
Adaptive Genetic Programming applied to
Classification in Data Mining

Nailah Al-Madi and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

nailah.almadi@my.ndsu.edu, simone.ludwig@ndsu.edu

Abstract—Classification is a data mining method that assigns
items in a collection to target classes with the goal to accurately
predict the target class for each item in the data. Genetic
programming (GP) is one of the effective evolutionary
computation techniques to solve classification problems,
however, it suffers from a long run time. In addition, there are
many parameters that need to be set before the GP is run. In
this paper, we propose an adaptive GP that automatically
determines the best parameters of a run, and executes the
classification faster than standard GP. This adaptive GP has
three variations. The first variant consists of an adaptive
selection process ensuring that the produced solutions in the
next generation are better than the solutions in the previous
generation. The second variant adapts the crossover and
mutation rates by modifying the probabilities ensuring that a
solution with a high fitness is protected. And the third variant
is an adaptive function list that automatically changes the
functions used by deleting the functions that do not favorably
contribute to the classification. These proposed variations were
implemented and compared to the standard GP. The results
show that a significant speedup can be achieved by obtaining
similar classification accuracies.

Keywords-Evolutionary Computation, Classification,
Adaptive Genetic Programming.

I. INTRODUCTION
The term optimization describes a process whereby the

search for the optimum solution from a set of candidate
solutions is sought. Based on specific performance criteria,
the optimum solution is searched for. The field of
optimization is broad and has found applications in
manufacturing, finance, engineering, and logistics to name a
few. Before the optimization process can be started, all
problems to be optimized should be formulated as a system
with its status controlled by a few input variables and its
performance specified by a well-defined objective function.
The goal of optimization is to find the best value for each
variable in order to achieve satisfactory performance. In
practical terms, this means to accomplish a task in the most
efficient way or the highest quality or to produce maximum
yields given limited resources.

There are many different optimization techniques that
exist. Evolutionary algorithms are one category of
optimization techniques that are inspired by processes of
biological evolution. The common idea underlying
evolutionary algorithms is that given a population of
individuals, natural selection (biologically referred to as
survival of the fittest) is used to improve the fitness of the
overall population. Given a function to be maximized, a set

of candidate solutions is randomly created and the fitness
function, used as a fitness measure (the higher the better), is
applied. Based on this fitness measure, some of the better
candidates are chosen to undergo recombination and
mutation. Recombination is applied to two candidates and
results in one or more new candidates; whereas mutation is
only applied to one candidate and results in one new
candidate. After recombination and mutation is applied a set
of new candidates replace the old ones and the next
generation begins. This process is iterated until a candidate
with sufficient quality is found or a predefined number of
iterations is reached.

There are two fundamental components in this
evolutionary process that form the basis of evolutionary
algorithms [1]:

 Variation by combination and mutation create the
necessary diversity and;

 Selection provides the quality.
The combined effect of variation and selection leads to

improving fitness values in consecutive populations.
There are various different flavors of evolutionary

algorithms that follow the above procedure, and only differ
to some extend. For instance, the representation of a
candidate solution is often used to differentiate the different
flavors. In genetic algorithms for example, strings represent
the candidates over a finite alphabet; in evolutionary
strategies real-valued vectors are used; for evolutionary
programming finite state machines are used for the
representation; and trees are used in genetic programming. A
given representation might be preferred over others if it
matches the problem better, i.e., the encoding of candidate
solutions is easier or more natural. For instance, for evolving
a computer program that can play a board game, trees are
well-suited given that the parsing of the trees is necessary,
thus a genetic programming approach is the best option [1].

As mentioned above, genetic programming is
distinguished from other evolutionary algorithms by the use
of a tree representation of variable size rather than of a linear
string of fixed length representation as in genetic algorithms.
The flexible representation scheme is important for the
underlying structure of the data to be discovered
automatically. One primary difficulty however, is that the
number of solutions may become excessive without any
improvement of their generalizability. However, genetic
programming has proven to be a very powerful optimization
technique.

