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Abstract—Classification is a data mining method that assigns 
items in a collection to target classes with the goal to accurately 
predict the target class for each item in the data. Genetic 
programming (GP) is one of the effective evolutionary 
computation techniques to solve classification problems, 
however, it suffers from a long run time. In addition, there are 
many parameters that need to be set before the GP is run. In 
this paper, we propose an adaptive GP that automatically 
determines the best parameters of a run, and executes the 
classification faster than standard GP. This adaptive GP has 
three variations. The first variant consists of an adaptive 
selection process ensuring that the produced solutions in the 
next generation are better than the solutions in the previous 
generation. The second variant adapts the crossover and 
mutation rates by modifying the probabilities ensuring that a 
solution with a high fitness is protected. And the third variant 
is an adaptive function list that automatically changes the 
functions used by deleting the functions that do not favorably 
contribute to the classification. These proposed variations were 
implemented and compared to the standard GP. The results 
show that a significant speedup can be achieved by obtaining 
similar classification accuracies. 

Keywords-Evolutionary Computation, Classification, 
Adaptive Genetic Programming. 

I. INTRODUCTION 
The term optimization describes a process whereby the 

search for the optimum solution from a set of candidate 
solutions is sought. Based on specific performance criteria, 
the optimum solution is searched for. The field of 
optimization is broad and has found applications in 
manufacturing, finance, engineering, and logistics to name a 
few. Before the optimization process can be started, all 
problems to be optimized should be formulated as a system 
with its status controlled by a few input variables and its 
performance specified by a well-defined objective function. 
The goal of optimization is to find the best value for each 
variable in order to achieve satisfactory performance. In 
practical terms, this means to accomplish a task in the most 
efficient way or the highest quality or to produce maximum 
yields given limited resources. 

There are many different optimization techniques that 
exist. Evolutionary algorithms are one category of 
optimization techniques that are inspired by processes of 
biological evolution. The common idea underlying 
evolutionary algorithms is that given a population of 
individuals, natural selection (biologically referred to as 
survival of the fittest) is used to improve the fitness of the 
overall population. Given a function to be maximized, a set 

of candidate solutions is randomly created and the fitness 
function, used as a fitness measure (the higher the better), is 
applied. Based on this fitness measure, some of the better 
candidates are chosen to undergo recombination and 
mutation. Recombination is applied to two candidates and 
results in one or more new candidates; whereas mutation is 
only applied to one candidate and results in one new 
candidate. After recombination and mutation is applied a set 
of new candidates replace the old ones and the next 
generation begins. This process is iterated until a candidate 
with sufficient quality is found or a predefined number of 
iterations is reached. 

There are two fundamental components in this 
evolutionary process that form the basis of evolutionary 
algorithms [1]:  

 Variation by combination and mutation create the 
necessary diversity and; 

 Selection provides the quality. 
The combined effect of variation and selection leads to 

improving fitness values in consecutive populations. 
There are various different flavors of evolutionary 

algorithms that follow the above procedure, and only differ 
to some extend. For instance, the representation of a 
candidate solution is often used to differentiate the different 
flavors. In genetic algorithms for example, strings represent 
the candidates over a finite alphabet; in evolutionary 
strategies real-valued vectors are used; for evolutionary 
programming finite state machines are used for the 
representation; and trees are used in genetic programming. A 
given representation might be preferred over others if it 
matches the problem better, i.e., the encoding of candidate 
solutions is easier or more natural. For instance, for evolving 
a computer program that can play a board game, trees are 
well-suited given that the parsing of the trees is necessary, 
thus a genetic programming approach is the best option [1].  

As mentioned above, genetic programming is 
distinguished from other evolutionary algorithms by the use 
of a tree representation of variable size rather than of a linear 
string of fixed length representation as in genetic algorithms. 
The flexible representation scheme is important for the 
underlying structure of the data to be discovered 
automatically. One primary difficulty however, is that the 
number of solutions may become excessive without any 
improvement of their generalizability. However, genetic 
programming has proven to be a very powerful optimization 
technique. 

Evolutionary computation is also applied to the domain 
of data mining. Data mining is a relatively broad field that 
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deals with the automatic knowledge discovery from 
databases and it is one of the most developed fields in the 
area of artificial intelligence. Given the rapid growth of data 
collected in various realms of human activity and their 
potential usefulness requires efficient tools to extract and 
make use of the gathered knowledge. Evolutionary 
algorithms are very powerful tools that can be utilized to 
make use of knowledge hidden in the data collected [2]. 

