorithms are very close.

Figure 1. Coverage of all algorithms.

For all rule mining algorithms it is necessary to test the
average rule set size to indicate the complexity of the rule
set produced by each algorithm. Table IV lists the size of the
rule set required for DPSO-LS, DPSO, JRip, PART, and J48.
As shown in the table, the JRip algorithm always requires
the least number of rules, while the PART algorithm requires
the most number of rules. J48 uses by far the most number
of rules with the exception of the Breast-L data set. The

number of rules for the proposed DPSO-LS algorithm is
less than the PART algorithm. Both DPSO-LS and DPSO
show comparable results in terms of rule size.

Data Set DPSO-LS DPSO JRip PART J48
Balance-scale 24.7±2.66 26.01±3.1 12 47 52

Breast-L 17±3.5 15.25±4.5 3 20 4
Breast-W 7.13±2.08 6.05±3.01 6 10 14

Car 44.18±4.17 43.2±5.2 49 68 131
Lymphography 9.4±3.06 11.15±2.5 6 13 21

Tic-Tac-Toe 38.8±1.7 35.3±3.76 9 49 95

Table IV
AVERAGE RULE SIZE OF ALL ALGORITHMS.

Table V lists the average weighted true positive rates (TP
rates), which is also referred to as sensitivity. As shown in
the table, the proposed algorithm, DPSO-LS, scores better
than DPSO, JRip, PART and J48 in terms of sensitivity.

Data Set DPSO-LS DPSO JRip PART J48
Balance-scale 87.4±2.3 80.2±3.12 80.8 87.5 76.6

Breast-L 89.5±3.7 81.8±2.22 71 71.3 75.5
Breast-W 97.27±2.1 92.36±4.3 95.4 93.8 94.6

Car 98.84±1.33 93.5±3.1 86.5 95.8 92.4
Lymphography 80.5±4.4 73.3±3.26 77.7 76.4 77

Tic-Tac-Toe 100±0.0 100±0.0 97.8 94.3 84.6

Table V
AVERAGE WEIGHTED TP RATES (%) OF ALL ALGORITHMS.

The weighted average false positive rates (FP rate), which
represent 1-Specificity, are listed in Table VI. The FP rates
of DPSO-LS are less than the other algorithms except for
the Lymphography data set.

Data Set DPSO-LS DPSO JRip PART J48
Balance-scale 8.7±2.2 15.01±3.25 16.4 9.7 17.3

Breast-L 16.0±7.2 25.8±4.3 48.9 54.2 52.4
Breast-W 0.5±0.01 1.2±0.18 4.4 8.0 6.4

Car 1.04±0.05 5.27±2.3 6.4 1.6 5.6
Lymphography 22±3.4 30.11±5.6 21.6 21 18.7

Tic-Tac-Toe 0 0 3.1 7.6 19.1

Table VI
AVERAGE WEIGHTED FP RATES (%) OF ALL ALGORITHMS.

The weighted average precisions are compared in Table
VII. The precision of the DPSO-LS is always better than
DPSO, JRip, PART and J48, showing the largest improve-
ment on the Breast-L data set.

V. CONCLUSION

In this study, we have introduced a Pittsburgh-based dis-
crete particle swarm optimization algorithm for rule mining,
abbreviated as DPSO-LS. DPSO-LS uses a rule base to
represent a ‘particle’ and evolves the rule base over time.
DPSO-LS is implemented as a matrix of rules, representing
IF-THEN classification rules, that have conjunctive an-
tecedents and one consequent. In addition, a local mutation

166 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)



Data Set DPSO-LS DPSO JRip PART J48
Balance-scale 85.4±3.2 79.95±3.8 74.5 83.3 73.2

Breast-L 89.5±3.6 83.16±3.3 68.8 68.2 75.2
Breast-W 96.59±2.15 92.35±4.1 95.5 93.8 94.6

Car 99.1±1.2 93.76±3.3 88.1 95.9 92.4
Lymphography 78.57±5.8 71.31±5.12 76.5 76.6 77.6

Tic-Tac-Toe 100±0.0 100±0.0 97.8 94.2 84.6

Table VII
AVERAGE WEIGHTED PRECISION (%) OF ALL ALGORITHMS.

search strategy was incorporate in order to take care of the
premature convergence of PSO.

The experiments were conducted using 6 data sets that
are taken from the UCI repository. Our DPSO-LS algorithm
was compared against DPSO, JRip, PART and J48. Measures
used were rule size, TP rates, FP rates, and precision.
The experimental results revealed that DPSO-LS achieves a
better performance in most cases than the other approaches
based on the aforementioned measures.

As for future work, since the Pittsburgh approach suffers
from bad quality rules within the rule set when only the
overall performance is considered, the quality of each rule
is not taken into account. Thus, it would be interesting
to compare the Pittsburgh approach with the Michigan
approach. Moreover, fuzzy rule learning is another approach
that would be an interesting direction to explore.
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