Evolutionary computation is also applied to the domain
of data mining. Data mining is a relatively broad field that

79978-1-4673-4768-6 c©2012 IEEE

deals with the automatic knowledge discovery from
databases and it is one of the most developed fields in the
area of artificial intelligence. Given the rapid growth of data
collected in various realms of human activity and their
potential usefulness requires efficient tools to extract and
make use of the gathered knowledge. Evolutionary
algorithms are very powerful tools that can be utilized to
make use of knowledge hidden in the data collected [2].

This paper applies genetic programming (GP) to
classification in data mining. Classification is the task of
automatically categorizing data into different classes. It
basically derives a classifier that distinguishes two (binary
classification) or more classes (multiclass classification) in
order to apply the classifier to new data that then determines
the class the data instance belongs to. In particular, an
adaptive GP method is introduced in this paper that allows
certain parameters of the GP to be adapted according to the
iterative process of the GP algorithm.

The GP process has four main steps. It starts with
initializing a random population of programs, then a fitness
ranking is calculated for each program using the fitness
function (for the classification task, the fitness function
indicates the classification accuracy). After that, a selection
process chooses two programs (parents) in order to generate
new programs (children). The new children are generated in
the fourth step using the natural operations of crossover and
mutation. All these steps are repeated until a new population
with the same size than the old population is produced, as
shown in Figure 1. This process is repeatedly applied until a
stopping criterion, such as reaching a predefined maximum
number of generations is reached, or finding a solution with
the best fitness.

Fig. 1. GP Process

This paper is structured as follows. Section II describes
related work in the area of GP including different GP
variants. In Section III, our adaptive GP is described. Section
IV presents the experiments as well as the results obtained,
and Section V concludes this paper.

II. RELATED WORK
Related work in the area of GP is manifold. In particular,

several adaptive techniques have been applied to GP in the
past. For example, in [3] the authors proposed a self-adaptive
selection mechanism for genetic algorithms, which was
called offspring selection. Offspring selection is based on the

idea whereby the fitness value of the evenly produced
offspring is compared to the fitness values of its own parents
in order to decide whether or not to accept the offspring as a
member for the next generation. The offspring is accepted as
a candidate for the further evolutionary process if and only if
the reproduction operator was able to produce an offspring
that could outperform the fitness of its own parents; where
the fitness of the offspring is compared with the worst fitness
of the parents, and only is accepted if it is better. This
mechanism was tested on some real valued test functions
with a scalable degree of difficulty and found to produce
better results.

However in [4], the authors used this type of offspring
selection in combination with hybrid formula structures
combining logical expressions and classical mathematical
functions in GP, and it was applied to three medical
benchmark classification problems (Wisconsin, Thyroid, and
Melanoma) and compared to other machine learning
methods (Linear modeling, k-nearest neighbour, artificial
neural network, and standard GP). The results showed that
this approach outperforms classical machine learning
algorithms frequently used for solving classification
problems, namely linear regression, neural networks and
neighborhood-based classification.

In [5], a swarm-based improvement of the crossover
operator was proposed and tested on symbolic regression.
The proposed approach consists of two main parts, the first is
function couplings, which constructs a matrix that represents
a coupling from every function to every other function or
terminal. Once this matrix is defined, crossover can be
applied to preserve important couplings, where the modified
crossover is applied and the probability of choosing a node
as root of the sub-tree for crossover is proportional to the
amount of pheromone for the coupling with its parent node.
Their approach was tested on three test functions by varying
the population size. Constructing a matrix and using the
swarm intelligence technique is a very time consuming
process, which may improve the quality of the GP process
but makes the time for a run even worse, especially given
that GP suffers from long execution times.

A GP method called GPTM (GP with Tree Mining) was
proposed in [6]. The method first identifies the sub-trees
repeatedly appearing in the chromosomes of superior
individuals (ones with very high fitness), and then protects
them from undesirable crossover operations. To find such
sub-trees, GPTM uses a FREQT-like efficient tree-mining
algorithm. GPTM was evaluated by three benchmark
problems, and the results indicate that GPTM is comparable
and finds the optimal individual earlier. The tree mining
method is a good idea since all solutions in GP are
represented as trees; however, mining every tree is
computationally very expensive especially for large
population sizes.

