
Parallel Particle Swarm Optimization Clustering

Algorithm based on MapReduce Methodology

Ibrahim Aljarah and Simone A. Ludwig

Department of Computer Science

North Dakota State University

Fargo, ND, USA

{ibrahim.aljarah,simone.ludwig}@ndsu.edu

Abstract—Large scale data sets are difficult to manage. Diffi-
culties include capture, storage, search, analysis, and visualization
of large data. In particular, clustering of large scale data has
received considerable attention in the last few years and many
application areas such as bioinformatics and social networking
are in urgent need of scalable approaches. The new techniques
need to make use of parallel computing concepts in order to be
able to scale with increasing data set sizes. In this paper, we
propose a parallel particle swarm optimization clustering (MR-
CPSO) algorithm that is based on MapReduce. The experimental
results reveal that MR-CPSO scales very well with increasing
data set sizes and achieves a very close to the linear speedup while
maintaining the clustering quality. The results also demonstrate
that the proposed MR-CPSO algorithm can efficiently process
large data sets on commodity hardware.

Keywords—Data Clustering, Parallel Processing, MapReduce,
Hadoop

I. INTRODUCTION

Managing scientific data has been identified as one of the

most important emerging needs of the scientific community

in recent years. This is because of the sheer volume and

increasing complexity of data being created or collected. In

particular, in the growing field of computational science where

increases in computer performance allow ever more realistic

simulations and the potential to automatically explore large

parameter spaces. As noted by Bell et al. [1]: “As simulations

and experiments yield ever more data, a fourth paradigm

is emerging, consisting of the techniques and technologies

needed to perform data intensive science”.

The question to address is how to effectively generate,

manage and analyze the data and the resulting information.

The solution requires a comprehensive, end-to-end approach

that encompasses all the stages from the initial data acquisition

to its final analysis.

Clustering [2] is a data mining technique used when an-

alyzing data. The main goal of clustering algorithms is to

divide a set of unlabeled data objects into different groups

called clusters; each group has common specifications between

the group members. The cluster membership measure is based

on a similarity measure. To obtain high quality clusters, the

similarity measure between the data objects in the same cluster

are to be maximized, and the similarity measure between the

data objects from different groups are to be minimized.

Clustering very large data sets that contain large numbers of

records with high dimensions is considered a very important

issue nowadays. Examples are the clustering of profile pages

in social networks, bioinformatics applications, and article

clustering of big libraries. Most sequential clustering algo-

rithms suffer from the problem that they do not scale with

larger sizes of data sets, and most of them are computationally

expensive in memory space and time complexities. For these

reasons, the parallelization of the data clustering algorithms is

paramount in order to deal with large scale data. To develop

a good parallel clustering algorithm that takes big data into

consideration, the algorithm should be efficient, scalable and

obtain high quality clusters.

The MapReduce programming model [3], introduced by

Google, has become very popular as an alternative model for

data parallel programming over the past few years compared

to the message passing methodology [4]. Large data clustering

with MapReduce is an attractive solution to formulate the

clustering algorithm that achieves high quality results within

an acceptable amount of time. Furthermore, the parallelization

with MapReduce is remarkable because it presents a pro-

gramming model that parallelizes the tasks automatically, and

provides fault-tolerance and load balancing.

Apart from Google’s implementation of MapReduce, there

are several popular open source implementations available

such as Apache Hadoop MapReduce [5], and Disco [6].

MapReduce is a highly scalable model and can be used across

many computer nodes. In addition, MapReduce is applicable

when the target problem is considered data intensive and

the computing environment has limitations on multiprocessing

and large shared-memory machines. MapReduce moves the

processing to the data and processes data sequentially to

avoid random access that requires expensive seeks and disk

throughput. MapReduce technologies have also been adopted

by a growing number of groups in industry (e.g., Facebook

[7], and Yahoo [8]. In academia, researchers are exploring the

use of these paradigms for scientific computing, such as in the

areas of Bioinformatics [9] and Geosciences [10] where codes

are written using open source MapReduce tools.

The basic idea behind the MapReduce methodology is that

the problem is formulated as a functional abstraction using

two main operations: the Map operation and Reduce operation.

104978-1-4673-4768-6 c©2012 IEEE

The Map operation iterates over a large number of records

and extracts interesting information from each record, and

all values with the same key are sent to the same Re-

duce operation. Furthermore, the Reduce operation aggregates

intermediate results with the same key that is generated from

the Map operation and then generates the final results. Figure

1 shows the MapReduce’s main operations.