This paper applies genetic programming (GP) to 
classification in data mining. Classification is the task of 
automatically categorizing data into different classes. It 
basically derives a classifier that distinguishes two (binary 
classification) or more classes (multiclass classification) in 
order to apply the classifier to new data that then determines 
the class the data instance belongs to. In particular, an 
adaptive GP method is introduced in this paper that allows 
certain parameters of the GP to be adapted according to the 
iterative process of the GP algorithm. 

The GP process has four main steps. It starts with 
initializing a random population of programs, then a fitness 
ranking is calculated for each program using the fitness 
function (for the classification task, the fitness function 
indicates the classification accuracy). After that, a selection 
process chooses two programs (parents) in order to generate 
new programs (children). The new children are generated in 
the fourth step using the natural operations of crossover and 
mutation. All these steps are repeated until a new population 
with the same size than the old population is produced, as 
shown in Figure 1. This process is repeatedly applied until a 
stopping criterion, such as reaching a predefined maximum 
number of generations is reached, or finding a solution with 
the best fitness. 

 
Fig. 1. GP Process 

This paper is structured as follows. Section II describes 
related work in the area of GP including different GP 
variants. In Section III, our adaptive GP is described. Section 
IV presents the experiments as well as the results obtained, 
and Section V concludes this paper. 

II. RELATED WORK 
Related work in the area of GP is manifold. In particular, 

several adaptive techniques have been applied to GP in the 
past. For example, in [3] the authors proposed a self-adaptive 
selection mechanism for genetic algorithms, which was 
called offspring selection. Offspring selection is based on the 

idea whereby the fitness value of the evenly produced 
offspring is compared to the fitness values of its own parents 
in order to decide whether or not to accept the offspring as a 
member for the next generation. The offspring is accepted as 
a candidate for the further evolutionary process if and only if 
the reproduction operator was able to produce an offspring 
that could outperform the fitness of its own parents; where 
the fitness of the offspring is compared with the worst fitness 
of the parents, and only is accepted if it is better. This 
mechanism was tested on some real valued test functions 
with a scalable degree of difficulty and found to produce 
better results.  

However in [4], the authors used this type of offspring 
selection in combination with hybrid formula structures 
combining logical expressions and classical mathematical 
functions in GP, and it was applied to three medical 
benchmark classification problems (Wisconsin, Thyroid, and 
Melanoma) and compared to other machine learning 
methods (Linear modeling, k-nearest neighbour, artificial 
neural network, and standard GP). The results showed that 
this approach outperforms classical machine learning 
algorithms frequently used for solving classification 
problems, namely linear regression, neural networks and 
neighborhood-based classification. 

In [5], a swarm-based improvement of the crossover 
operator was proposed and tested on symbolic regression. 
The proposed approach consists of two main parts, the first is 
function couplings, which constructs a matrix that represents 
a coupling from every function to every other function or 
terminal. Once this matrix is defined, crossover can be 
applied to preserve important couplings, where the modified 
crossover is applied and the probability of choosing a node 
as root of the sub-tree for crossover is proportional to the 
amount of pheromone for the coupling with its parent node. 
Their approach was tested on three test functions by varying 
the population size. Constructing a matrix and using the 
swarm intelligence technique is a very time consuming 
process, which may improve the quality of the GP process 
but makes the time for a run even worse, especially given 
that GP suffers from long execution times. 

A GP method called GPTM (GP with Tree Mining) was 
proposed in [6]. The method first identifies the sub-trees 
repeatedly appearing in the chromosomes of superior 
individuals (ones with very high fitness), and then protects 
them from undesirable crossover operations. To find such 
sub-trees, GPTM uses a FREQT-like efficient tree-mining 
algorithm. GPTM was evaluated by three benchmark 
problems, and the results indicate that GPTM is comparable 
and finds the optimal individual earlier. The tree mining 
method is a good idea since all solutions in GP are 
represented as trees; however, mining every tree is 
computationally very expensive especially for large 
population sizes. 