In [7], an integrated adaptive genetic algorithm was
proposed, containing two adaptive techniques. The first
technique dynamically adapts the rates of the crossover and
mutation operators, and the second adapts the behavior of
these operators whether unary (mutation), binary (crossover),
or multiary. The main idea is to record the behavior of

80 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

different types of these operators by using a “mini” genetic
algorithm to modify the rates and the used operators. This
algorithm was tested using the royal road function, and the
results were compared with the standard genetic algorithm.
The results show that this algorithm is more robust and less
sensitive to errors with the initial parameter setting.

A tree-based crossover operator that probabilistically
crosses branches based on the behavioral similarity between
the branches was introduced in [8]. Node behavior is defined
as the range of values that it propagates upward while the
tree is evaluated; where each node records the minimum and
maximum values. A distance between the two parents is
calculated using these recorded values, then this distance is
normalized and used as a probability of the crossover
operation. This proposed technique was compared with the
GP method without crossover, random crossover, and a
deterministic form of the crossover operator in the symbolic
regression domain, and achieved better results. In GP,
usually the population size is large, and each chromosome
contains nodes that represent the function list and the
terminals and constants, therefore, recording the minimum
and maximum values for each node adds an overhead to the
whole process.

In [9], an adaptive technique for crossover and mutation
probabilities in genetic algorithms was proposed. The
probabilities are varied depending on the fitness of the
solution, whereby higher fitness is protected, while sub-
average fitness is totally disrupted. Therefore, the problem of
defining the optimal values of these probabilities is solved.
After selecting the parents the crossover probability is
calculated depending on their fitness and the average
probability of the population fitness. If the fitness is high
then the resulted probability is low, and if the fitness is low
then the resulted probability is high.

This paper, proposes an adaptive GP with three
components. The first adaptive component concerns the
selection process which is similar to the one proposed in [3,
4], however, the selection is applied not only on the children,
but also on the parents. The second component implements
the adaptive probabilities of the crossover and mutation
processes that were suggested in [9] for genetic algorithms,
and test them in GP. And the last adaptive component
addresses the function list to be used in GP since it is hard to
decide which functions are better to represent the solution.
The adaptive function list starts with a complete list of
functions, then after some generations the GP updates this
list based on the functions that produce the best fitness
values. Further details on the proposed adaptive GP approach
are discussed in the next section

III. PROPOSED APPROACH
We propose an adaptive GP approach that consists of

three adaptive variations. The first variation can be termed as
the adaptive selection process (referred to as SGP from now
on) and is based on ensuring that the fitness of the next
generation is better than the previous one. This is done by
selecting the parents based on their fitness compared to the
average of the population’s fitness; thereby, only parents
whose fitness values are larger than the average of the

population’s fitness are accepted. Furthermore, the fitness of
the children that are produced by the crossover of these
parents is calculated for each child and is compared to the
average of the old population’s fitness. If larger, then this
child is selected to be in the next generation. This way we
ensure that the next generation’s fitness is better than the
previous one.

The second adaptive variation involves adaptive
probabilities of the crossover and mutation operators. Since
these probabilities differ based on the fitness of the solution,
higher fitness has a low probability of crossover and
mutation to be applied, whereas low fitness has a high
probability of these operators to be applied. Keeping in mind
that the mutation operator is designed to discover better
variants of a single chromosome, whereas, the crossover
operator combines useful genetic substructures of multiple
chromosomes. These probabilities are calculated, as adopted
from [9], as follows:

PCrossover = (1)

PMutation= (2)

where C1 and C2 are constants and are equal to 1 and 0.5

respectively. Fmax is the maximum fitness of the population,
FAvg is the average of the population’s fitness, FPMax is the
maximum fitness of the parents, and FInd is the fitness of the
individual chromosome that the mutation operation is
applied to. This way, the individuals with high fitness values
are protected and copied into the next generation. Using a
simple equation to adapt the probabilities that do not need to
record data or affect the execution time of the process is an
effective way. This variation of GP is called CGP from now
on.