Map Operation:

Map (k, v) → [(k’, v’)]

Reduce Operation:

Reduce (k’, [v’]) → [(k’, v’)]

Fig. 1. The Map and Reduce Operations

Apache Hadoop [5] is the commonly used MapReduce

implementation, and it is an open source software framework

that supports data-intensive distributed applications licensed

under Apache. It enables applications to work with thou-

sands of computational independent computers and petabytes

of data. Hadoop Distributed File System (HDFS - storage

component) and MapReduce (processing component) are the

main core components of Apache Hadoop. HDFS gives a

high-throughput access to the data while maintaining fault

tolerance by creating multiple replicas of the target data

blocks. MapReduce is designed to work together with HDFS

to provide the ability to move computation to the data not vice

versa. Figure 2 shows the Hadoop architecture diagram with

operation cycle. In this paper, we use the Hadoop framework

for the MR-CPSO algorithm implementation.

Fig. 2. Hadoop Architecture Diagram

This paper presents a parallel particle swarm optimization

clustering (MR-CPSO) algorithm based on the MapReduce

framework. In this work, we have made the following key

contributions:

1) The proposed algorithm (MR-CPSO) makes use of the

MapReduce framework that has been proven success-

ful as a parallelization methodology for data-intensive

applications [3, 5].

2) The proposed algorithm has been tested on large scale

synthetic datasets with different sizes to show its

speedup and scalability.

3) The proposed algorithm has been tested on real datasets

with different settings to demonstrate its effectiveness

and quality.

The rest of this paper is organized as follows: Section 2

presents the related work in the area of data clustering.

In Section 3, the particle swarm optimization approach is

introduced as well as our proposed MR-CPSO algorithm.

Section 4 presents the experimental evaluation, and Section

5 presents our conclusions.

II. RELATED WORK

MapReduce has recently received a significant amount of

attention in many computing fields but especially in the data

mining area. Clustering has numerous applications and is

becoming more challenging as the amount of data rises. Due

to space constraints, we focus only on closely related work of

parallel data clustering algorithms that employ the MapReduce

methodology.

Zaho et al. in [11] proposed a parallel algorithm for k-means

clustering based on MapReduce. Their algorithm randomly

selects initial k objects as centroids. Then, centroids are cal-

culated by the weighted average of the points within a cluster

through the Map function; afterwards the Reduce function

updates the centroids based on the distances between the

data points and the previous centroids in order to obtain new

centroids. Then, an iterative refinement technique is applied

by MapReduce job iterations.

Li et al. in [12] proposed another MapReduce K-means

clustering algorithm that uses the ensemble learning method

bagging to solve the outlier problem. Their algorithm shows

that the algorithm is efficient on large data sets with outliers.

Surl et al. [13] applied the MapReduce framework on

co-clustering problems introducing a practical approach that

scales well and achieves efficient performance with large

datasets. The authors suggested that applying MapReduce on

co-clustering mining tasks is very important, and discussed

the advantages in many application areas such as collaborative

filtering, text mining, etc. Their experiments were done using

3 real datasets and the results showed that the co-clustering

with MapReduce can scale well with large data sets.

A fast clustering algorithm with constant factor approxima-

tion guarantee was proposed in [14], where they use sampling

to decrease the data size and run a time consuming clustering

algorithm such as local search on the resulting data set.

A comparison of this algorithm with several sequential and

parallel algorithms for the k-median problem was done using

randomly generated data sets and a single machine where each

machine used by the algorithms was simulated. The results

showed that the proposed algorithm obtains better or similar

solutions compared to the other algorithms. Moreover, the

algorithm is faster than other parallel algorithms on very large

data sets. However, for the k-median problem they have a

small loss in performance.

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 105

In [15], the authors explored how to minimize the I/O

cost for clustering with the MapReduce model and tried to

minimize the network cost among the processing nodes. The

proposed technique BOW (Best Of both Worlds), is a subspace

clustering method to handle very large datasets in efficient

time and derived its cost functions that allow the automatic,

dynamic differentiation between disk delay and network delay.

Experiments on real and synthetic data of millions of points

with good speedup results were reported.

In this paper, the clustering task is expressed as an optimiza-

tion problem to obtain the best solution based on the minimum

distances between the data points and the cluster centroids. For

this task, we used Particle Swarm Optimization (PSO) [16] as

it performs a globalized search to find the best solution for

the clustering task problem (this solves the K-means [17, 2]

sensitivity of the selection of the initial cluster centroids and

avoids the local optima convergence problem). PSO is one of

the common optimization techniques that iteratively proceeds

to find the best solution based on a specific measure.