In [7], an integrated adaptive genetic algorithm was 
proposed, containing two adaptive techniques. The first 
technique dynamically adapts the rates of the crossover and 
mutation operators, and the second adapts the behavior of 
these operators whether unary (mutation), binary (crossover), 
or multiary. The main idea is to record the behavior of 
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different types of these operators by using a “mini” genetic 
algorithm to modify the rates and the used operators. This 
algorithm was tested using the royal road function, and the 
results were compared with the standard genetic algorithm. 
The results show that this algorithm is more robust and less 
sensitive to errors with the initial parameter setting. 

A tree-based crossover operator that probabilistically 
crosses branches based on the behavioral similarity between 
the branches was introduced in [8]. Node behavior is defined 
as the range of values that it propagates upward while the 
tree is evaluated; where each node records the minimum and 
maximum values. A distance between the two parents is 
calculated using these recorded values, then this distance is 
normalized and used as a probability of the crossover 
operation. This proposed technique was compared with the 
GP method without crossover, random crossover, and a 
deterministic form of the crossover operator in the symbolic 
regression domain, and achieved better results. In GP, 
usually the population size is large, and each chromosome 
contains nodes that represent the function list and the 
terminals and constants, therefore, recording the minimum 
and maximum values for each node adds an overhead to the 
whole process. 

In [9], an adaptive technique for crossover and mutation 
probabilities in genetic algorithms was proposed. The 
probabilities are varied depending on the fitness of the 
solution, whereby higher fitness is protected, while sub-
average fitness is totally disrupted. Therefore, the problem of 
defining the optimal values of these probabilities is solved. 
After selecting the parents the crossover probability is 
calculated depending on their fitness and the average 
probability of the population fitness. If the fitness is high 
then the resulted probability is low, and if the fitness is low 
then the resulted probability is high.  

This paper, proposes an adaptive GP with three 
components. The first adaptive component concerns the 
selection process which is similar to the one proposed in [3, 
4], however, the selection is applied not only on the children, 
but also on the parents. The second component implements 
the adaptive probabilities of the crossover and mutation 
processes that were suggested in [9] for genetic algorithms, 
and test them in GP. And the last adaptive component 
addresses the function list to be used in GP since it is hard to 
decide which functions are better to represent the solution. 
The adaptive function list starts with a complete list of 
functions, then after some generations the GP updates this 
list based on the functions that produce the best fitness 
values. Further details on the proposed adaptive GP approach 
are discussed in the next section 

III. PROPOSED APPROACH 
We propose an adaptive GP approach that consists of 

three adaptive variations. The first variation can be termed as 
the adaptive selection process (referred to as SGP from now 
on) and is based on ensuring that the fitness of the next 
generation is better than the previous one. This is done by 
selecting the parents based on their fitness compared to the 
average of the population’s fitness; thereby, only parents 
whose fitness values are larger than the average of the 

population’s fitness are accepted. Furthermore, the fitness of 
the children that are produced by the crossover of these 
parents is calculated for each child and is compared to the 
average of the old population’s fitness. If larger, then this 
child is selected to be in the next generation. This way we 
ensure that the next generation’s fitness is better than the 
previous one. 

The second adaptive variation involves adaptive 
probabilities of the crossover and mutation operators. Since 
these probabilities differ based on the fitness of the solution, 
higher fitness has a low probability of crossover and 
mutation to be applied, whereas low fitness has a high 
probability of these operators to be applied. Keeping in mind 
that the mutation operator is designed to discover better 
variants of a single chromosome, whereas, the crossover 
operator combines useful genetic substructures of multiple 
chromosomes. These probabilities are calculated, as adopted 
from [9], as follows: 

 

PCrossover =               (1) 

 

PMutation=                 (2) 

 
where C1 and C2 are constants and are equal to 1 and 0.5 

respectively. Fmax is the maximum fitness of the population, 
FAvg is the average of the population’s fitness, FPMax is the 
maximum fitness of the parents, and FInd is the fitness of the 
individual chromosome that the mutation operation is 
applied to. This way, the individuals with high fitness values 
are protected and copied into the next generation. Using a 
simple equation to adapt the probabilities that do not need to 
record data or affect the execution time of the process is an 
effective way. This variation of GP is called CGP from now 
on. 