The third adaptive variation of the proposed adaptive GP
is the idea of an adaptive function list (referred to as FGP
from now on). The list of functions that are used in the GP,
adapts to the problem and search space. The main goal is to
ease the process of selecting the functions that best represent
the problem. The idea is based on modifying the function list
that is used within the evolutionary process to construct
programs, and an update of the function list is performed
every 30 generations and after the first 100 generations, in
order for the GP to be able to learn the functions that are
more suitable for the problem. The number of 30 generations
was determined by preliminary experiments since it achieved
the best results by evaluating function lists of different
generations. The modification process proceeds as follows:
first, 10 best fitness programs (Best) and 10 worst fitness
programs (Worst) are chosen from the population. Then, the
functions used in both lists (Best and Worst) are determined,
and the frequency of usage of each function is counted. As
an example, the output of this step is shown in Table I.

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 81

TABLE I. EXAMPLE OF ADAPTIVE FUNCTION LIST

Function Worst Best Function Worst Best
Add 2 0 Greater Than 1 1
Subtract 1 0 Exponential 0 0
Multiply 0 2 Log 3 0
Divide 1 2 Sine 1 0
Power 0 0 If Else 0 3

Then the frequency of each function is compared; if the

frequency of Worst > 0 and frequency of best = 0, then the
function is deleted from the function list, and thus is not be
used in the next population. Based on the example above,
after this step the functions Add, Subtract, Log and Sine are
deleted. At last, an update of the set of functions used in the
next generations is performed.

IV. EXPERIMENTS AND RESULTS
To evaluate the proposed variations and see how

effective the different adaptations are to find optimized
solutions and/or shorten the run time of GP, experiments
were performed using the Java Genetic Algorithms Package
(JGAP) [10] on two types of datasets; one with binary
classes (true and false), and the other with multiple classes.

A. Datasets
The experiments are applied on the two types of datasets

[12]. The binary datasets are the Wisconsin Diagnostic
Breast Cancer (WDBC) dataset that predicts the two breast
cancer diagnoses of benign and malignant. The Hepatitis
dataset predicts whether a person lives or dies, and the Heart
datasets that refers to the presence of heart disease in the
patient. The Diabetes dataset is the Pima Indians Diabetes
Database and the diagnostic investigated is whether the
patient shows signs of diabetes or not. The details for these
datasets including the number of features, and the number of
records are shown in Table II.

The second type of datasets that were used are multiclass
datasets that include the Dermatology dataset, which
determines the type of Eryhemato-Squamous disease, the
Lymph dataset, which is about the Lymphography disease,
the Splice dataset, which is about the Primate splice-junction
gene sequences (DNA) with associated imperfect domain
theory, and the CTG dataset, which is about fetal
Cardiotocograms (CTGs). This dataset is split into two
outcome categories, the first one classifies a morphologic
pattern (CTG-Class), and the second is related to a fetal state
(CTG-NSP). All details including the number of features and
records of these datasets are shown in Table III.

B. Experiments
The experiments were conducted as follows. First of all,

feature selection was performed on the datasets using
WEKA [11], which reduced the number of features as shown
in the brackets in Table II for the binary datasets, and Table

III for the multiclass datasets, respectively. Also, the GP
variants were applied on these datasets using 66% for
training, and 34% for testing.

After that, our GP algorithm was run using the following
settings: population size = 500, number of generations =
1000, crossover probability = 0.5, mutation probability = 0.1,
maximum initial depth = 5, maximum crossover depth = 8,
function probability = 8, dynamize arity probability = 0.05,
new chromosome percent = 0.2.

The experiments applied the standard GP (GP) and the 3
proposed adaptive GP adaptations variations; SGP, CGP, and
FGP. Combinations of these adaptive ideas were
implemented, such as adaptive selection and adaptive
crossover were combined (referred to as SC-GP), and the
combination of adaptive selection and adaptive function list
(SF-GP), and also the adaptive crossover and adaptive
function list (CF-GP). In addition, the combination of all
three implementation ideas was done and is referred to as
AGP.

C. Results
To evaluate all adaptive GPs, they are compared with

standard GP measuring the accuracy and execution time. The
accuracy results for applying the GP and the adaptive GPs on
the binary and multiclass datasets are shown in Figure 2,
where the solid point represents the average of 30 runs, the
solid bar depicts the mean, the lower end of the dashed line
represents the minimum accuracy observed by the
corresponding GP variant, and the upper end of the dashed
line depicts the maximum accuracy value.