PSO has been used to solve a clustering task in [18],

where the problem discussed was document clustering. The

authors compared their results with K-Means, whereby the

PSO algorithm proved to generate more compact clustering

results. However, in this paper we are validating this approach

with more generalized and much larger datasets. In addition,

the MapReduce framework has been chosen as the paralleliza-

tion technique in order to tackle the computational and space

complexities that large datasets incur causing an efficiency

degradation of the clustering.

To the best of our knowledge, this is the first work that im-

plements PSO clustering with MapReduce. Our goal is to show

that PSO clustering benefits from the MapReduce framework

and works on large datasets achieving high clustering quality,

scalability, and a very good speedup.

III. PROPOSED APPROACH

A. Introduction to Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm intelligence

method first introduced by Kennedy and Eberhart in 1995 [16].

The behavior of particle swarm optimization is inspired by bird

flocks searching for optimal food sources, where the direction

in which a bird moves is influenced by its current movement,

the best food source it ever experienced, and the best food

source any bird in the flock ever experienced. In PSO, the

problem solutions, called particles, move through the search

space by following the best particles. The movement of a

particle is affected by its inertia, its personal best position,

and the global best position. A swarm consists of multiple

particles, each particle has a fitness value which is assigned

by the objective function to be optimized based on its position.

Furthermore, a particle contains other information besides the

fitness value and position such as the velocity which direct

the moving of the particle. In addition, PSO maintains the

best personal position with the best fitness value the particle

has ever seen. Also, PSO holds the best global position with

the best fitness value any particle has ever experienced. Many

variants of PSO were introduced in literature. In our work, the

Global Best Particle Swarm Optimization [16, 19] variant is

used.

The following equations are used to move the particles

inside the problem search space:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (1)

where Xi is the position of particle i, t is the iteration number

and Vi is the velocity of particle i.

PSO uses the following equation to update the particle

velocities, also used in our proposed algorithm:

Vi(t+ 1) = W · Vi(t) + (r1 · cons1) · [XPi −Xi(t)]

+(r2 · cons2) · [XG−Xi(t)]
(2)

where W is inertia weight, r1 and r2 are randomly generated

numbers, cons1, cons2 are constant coefficients, XPi is the

current best position of particle i and XG is the current best

global position for the whole swarm.

B. Proposed MapReduce PSO Clustering Algorithm (MR-

CPSO)

In the MR-CPSO algorithm, we formulated the clustering

task as an optimization problem to obtain the best solution

based on the minimum distances between the data points and

the cluster centroids. The MR-CPSO is a partitioning clus-

tering algorithm similar to the k-means clustering approach,

in which a cluster is represented by its centroid. In k-means

clustering, the centroid is calculated by the weighted average

of the points within a cluster. In MR-CPSO, the centroid

for each cluster is updated based on the swarm particles’

velocities.

In MR-CPSO, each particle Pi contains information which

is used in the clustering process such as:

• Centroids Vector (CV): Current cluster centroids vector.

• Velocities Vector (V V): Current velocities vector.

• Fitness Value (FV): Current fitness value for the particle

at iteration t.

• Best Personal Centroids (BPC): Best personal centroids

seen so far for Pi.

• Best Personal Fitness Value (BPCFV): Best personal

fitness value seen so far for Pi.

• Best Global Centroids (BGC): Best global centroids seen

so far for whole swarm.

• Best Global Fitness Value (BGCFV): Best global fitness

value seen so far for whole swarm.

This information is updated in each iteration based on the

previous swarm state.

In MR-CPSO, two main operations need to be adapted and

implemented to apply the clustering task on large scale data:

the fitness evaluation, and particle centroids updating.

Particle centroids updating is based on PSO movement

Equations 1 and 2 that calculate the the new centroids in each

iteration for the individual particles. The particle centroids

update takes a long time, especially when the particle swarm

size is large.

106 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

Besides the update of the particle centroids, the fitness

evaluations are based on a fitness function that measures the

distance between all data points and particle centroids by

taking the average distance between the particle centroids. The

fitness evaluation is based on the following equation:

Fitness =

∑k

j=1

∑nj

i=1
Distance(Ri,Cj)

nj

k
(3)

where nj denotes the number of records that belong to

cluster j; Ri is the ith record; k is the number of available

clusters; Distance(Ri, Cj) is the distance between record

Ri and the cluster centroid Cj . In this paper, we use the

Manhattan distance applying the following equation:

Distance(Ri, Cj) =
D∑

v=1

|Riv − Cjv| (4)

where D is the dimension of record Ri; Riv is the value of

dimension v in record Ri; Cjv is the value of dimension v in

centroid Cj .