The third adaptive variation of the proposed adaptive GP 
is the idea of an adaptive function list (referred to as FGP 
from now on). The list of functions that are used in the GP, 
adapts to the problem and search space. The main goal is to 
ease the process of selecting the functions that best represent 
the problem. The idea is based on modifying the function list 
that is used within the evolutionary process to construct 
programs, and an update of the function list is performed 
every 30 generations and after the first 100 generations, in 
order for the GP to be able to learn the functions that are 
more suitable for the problem. The number of 30 generations 
was determined by preliminary experiments since it achieved 
the best results by evaluating function lists of different 
generations. The modification process proceeds as follows: 
first, 10 best fitness programs (Best) and 10 worst fitness 
programs (Worst) are chosen from the population. Then, the 
functions used in both lists (Best and Worst) are determined, 
and the frequency of usage of each function is counted. As 
an example, the output of this step is shown in Table I.  
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TABLE I.  EXAMPLE OF ADAPTIVE FUNCTION LIST 

Function Worst Best  Function Worst Best 
Add 2 0  Greater Than 1 1 
Subtract 1 0  Exponential 0 0 
Multiply 0 2  Log 3 0 
Divide 1 2  Sine 1 0 
Power 0 0  If Else 0 3 

 
Then the frequency of each function is compared; if the 

frequency of Worst > 0 and frequency of best = 0, then the 
function is deleted from the function list, and thus is not be 
used in the next population. Based on the example above, 
after this step the functions Add, Subtract, Log and Sine are 
deleted. At last, an update of the set of functions used in the 
next generations is performed.  

IV. EXPERIMENTS AND RESULTS 
To evaluate the proposed variations and see how 

effective the different adaptations are to find optimized 
solutions and/or shorten the run time of GP, experiments 
were performed using the Java Genetic Algorithms Package 
(JGAP) [10] on two types of datasets; one with binary 
classes (true and false), and the other with multiple classes. 

A. Datasets 
The experiments are applied on the two types of datasets 

[12]. The binary datasets are the Wisconsin Diagnostic 
Breast Cancer (WDBC) dataset that predicts the two breast 
cancer diagnoses of benign and malignant. The Hepatitis 
dataset predicts whether a person lives or dies, and the Heart 
datasets that refers to the presence of heart disease in the 
patient. The Diabetes dataset is the Pima Indians Diabetes 
Database and the diagnostic investigated is whether the 
patient shows signs of diabetes or not. The details for these 
datasets including the number of features, and the number of 
records are shown in Table II. 

The second type of datasets that were used are multiclass 
datasets that include the Dermatology dataset, which 
determines the type of Eryhemato-Squamous disease, the 
Lymph dataset, which is about the Lymphography disease, 
the Splice dataset, which is about the Primate splice-junction 
gene sequences (DNA) with associated imperfect domain 
theory, and the CTG dataset, which is about fetal 
Cardiotocograms (CTGs). This dataset is split into two 
outcome categories, the first one classifies a morphologic 
pattern (CTG-Class), and the second is related to a fetal state 
(CTG-NSP). All details including the number of features and 
records of these datasets are shown in Table III. 

B. Experiments  
The experiments were conducted as follows. First of all, 

feature selection was performed on the datasets using 
WEKA [11], which reduced the number of features as shown 
in the brackets in Table II for the binary datasets, and Table 

III for the multiclass datasets, respectively. Also, the GP 
variants were applied on these datasets using 66% for 
training, and 34% for testing. 

After that, our GP algorithm was run using the following 
settings: population size = 500, number of generations = 
1000, crossover probability = 0.5, mutation probability = 0.1, 
maximum initial depth = 5, maximum crossover depth = 8, 
function probability = 8, dynamize arity probability = 0.05, 
new chromosome percent = 0.2. 

The experiments applied the standard GP (GP) and the 3 
proposed adaptive GP adaptations variations; SGP, CGP, and 
FGP. Combinations of these adaptive ideas were 
implemented, such as adaptive selection and adaptive 
crossover were combined (referred to as SC-GP), and the 
combination of adaptive selection and adaptive function list 
(SF-GP), and also the adaptive crossover and adaptive 
function list (CF-GP). In addition, the combination of all 
three implementation ideas was done and is referred to as 
AGP. 

C. Results 
To evaluate all adaptive GPs, they are compared with 

standard GP measuring the accuracy and execution time. The 
accuracy results for applying the GP and the adaptive GPs on 
the binary and multiclass datasets are shown in Figure 2, 
where the solid point represents the average of 30 runs, the 
solid bar depicts the mean, the lower end of the dashed line 
represents the minimum accuracy observed by the 
corresponding GP variant, and the upper end of the dashed 
line depicts the maximum accuracy value. 