Figure 2 (a) shows the results for dataset D1, where GP,
FGP and CF-GP (94.14%, 94.11% and 94.02 respectively)
all have higher average accuracies compared to other GP
variants. Standard GP has the highest maximum accuracy.
Regarding the mean value, CF-GP has the closest value
compared to the standard GP mean value.

TABLE II. BINARY DATASETS

 Dataset Classes Features
(Filtered) Records

D1 Breast cancer 2 31 (11) 568

D2 Diabetes 2 8 (4) 768

D3 Heart 2 13 (9) 269

D4 Hepatitis 2 19 (10) 155

TABLE III. MULTICLASS DATASETS

 Dataset Classes Features
(Filtered) Records

D5 Lymph 4 19 (10) 148
D6 Splice 3 61 (22) 3190
D7 Dermatology 6 33 (19) 366
D8 CTG_NSP 3 22 (7) 2126

82 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

(a) D1 accuracy results (b) D2 accuracy results (c) D3 accuracy results (d) D4 accuracy results

(e) D5 accuracy results (f) D6 accuracy results (g) D7 accuracy results (h) D8 accuracy results

Fig. 2. Accuracy results for GP variants applied on binary and multiclass datasets

The accuracy results for D2 are shown in Figure 2 (b),
where FGP has the highest average value of 76.6%, whereas
standard GP scores 75.5%, however, SGP, AGP, SF-GP and
CF-GP all have average accuracies higher than GP with
76.22%, 76.38%, 75.83%, and 75.89%, respectively. For the
maximum accuracy values, CF-GP has the highest value.
Looking at the mean, GP and CGP both have their means at
the same level, but lower than all other GP variants.

D3’s results shown in Figure 2 (c) reveal that the GP’s
average result is 73.94%, whereas CF-GP has the highest
average result of 76.05%, and CGP, FGP, and AGP all have
accuracies higher than GP (74.27%, 74.02% and 74.60%,
respectively). Looking at the maximum values, it is clear that
nearly all GP variants have higher values than GP. In
addition, the mean values for GP is in the middle compared
to the other GP variants, whereby FGP, AGP and CFGP all
have higher mean values.

For the last binary dataset, D4, the results are shown in
Figure 2(d), whereby GP’s average result is 83.52%, while
SGP has an accuracy of 83.33%, and SC-GP’s accuracy is
83.02%. The highest maximum values are achieved by GP
and CF-GP. The mean value of GP is noted to be the highest
compared to other GP variants.

In summary, it was found from the binary dataset results
that for the average accuracy values, FGP and CF-GP both
have two results (for D2 and D3) higher than GP with one
being very close (D1). SGP, CGP and SF-GP all have one
higher value compared to GP (for D2, D3, and D2,
respectively). CF-GP scores two highest maximum values
for D2 and D4.

For the multiclass datasets, the accuracy results of D5 are
shown in Figure 2 (e), where it is observed that GP’s average
result is 70.32%, where CGP and CF-GP both have higher

accuracies with 71.17% and 72.02%, respectively. Whereas
AGP, SC-GP and SF-GP all have close accuracy values
(70.13%, 70.06%, and 70.13%, respectively). The highest
maximum value is achieved by GP, CGP and CF-GP. The
mean value for all GP variants, except FGP, is higher than
GP, whereas FGP’s mean is at the same level as GP’s.

D6’s accuracy results are shown in Figure 2 (f). GP
achieves the highest accuracy with 72.13%, however, CGP,
FGP and CF-GP all have close values with 71.27%, 71.46%,
and 71.34%, respectively. The highest maximum values are
found by FGP and CF-GP.

The accuracy results for D7 are shown in Figure 2 (g),
where GP achieved an average accuracy of 71.33%, while
CGP, FGP and CF-GP all have higher accuracy values with
72.37%, 71.97% and 72.05%, respectively. The highest
maximum values are found by FGP and CF-GP.

The mean value of CGP and CF-GP are higher than GP.
For D8, GP has the highest average accuracy of 84.14%,
while CGP, FGP, and CF-GP all have close values (83.68%,
83.32% and 83.18%). In addition, the highest maximum
value is also found by GP.