The fitness evaluation takes a long time to execute when

working with large data sets. For example, if the data set

contains 5 million data points with 10 dimensions, and the

number of clusters is 5, the swarm size is 30, then the

algorithm needs to calculate 5×106×5×10×30 = 75×108

distance values for one iteration. This takes 400 minutes

running on a 3.2 GHz processor.

Figure 3 shows the MR-CPSO architecture diagram.

Fig. 3. MR-CPSO Algorithm Architecture Diagram

The MR-CPSO algorithm consists of three main sub-

modules:

• The first module is a MapReduce job to update the

particle swarm centroids.

• The second module is a MapReduce job for the fitness

evaluation of the swarm with new particle centroids that

are generated in the first module.

• The third (merging) module is used to merge the fitness

values calculated from the second module with the up-

dated swarm which is generated in the first module. Also,

in this module, the best personal centroids and best global

centroids are updated. Afterwards, the new particles are

ready for the next iteration.

1) First Module: In the first module, the MapReduce job is

launched for updating the particle centroids. The Map function

receives the particles with identification numbers. However,

the particle ID represents the Map key and the particle itself

represents the value. The Map value contains all information

about the particle such as CV , V V , FV , BPC and BGC,

which are used inside the Map function. In the Map function,

the centroids are updated based on the PSO equations 1 and 2.

The other information such as PSO coefficients (cons1,cons2),

inertia weight (W), which are used in the PSO equations,

are retrieved from the job configuration file. After that, the

Map function emits the particle with updated centroids to the

Reduce function. To benefit from the MapReduce framework,

we use the number of Maps relative to the number of cluster

nodes and swarm size. The Reduce function in the first module

is only an identity reduce function that is used to sort the

Map results and combine all of them into one output file.

Furthermore, the particle swarm is saved in the distributed file

system to be used by two other modules. The pseudo-code of

the Map function and Reduce function is shown in Figure 4.

function Map (Key: particleID, Value: Particle)

Initialization:

particleID=Key

particle=V alue

//Extract the information from the particle

extractInfo(CV ,V V ,BPC,BGC)

Generate random numbers r1 and r2
for each ci in CV do

//update particle velocity

for each j in Dimension do

newV Vij= w * V Vij

+(r1 * cons1)*(BPC - cij)

+(r2 * cons2)*(BGC - cij)

newcij=cij + newV Vij

end for

update(particle,newV Vi, newci)

end for

Emit(particleID, particle)

end function

function Reduce (Key: ParticleID, ValList: Particle)

for each V alue in ValList do

Emit(Key, V alue)

end for

end function

Fig. 4. Algorithm - First Module

2) Second Module: In the second module, the MapRe-

duce job is launched to calculate the new fitness values

for the updated swarm. The Map function receives the data

records with recordID numbers. The recordID represents the

Map key and the data record itself represents the value. The

Map and Reduce functions work as shown in the Figure 5

outlining the pseudo code of the second module algorithm.

The Map function process starts with retrieving the particle

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 107

swarm from the distributed cache, which is a feature provided

by the MapReduce framework for caching files. Then, for

each particle, the Map function extracts the centroids vector

and calculates the distance value between the record and

the centroids vector returning the minimum distance with its

centroidID. The Map function uses the ParticleID with its

centroidID that has the minimum distance to formulate a new

composite key. Also, a new value is formulated from the

minimum distance. After that, the Map function emits the new

key and new value to the Reduce function.

The Reduce function aggregates the values with the same

key to calculate the average distances and assigns it as a fitness

value for each centroid in each particle. Then, the Reduce func-

tion emits the key with average distance to formulate the new

fitness values. Then, the new fitness values are stored in the

distributed file system.

function Map (key: RecordID, Value: Record)

Initialization:

RID=key

record=value

//Read the particles swarm from the Distributed Cache

read(Swarm)

for each particle in Swarm

CV =extractCentroids(particle)

PID=extractPID(particle)

minDist=returnMinDistance(record,CV)

centroidID=i

//ith centroid contains minDist

newKey=(PID,centroidID)

newV alue=(minDist)

Emit(newKey, newV alue)

end for

end function

function Reduce (Key:(PID,centerId),ValList:(minDist,1))