Figure 2 (a) shows the results for dataset D1, where GP, 
FGP and CF-GP (94.14%, 94.11% and 94.02 respectively) 
all have higher average accuracies compared to other GP 
variants. Standard GP has the highest maximum accuracy. 
Regarding the mean value, CF-GP has the closest value 
compared to the standard GP mean value. 

TABLE II.  BINARY DATASETS 

 Dataset  Classes Features 
(Filtered) Records 

D1 Breast cancer 2 31 (11) 568 

D2 Diabetes 2 8 (4) 768 

D3 Heart 2 13 (9) 269 

D4 Hepatitis 2 19 (10) 155 

TABLE III.  MULTICLASS DATASETS 

 Dataset  Classes Features 
(Filtered) Records 

D5 Lymph 4 19 (10) 148 
D6 Splice 3 61 (22) 3190 
D7 Dermatology 6 33 (19) 366 
D8 CTG_NSP 3 22 (7) 2126 
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(a) D1 accuracy results (b) D2 accuracy results (c) D3 accuracy results (d) D4 accuracy results 

    
(e) D5 accuracy results (f) D6 accuracy results (g) D7 accuracy results (h) D8 accuracy results 

Fig. 2. Accuracy results for GP variants applied on binary and multiclass datasets 

The accuracy results for D2 are shown in Figure 2 (b), 
where FGP has the highest average value of 76.6%, whereas 
standard GP scores 75.5%, however, SGP, AGP, SF-GP and 
CF-GP all have average accuracies higher than GP with 
76.22%, 76.38%, 75.83%, and 75.89%, respectively. For the 
maximum accuracy values, CF-GP has the highest value. 
Looking at the mean, GP and CGP both have their means at 
the same level, but lower than all other GP variants. 

D3’s results shown in Figure 2 (c) reveal that the GP’s 
average result is 73.94%, whereas CF-GP has the highest 
average result of 76.05%, and CGP, FGP, and AGP all have 
accuracies higher than GP (74.27%, 74.02% and 74.60%, 
respectively). Looking at the maximum values, it is clear that 
nearly all GP variants have higher values than GP. In 
addition, the mean values for GP is in the middle compared 
to the other GP variants, whereby FGP, AGP and CFGP all 
have higher mean values.  

For the last binary dataset, D4, the results are shown in 
Figure 2(d), whereby GP’s average result is 83.52%, while 
SGP has an accuracy of 83.33%, and SC-GP’s accuracy is 
83.02%. The highest maximum values are achieved by GP 
and CF-GP. The mean value of GP is noted to be the highest 
compared to other GP variants. 

In summary, it was found from the binary dataset results 
that for the average accuracy values, FGP and CF-GP both 
have two results (for D2 and D3) higher than GP with one 
being very close (D1). SGP, CGP and SF-GP all have one 
higher value compared to GP (for D2, D3, and D2, 
respectively). CF-GP scores two highest maximum values 
for D2 and D4. 

For the multiclass datasets, the accuracy results of D5 are 
shown in Figure 2 (e), where it is observed that GP’s average 
result is 70.32%, where CGP and CF-GP both have higher 

accuracies with 71.17% and 72.02%, respectively. Whereas 
AGP, SC-GP and SF-GP all have close accuracy values 
(70.13%, 70.06%, and 70.13%, respectively). The highest 
maximum value is achieved by GP, CGP and CF-GP. The 
mean value for all GP variants, except FGP, is higher than 
GP, whereas FGP’s mean is at the same level as GP’s. 

D6’s accuracy results are shown in Figure 2 (f). GP 
achieves the highest accuracy with 72.13%, however, CGP, 
FGP and CF-GP all have close values with 71.27%, 71.46%, 
and 71.34%, respectively. The highest maximum values are 
found by FGP and CF-GP. 

The accuracy results for D7 are shown in Figure 2 (g), 
where GP achieved an average accuracy of 71.33%, while 
CGP, FGP and CF-GP all have higher accuracy values with 
72.37%, 71.97% and 72.05%, respectively. The highest 
maximum values are found by FGP and CF-GP. 

The mean value of CGP and CF-GP are higher than GP. 
For D8, GP has the highest average accuracy of 84.14%, 
while CGP, FGP, and CF-GP all have close values (83.68%, 
83.32% and 83.18%). In addition, the highest maximum 
value is also found by GP. 