To summarize the results of the multiclass datasets, CGP
and CF-GP both have two highest average accuracies (for D5
and D7) compared to GP. While FGP has the highest
accuracy once (D7) and two close accuracy values (D6 and
D8). The highest maximum accuracy is found by CF-GP for
three datasets out of the four.

The average execution times for the 30 runs applied to
the GP variants on the binary datasets are shown in Figure 3.
For D1, SGP and CF-GP both have shorter execution times
with 67.86 and 69.62 seconds, respectively, compared to GP
(75.86 seconds), whereas FGP and SF-GP have close values
(79.78 and 76.10 seconds). For D2, GP took on average

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 83

94.40 seconds, whereas SGP, AGP, SC-GP and SF-GP all
have shorter execution times (71.68, 77.05, 75.13, 76.59
seconds, respectively). The execution time for GP applied on
D3, was 40.75 seconds, whereas SGP and SC-GP both have
shorter execution times with 36.82 and 40.23 seconds
respectively, and AGP and SF-GP both have similar
execution times (41.58 and 42.15 seconds). For the last
binary dataset D4, GP had the shortest time with 22.84
seconds, followed by FGP with 25.88 seconds and CGP with
29.37 seconds.

Fig. 3. Execution times for all GP variants (Binary datasets)

For the multiclass datasets the results of the execution
time are shown in Figure 4 (please note that the y-axis is in
logarithmic scale), whereas for D5, GP took on average
19.51 seconds to run, while FGP took 18.36 seconds, and
CF-GP took 19.25 seconds. D6’s execution time for GP is
555.78 seconds on average, whereas SGP, AGP, SC-GP and
SF-GP all have shorter execution times than GP (392.23,
498.73, 513.01 and 446.26 seconds, respectively). For D7,
GP has the shortest execution time with 47.14 seconds,
closely followed by SGP and CGP with 48.24 and 49.45
seconds, respectively. GP’s execution time for D8 is 213.91
seconds, whereby SGP and CGP took 203.75 and 205.14
seconds, respectively, while F-PG, SF-GP and CF-GP all
have shorter execution times with 183.06, 179.43 and 178.39
seconds, respectively.

Fig. 4. Execution times for all GP variants (Multiclass datasets)

In summary, the accuracy results show that CF-GP can
achieve a higher accuracy compared to GP for both binary
and multiclass datasets (4 out of 8 datasets), and can obtain a
close accuracy values compared to GP for the other 3
datasets, while FGP achieves a higher accuracy in three

datasets, and results close to GP for other 3 datasets.
Moreover, CGP can achieve a higher accuracy than GP for 3
datasets, and two datasets with a close accuracy compared to
GP. While at the same time when focusing on the execution
time, CF-GP has a shorter run time compared to GP for four
datasets out of eight, and the same goes for FGP, whereby it
has two shorter execution times compared to GP. Likewise,
SGP has shorter times for 5 datasets; SC-GP and SF-GP
have shorter times for 3 datasets. A possible reason for the
higher accuracy of CF-GP and FGP is that the function list is
being modified in order to only have the functions that suit
the problem best. This focuses the process on solving the
problem rather than trying many different ways (functions).
In addition, for CGP the programs with high fitness are being
protected from the crossover and mutation operations, while
CF-GP combines these two reasons.

We note that the execution time for the FGP and all
combinations have the shortest time due to the smaller
function list, which affect the tree size, as mentioned in [13]:
“A small tree size is a desirable outcome, particularly when
an uncomplicated function set is used, as the evolved results
may be easier to interpret”, therefore, the tree size affects the
execution time - the smaller the tree size the shorter the
execution time. However, SGP ensures that the accuracy of
the parents and their children are higher than the
population’s average fitness. High fitness values mean that
the program best fits to the target problem, thus all programs
in the population will fit well to the target problem and the
subsequent generations programs will have higher
accuracies. Furthermore, most of the generated programs
with high accuracy values take less time compared to low
accuracy programs, which contain a lot of functions and
variables that construct long equations needing longer time
to be executed on all records of the dataset.