Initialization:

count=0, sumDist=0, avgDist=0

for each V alue in ValList

minDist=extractminDist(V alue)

count=count+ 1
sumDist=sumDist + minDist

end for

avgDist=sumDist / count

Emit(Key, avgDist)

end function

Fig. 5. Algorithm - Second Module

3) Third Module (Merging): In the third module of the

MR-CPSO algorithm, the main goal is to merge the outputs

of the first and second modules in order to have a single

new swarm. The new fitness value (FV) is calculated on the

particle level by a summation over all centroids’ fitness values

generated by the second module. After that, the swarm is

updated with the new fitness values. Then, BPCFV for each

particle is compared with the new particle fitness value. If the

new particle fitness value is less than the current BPCFV ,

BPCFV and its centroids are updated. Also, the BGCFV

with centroids is updated if there is any particle’s fitness value

smaller than the current BGCFV . Then, the new swarm with

new information is saved in the distributed file system to be

used as input for the next iteration.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the clustering quality and

discuss the running time of the measurements for our proposed

algorithm. We focus on scalability as well as the speedup and

the clustering quality.

A. Environment

We ran the MR-CPSO experiments on the Longhorn

Hadoop cluster hosted by the Texas Advanced Computing

Center (TACC)1 and on our NDSU2 Hadoop cluster. The

Longhorn Hadoop cluster is one of the common Hadoop

cluster that is used by researchers. The Longhorn Hadoop

cluster contains 384 compute cores and 2.304 TB of aggre-

gated memory. The Longhorn Hadoop cluster has 48 nodes

containing 48GB of RAM, 8 Intel Nehalem cores (2.5GHz

each), whereas our NDSU Hadoop cluster consists of only 18

nodes containing 6GB of RAM, 4 Intel cores (2.67GHz each)

with HDFS 2.86 TB aggregated capacity. For our experiments,

we used Hadoop version 0.20 (new API) for the MapReduce

framework, and Java runtime 1.6 to implement the MR-CPSO

algorithm.

TABLE I
SUMMARY OF THE DATASETS

Dataset #Records #Dim Size (MB) Type #Clusters

TwoEllipses 2, 000 2 0.14 Real 2

FourCircles 2, 000 2 0.14 Real 4

MAGIC 19, 020 10 3.0 Real 2

Electricity 45, 312 8 6.0 Real 2

Poker 1, 025, 010 10 49.0 Real 10

CoverType 581, 012 54 199.2 Real 7

F2m2d5c 2, 000, 000 2 83.01 Synthetic 5

F4m2d5c 4, 000, 000 2 165.0 Synthetic 5

F6m2d5c 6, 000, 000 2 247.6 Synthetic 5

F8m2d5c 8, 000, 000 2 330.3 Synthetic 5

F10m2d5c 10, 000, 000 2 412.6 Synthetic 5

F12m2d5c 12, 000, 000 2 495.0 Synthetic 5

F14m2d5c 14, 000, 000 2 577.9 Synthetic 5

F16m2d5c 16, 000, 000 2 660.4 Synthetic 5

F18m2d5c 18, 000, 000 2 743.6 Synthetic 5

F30m2d5c 30, 000, 000 2 1238.3 Synthetic 5

F32m2d5c 32, 000, 000 2 1320.8 Synthetic 5

B. Datasets

To evaluate our MR-CPSO algorithm, we used both real and

synthetic datasets as described in Table I. The real datasets that

are used are the following:

1https://portal.longhorn.tacc.utexas.edu/
2http://www.ndsu.edu

108 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

• Two Ellipses: contains point coordinates in 2 dimensions.

The data set contains 2 balanced clusters, where each

cluster formulates an ellipse.

• Four Circles: contains point coordinates in 2 dimensions.

The data set contains 4 balanced clusters, where each

cluster formulates a circle.

• MAGIC: represents the results of registration simulation

of high energy gamma particles in a ground-based atmo-

spheric Cherenkov gamma telescope using the imaging

technique. It was obtained from UCI machine learning

repository4.

• Electricity: contains electricity prices from the Australian

New South Wales Electricity Market. The clustering

process identifies two states (UP or DOWN) according

to the change of the price relative to a moving average

of the last 24 hours. Obtained from MOA5.

• Poker Hand: is an examples of a hand consisting of

five playing cards drawn from a standard deck of 52

cards. Each card is described using 10 attributes and the

dataset describes 10 poker hand situations (clusters). It

was obtained from UCI4.

• Cover Type: represents cover type for 30 x 30 meter cells

from US Forest. The real data set is obtained from the

UCI4. It has 7 clusters that represent the type of trees.