To summarize the results of the multiclass datasets, CGP 
and CF-GP both have two highest average accuracies (for D5 
and D7) compared to GP. While FGP has the highest 
accuracy once (D7) and two close accuracy values (D6 and 
D8). The highest maximum accuracy is found by CF-GP for 
three datasets out of the four.  

The average execution times for the 30 runs applied to 
the GP variants on the binary datasets are shown in Figure 3. 
For D1, SGP and CF-GP both have shorter execution times 
with 67.86 and 69.62 seconds, respectively, compared to GP 
(75.86 seconds), whereas FGP and SF-GP have close values 
(79.78 and 76.10 seconds). For D2, GP took on average 
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94.40 seconds, whereas SGP, AGP, SC-GP and SF-GP all 
have shorter execution times (71.68, 77.05, 75.13, 76.59 
seconds, respectively). The execution time for GP applied on 
D3, was 40.75 seconds, whereas SGP and SC-GP both have 
shorter execution times with 36.82 and 40.23 seconds 
respectively, and AGP and SF-GP both have similar 
execution times (41.58 and 42.15 seconds). For the last 
binary dataset D4, GP had the shortest time with 22.84 
seconds, followed by FGP with 25.88 seconds and CGP with 
29.37 seconds. 

 
Fig. 3. Execution times for all GP variants (Binary datasets) 

For the multiclass datasets the results of the execution 
time are shown in Figure 4 (please note that the y-axis is in 
logarithmic scale), whereas for D5, GP took on average 
19.51 seconds to run, while FGP took 18.36 seconds, and 
CF-GP took 19.25 seconds. D6’s execution time for GP is 
555.78 seconds on average, whereas SGP, AGP, SC-GP and 
SF-GP all have shorter execution times than GP (392.23, 
498.73, 513.01 and 446.26 seconds, respectively). For D7, 
GP has the shortest execution time with 47.14 seconds, 
closely followed by SGP and CGP with 48.24 and 49.45 
seconds, respectively. GP’s execution time for D8 is 213.91 
seconds, whereby SGP and CGP took 203.75 and 205.14 
seconds, respectively, while F-PG, SF-GP and CF-GP all 
have shorter execution times with 183.06, 179.43 and 178.39 
seconds, respectively. 

 
Fig. 4. Execution times for all GP variants (Multiclass datasets)  

In summary, the accuracy results show that CF-GP can 
achieve a higher accuracy compared to GP for both binary 
and multiclass datasets (4 out of 8 datasets), and can obtain a 
close accuracy values compared to GP for the other 3 
datasets, while FGP achieves a higher accuracy in three 

datasets, and results close to GP for other 3 datasets. 
Moreover, CGP can achieve a higher accuracy than GP for 3 
datasets, and two datasets with a close accuracy compared to 
GP. While at the same time when focusing on the execution 
time, CF-GP has a shorter run time compared to GP for four 
datasets out of eight, and the same goes for FGP, whereby it 
has two shorter execution times compared to GP. Likewise, 
SGP has shorter times for 5 datasets; SC-GP and SF-GP 
have shorter times for 3 datasets. A possible reason for the 
higher accuracy of CF-GP and FGP is that the function list is 
being modified in order to only have the functions that suit 
the problem best. This focuses the process on solving the 
problem rather than trying many different ways (functions). 
In addition, for CGP the programs with high fitness are being 
protected from the crossover and mutation operations, while 
CF-GP combines these two reasons. 

We note that the execution time for the FGP and all 
combinations have the shortest time due to the smaller 
function list, which affect the tree size, as mentioned in [13]: 
“A small tree size is a desirable outcome, particularly when 
an uncomplicated function set is used, as the evolved results 
may be easier to interpret”, therefore, the tree size affects the 
execution time - the smaller the tree size the shorter the 
execution time. However, SGP ensures that the accuracy of 
the parents and their children are higher than the 
population’s average fitness. High fitness values mean that 
the program best fits to the target problem, thus all programs 
in the population will fit well to the target problem and the 
subsequent generations programs will have higher 
accuracies. Furthermore, most of the generated programs 
with high accuracy values take less time compared to low 
accuracy programs, which contain a lot of functions and 
variables that construct long equations needing longer time 
to be executed on all records of the dataset. 