V. CONCLUSIONS
This paper proposed a modified GP that adapts the

parameters of the GP runs automatically and performs the
classification task faster than standard GP.

This adaptive GP has three variations, the first considers
the selection process (SGP), which is based on ensuring that
the fitness of the next generation is better than the previous
one; this is done by selecting the parents based on its fitness
and selecting the produced children also based on its fitness
compared to the average of the population’s fitness.

The second variant concerns the crossover and mutation
probabilities (CGP) that are adaptively changed based on the
fitness of the chromosome by protecting the fittest
chromosomes from these operations. The third variant is an
adaptive function list (FGP), whereby the function list is
adapted based on functions that performed well during the
earlier classification task.

All these adaptive variations were tested individually, but
also combinations were evaluated and compared with
standard GP. The measures used were accuracy and
execution time. Both, binary datasets and multiclass
classification datasets were used. The results revealed that in
particular FGP and CF-GP achieve better or similar accuracy
values, by having shorter execution times. Also CGP and

84 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)

FGP both help in determining the best crossover and
mutation probabilities as well as the function list that best
suits the problem.

Future work involves testing the proposed approach on
more datasets, and implementing other adaptation techniques
such as the selection based on age. To further speed up the
execution time of GP, the code will be parallelized.

REFERENCES
[1] A.E. Eiben, and J.E. Smith, “Introduction to Evolutionary

Computing”, 1st edition, Natural Computing Series, Springer,
Berlin, Heidelberg, New York, 2003.

[2] Lakhmi C. Jain and Ashish Ghosh, “Evolutionary
Computation in Data Mining (Studies in Fuzziness and Soft
Computing)”, Springer-Verlag New York, Inc., Secaucus, NJ,
2005.

[3] M. Affenzeller and S. Wagner. “Offspring selection: A new
self-adaptive selection scheme for genetic algorithms”.
Adaptive and Natural Computing Algorithms, pp. 218-221,
2005.

[4] S. Winkler, M. Affenzeller and S. Wagner. “Using enhanced
genetic programming techniques for evolving classifiers in
the context of medical diagnosis - An empirical study”, Proc.
8th annual Genetic and Evolutionary Computation Conf.
(GECCO '06), Seattle, Washington, USA, 2006.

[5] T. White and A. Salehi-Abari. “A sawrm-based corssover
operator for genetic programming”. Proc. 10th annual
Genetic and Evolutionary Computation Conf. (GECCO '08),
Atlanta, Georgia, USA, 2008.

[6] Y. Kameya, J. Kumagai and Y. Kurata. “Accelerating Genetic
Programming by frequent Subtree Mining”. Proc. 10th
annual Genetic and Evolutionary Computation Conf.
(GECCO '08), Atlanta, Georgia, USA, 2008.

[7] H. Luchian and O. Gheorghies. “Integrated-Adaptive Genetic
Algorithms”. Proc. 7th European Artificial Life Conf. (ECAL),
Germany, pp. 635–642, 2003.

[8] J. Bongard. “A Probabilistic Functional Crossover Operator
for Genetic Programming”. Proc. 12th annual Genetic and
Evolutionary Computation Conf. (GECCO '10), Portland,
Oregon, USA, 2010.

[9] M. Srinivas abd L. Patnaik. “Adaptive probabilities of
corssover and mutation in genetic algorithms”. IEEE
Transactions on systems, man and cybernetics, vol 24, no 4,
April 1994.

[10] Java Genetic Algorithms Package (JGAP), source code,
http://jgap.sourceforge.net, last retrieved January 2012.

[11] Ian H. Witten; Eibe Frank, Mark A. Hall. “Data Mining:
Practical machine learning tools and techniques”, 3rd Edition.
Morgan Kaufmann, San Francisco, USA, 2011.

[12] A. Asuncion and D. Newman, UCI Machine Learning
Repository. University of California, Irvine, School of
Information and Computer Sciences, 2007.

[13] J. Fitzgerald and C. Ryan, “Drawing boundaries: using
individual evolved class boundaries for binary classification
problems”, Proc. 13th annual Genetic and evolutionary
computation Conf. (GECCO '11), Dublin, Ireland, July 12-16,
2011.

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 85

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