• Synthetic: Two series of datasets with different sizes of

records were generated using the data generator devel-

oped in [20]. The first series are 9 datasets ranging from

2 million to 18 million data records. The second series are

2 datasets with 30 million and 32 million data records. In

order to simplify the names of the synthetic datasets, the

datasets’ names consist of the specific pattern based on

the data records number, the number of dimensions, and

the number of the clusters. For example: the F2m2d5c

dataset consists of 2 million data records, each record

is in 2 dimensions, and the dataset is distributed into 5

clusters.

C. Evaluation Measures

In our experiments, we used the parallel Scaleup [21] and

Speedup [21] measures calculated using Equations 5 and 6,

respectively. These measures are used to evaluate the perfor-

mance of our MR-CPSO algorithm. Scaleup is a measure of

speedup that increases with increasing dataset sizes to evaluate

the ability of the parallel algorithm utilizing the cluster nodes

effectively.

Scaleup =
TSN

T2SN

(5)

where the TSN is the running time for the dataset with size

S using N nodes and T2SN is the running time using 2-fold

of S and 2-folds of N nodes.

For the Speedup measurement, the dataset is fixed and the

number of cluster nodes is increased by a certain ratio.

4http://archive.ics.uci.edu/ml/index.html
5http://moa.cs.waikato.ac.nz/datasets/

Speedup =
TN

T2N
(6)

where the TN is the running time using N nodes and T2N is

the running time using 2-fold of N nodes.

We evaluate the Scaleup by increasing the dataset sizes and

number of cluster nodes with the same ratio.

For the clustering quality, we used the purity measure [2] in

Equation 7 to evaluate the MR-CPSO clustering correctness.

Purity =
1

N
×

k∑

i=1

maxj(| Ci ∩ Lj |) (7)

where Ci contains all the points assigned to cluster i by MR-

CPSO, and Lj denotes the true assignments of the points in

cluster j; N is the number of records in the dataset.

We used the PSO settings that are recommended by [22, 23].

We used a swarm size of 100 particles and inertia weight W of

0.72. Also, we set the acceleration coefficient constants cons1
and cons2 to 1.7.

Figure 6 shows the MR-CPSO clustering quality results

visualized for the TwoEllipses and FourCircles datasets. The

results show that the MR-CPSO algorithm is able to assign

the data records to the correct cluster, with purity 1.0 for the

TwoEllipses and purity 0.997 for the FourCircles dataset.

1 2 3 4 5 6 7

3
4

5
6

(a) TwoEllipses
0 1 2 3 4

0
1

2
3

4
(b) FourCircles

Fig. 6. MR-CPSO Clustering Results. 6(a) clustering results for the
TwoEllipses dataset with Purity=1.0. 6(b) clustering results for the FourCircles
dataset with Purity=0.997.

D. Results

We used the real datasets to evaluate the correctness of the

MR-CPSO algorithm. We compared the purity results of MR-

CPSO with those of the standard K-means algorithm, which

is implemented in the Weka data mining software [24], in

order to perform a fair comparison of the purity values. The

maximum iterations used for K-means and MR-CPSO is 25.

The purity results of MR-CPSO for the TwoEllipses, Four-

Circles, MAGIC, Electricity, Poker, Cover Type datasets are

1.0, 0.997, 0.65, 0.58, 0.51, and 0.53, respectively. On the

other hand, K-means results are 1.0, 1.0, 0.60, 0.51, 0.11, and

0.32, respectively. We can observe that the purity of the MR-

CPSO clustering results after 25 iterations are better than the

K-means clustering results.

We used MR-CPSO for clustering different sizes of syn-

thetic datasets. We ran MR-CPSO with 18 NDSU cluster nodes

by increasing the number of nodes in each run by multiples

of 2. In each run, we report the running time and speedup

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 109

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(a) F2m2d5c Running
Time

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

 27500

 30000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(b) F4m2d5c Running
Time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(c) F6m2d5c Running
Time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(d) F8m2d5c Running
Time

 0

 7500

 15000

 22500

 30000

 37500

 45000

 52500

 60000

 67500

 75000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(e) F10m2d5c Run-
ning Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(f) F2m2d5c Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(g) F4m2d5c Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(h) F6m2d5c Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(i) F8m2d5c Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(j) F10m2d5c
Speedup

Fig. 7. Running time and speedup results on the synthetic datasets with 18 NDSU Hadoop cluster nodes and 25 iterations of MR-PSO. 7(a) - 7(e) Running
time for synthetic datasets from 2 million to 10 million data records. 7(f) - 7(j) Speedup measure for synthetic datasets from 2 million to 10 million data
records.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 2 4 6 8 10 12 14 16 18