V. CONCLUSIONS 
This paper proposed a modified GP that adapts the 

parameters of the GP runs automatically and performs the 
classification task faster than standard GP.  

This adaptive GP has three variations, the first considers 
the selection process (SGP), which is based on ensuring that 
the fitness of the next generation is better than the previous 
one; this is done by selecting the parents based on its fitness 
and selecting the produced children also based on its fitness 
compared to the average of the population’s fitness. 

The second variant concerns the crossover and mutation 
probabilities (CGP) that are adaptively changed based on the 
fitness of the chromosome by protecting the fittest 
chromosomes from these operations. The third variant is an 
adaptive function list (FGP), whereby the function list is 
adapted based on functions that performed well during the 
earlier classification task. 

All these adaptive variations were tested individually, but 
also combinations were evaluated and compared with 
standard GP. The measures used were accuracy and 
execution time. Both, binary datasets and multiclass 
classification datasets were used. The results revealed that in 
particular FGP and CF-GP achieve better or similar accuracy 
values, by having shorter execution times. Also CGP and 
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FGP both help in determining the best crossover and 
mutation probabilities as well as the function list that best 
suits the problem. 

Future work involves testing the proposed approach on 
more datasets, and implementing other adaptation techniques 
such as the selection based on age. To further speed up the 
execution time of GP, the code will be parallelized. 

REFERENCES 
[1] A.E. Eiben, and J.E. Smith, “Introduction to Evolutionary 

Computing”, 1st edition, Natural Computing Series, Springer, 
Berlin, Heidelberg, New York, 2003. 

[2] Lakhmi C. Jain and Ashish Ghosh, “Evolutionary 
Computation in Data Mining (Studies in Fuzziness and Soft 
Computing)”, Springer-Verlag New York, Inc., Secaucus, NJ, 
2005. 

[3] M. Affenzeller and S. Wagner. “Offspring selection: A new 
self-adaptive selection scheme for genetic algorithms”. 
Adaptive and Natural Computing Algorithms, pp. 218-221, 
2005. 

[4] S. Winkler, M. Affenzeller and S. Wagner. “Using enhanced 
genetic programming techniques for evolving classifiers in 
the context of medical diagnosis - An empirical study”, Proc. 
8th annual Genetic and Evolutionary Computation Conf. 
(GECCO '06), Seattle, Washington, USA, 2006. 

[5] T. White and A. Salehi-Abari. “A sawrm-based corssover 
operator for genetic programming”. Proc. 10th annual 
Genetic and Evolutionary Computation Conf. (GECCO '08), 
Atlanta, Georgia, USA, 2008. 

[6] Y. Kameya, J. Kumagai and Y. Kurata. “Accelerating Genetic 
Programming by frequent Subtree Mining”. Proc. 10th 
annual Genetic and Evolutionary Computation Conf. 
(GECCO '08), Atlanta, Georgia, USA, 2008. 

[7] H. Luchian and O. Gheorghies. “Integrated-Adaptive Genetic 
Algorithms”. Proc. 7th European Artificial Life Conf. (ECAL), 
Germany, pp. 635–642, 2003. 

[8] J. Bongard. “A Probabilistic Functional Crossover Operator 
for Genetic Programming”. Proc. 12th annual Genetic and 
Evolutionary Computation Conf. (GECCO '10), Portland, 
Oregon, USA, 2010. 

[9] M. Srinivas abd L. Patnaik. “Adaptive probabilities of 
corssover and mutation in genetic algorithms”. IEEE 
Transactions on systems, man and cybernetics, vol 24, no 4, 
April 1994. 

[10] Java Genetic Algorithms Package (JGAP), source code, 
http://jgap.sourceforge.net, last retrieved January 2012. 

[11] Ian H. Witten; Eibe Frank, Mark A. Hall. “Data Mining: 
Practical machine learning tools and techniques”, 3rd Edition. 
Morgan Kaufmann, San Francisco, USA, 2011. 

[12] A. Asuncion and D. Newman, UCI Machine Learning 
Repository. University of California, Irvine, School of 
Information and Computer Sciences, 2007.  

[13] J. Fitzgerald and C. Ryan, “Drawing boundaries: using 
individual evolved class boundaries for binary classification 
problems”, Proc. 13th annual Genetic and evolutionary 
computation Conf. (GECCO '11), Dublin, Ireland, July 12-16, 
2011. 

2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC) 85



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