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(a) F30m2d5c Run-
ning Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 2 4 6 8 10 12 14 16 18

R
u
n
n
i
n
g

T
i
m
e
(
s
)

#Nodes

MR-CPSO

(b) F32m2d5c Run-
nimg Time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(c) F30m2d5c
Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

S
p
e
e
d
u
p

#Nodes

MR-CPSO
Linear

(d) F32m2d5c
Speedup

Fig. 8. Running time and Speedup results on the synthetic datasets with
Longhorn Hadoop cluster and 10 iterations of MR-PSO. 8(a), 8(b) Running
times for synthetic datasets for 30 million and 32 million data records. 8(c),
8(d) Speedup measure for synthetic datasets for 30 million and 32 million
data records.

of 25 iterations of MR-PSO. The running times and speedup

measures are shown in Figure 7. As can be noted from the

figure, the improvement factor of MR-CPSO’s running times

for the F2m2d5c, F4m2d5c, F6m2d5c, F8m2d5c, F10m2d5c

datasets using 18 nodes are 5.5, 6.4, 6.9, 7.4, 7.8, respectively,

compared to the running time with 2 nodes. The MR-CPSO

algorithm demonstrates a significant improvement in running

time. Furthermore, the running time of MR-CPSO decreases

almost linearly with increasing number of nodes of the Hadoop

cluster. In addition, the MR-CPSO speedup scales close to

linear for most datasets. MR-CPSO algorithm with F10m2d5c

achieves a significant speedup obtaining very close to the

linear speedup.

Figure 8 shows the running time and speedup of MR-CPSO

with larger datasets using the Longhorn Hadoop cluster. We

used 16 nodes as the maximum number of nodes to evaluate

the MR-CPSO performance since we have limited resources

on the Longhorn cluster. The running time results for the

two data sets decreases when the number of nodes of the

Hadoop cluster increases. The improvement factor of MR-

CPSO running times for the F30m2d5c and F32m2d5c datasets

with 18 nodes are 7.27, 7.43 compared to the running time

with 2 nodes. The MR-CPSO algorithm shows a significant

improvement in running time. The MR-CPSO algorithm with

F30m2d5c and F32m2d5c achieve a significant speedup which

is almost identical to the linear speedup. Thus, if we want to

cluster even larger datasets with the MR-CPSO algorithm, we

can accomplish that with a good performance by adding nodes

to the Hadoop cluster.

Figure 9 shows the Scaleup measure of MR-CPSO for

increasing double folds of data set sizes (starting from 2, 4, 6, 8

to 18 million data records) with the same double folds of nodes

(2, 4, 6, 8 to 18 nodes), implemented on the NDSU Hadoop

cluster. Scaleup for F4m2d5c was 0.85, and it captures almost

a constant ratio between 0.8 and 0.78 when we increase the

number of available nodes and dataset sizes with same ratio.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

F2m
2d5c

F4m
2d5c

F6m
2d5c

F8m
2d5c

F10m
2d5c

F12m
2d5c

F14m
2d5c

F16m
2d5c

F18m
2d5c

S
c
a
l
e
u
p

MR-CPSO

Fig. 9. MR-CPSO Scale-up

110 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

V. CONCLUSION

In this paper, we proposed a scalable MR-CPSO algorithm

using the MapReduce parallel methodology to overcome the

inefficiency of PSO clustering for large data sets. We have

shown that the MR-CPSO algorithm can be successfully

parallelized with the MapReduce methodology running on

commodity hardware. The clustering task in MR-CPSO is

formulated as an optimization problem to obtain the best

solution based on the minimum distances between the data

points and the cluster centroids. The MR-CPSO is a parti-

tioning clustering algorithm similar to the k-means clustering

approach, in which a cluster is represented by its centroid.

The centroid for each cluster is updated based on the particles’

velocities.

Experiments were conducted with both real-world and syn-

thetic data sets in order to measure the scaleup and speedup of

our algorithm. The results reveal that MR-CPSO scales very

well with increasing data set sizes, and scales very close to

the linear speedup while maintaining good clustering quality.

The results also show that the clustering using MapReduce

is better than the K-means sequential algorithm in terms of

clustering quality.

Our future plan is to include measurements with different

dimensions as well as even larger data sets. Also, we will in-

vestigate the impact of the PSO settings on the cluster quality.

Furthermore, we plan to apply the MR-CPSO algorithm on

some massive application such as intrusion detection.

ACKNOWLEDGMENT

This work used the Extreme Science and Engineering Dis-

covery Environment (XSEDE), which is supported by National

Science Foundation grant number OCI-1053575.

REFERENCES

[1] G. Bell, A. Hey, and A. Szalay, “Beyond the data deluge,”

Science 323 AAAS, vol. 39, 2006.

[2] J. Han, Data Mining: Concepts and Techniques. Morgan

Kaufmann, San Francisco, CA, USA, 2005.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified

data processing on large clusters,” 2004, pp. 137–

150. [Online]. Available: http://www.usenix.org/events/

osdi04/tech/dean.html

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and

J. Dongarra, MPI: The Complete Reference. MIT Press

Cambridge, MA, USA, 1995.

[5] (2011) Apache software foundation, hadoop mapreduce.

[Online]. Available: http://hadoop.apache.org/mapreduce

[6] (2011) Disco mapreduce framework. [Online]. Available:

http://discoproject.org

[7] (2011) Hadoop - facebook engg, note. [Online].

Available: http://www.facebook.com/note.php?noteid=

16121578919

[8] (2011) Yahoo inc. hadoop at yahoo! [Online]. Available:

http://developer.yahoo.com/hadoop

[9] T. Gunarathne, T. Wu, J. Qiu, and G. Fox, “Cloud

computing paradigms for pleasingly parallel biomedical

applications,” in Proceedings of 19th ACM International

Symposium on High Performance Distributed Comput-

ing. ACM, January 2010, pp. 460–469.

[10] S. Krishnan, C. Baru, and C. Crosby, “Evaluation of

mapreduce for gridding lidar data,” in Proceedings of

the CLOUDCOM ’10. Washington, DC, USA: IEEE

Computer Society, 2010, pp. 33–40.

[11] Z. Weizhong, M. Huifang, and H. Qing, “Parallel k-

means clustering based on mapreduce,” in Proceedings of

the CloudCom ’09. Berlin, Heidelberg: Springer-Verlag,

2009, pp. 674–679.

[12] L. Guang, W. Gong-Qing, H. Xue-Gang, Z. Jing, L. Lian,

and W. Xindong, “K-means clustering with bagging and

mapreduce,” in Proceedings of the 2011 44th Hawaii In-

ternational Conference on System Sciences. Washington,

DC, USA: IEEE Computer Society, 2011, pp. 1–8.

[13] S. Papadimitriou and J. Sun, “Disco: Distributed co-

clustering with map-reduce: A case study towards

petabyte-scale end-to-end mining,” in Proc. of the IEEE

ICDM ’8, Washington, DC, USA, 2008, pp. 512–521.

[14] E. Alina, I. Sungjin, and M. Benjamin, “Fast clustering

using mapreduce,” in Proceedings of KDD ’11. NY,

USA: ACM, 2011, pp. 681–689.

[15] F. Cordeiro, “Clustering very large multi-dimensional

datasets with mapreduce,” in Proceedings of KDD ’11.

NY, USA: ACM, 2011, pp. 690–698.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimiza-

tion,” in Proceedings of the IEEE ICNN ’95. Australia,

1995, pp. 1942–1948.

[17] A. Jain, M. Murty, and P. Flynn, “Data clustering: A

review.” NY, USA: ACM, 1999.

[18] X. Cui, T. Potok, and P. Palathingal, “Document cluster-

ing using particle swarm optimization,” in IEEE Swarm

Intelligence Symposium. Pasadena, California, USA:

ACM, 2005, pp. 185–191.

[19] T. Schoene, S. A. Ludwig, and R. Spiteri, “Step-

optimized particle swarm optimization,” in Proceedings

of the 2012 IEEE CEC. Brisbane, Australia, June 2012.

[20] R. Orlandic, Y. Lai, and W. Yee, “Clustering high-

dimensional data using an efficient and effective data

space reduction,” in Proc. ACM 14th Conf. on Infor-

mation and Knowledge Management, Bremen, Germany,

2005, pp. 201–208.

[21] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Intro-

duction to Parallel Computing. Addison-Wesley, USA,

2003.

[22] H. Shi and R. Eberhart, “Parameter selection in particle

swarm optimization,” in Proc. 7th Annual Conference on

Evolutionary Programming, San Diego, CA, 1998, pp.

201–208.

[23] I. Trelea, “The particle swarm optimization algorithm:

convergence analysis and parameter selection,” in Infor-

mation Processing Letters, 2003.

[24] I. Witten, E. Frank, and M. Hall, Data Mining: Practical

Machine Learning Tools And Techniques, 3rd Edition.

Morgan Kaufmann, 2011.

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 111

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

