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Abstract— Current service-oriented architecture standards 

mainly rely on functional properties, however, service 

registries lack mechanisms for managing services’ non-

functional properties. These non-functional properties are 

expressed in terms of quality of service (QoS) attributes, which 

gives consumers assurance and confidence to use the services, 

as consumers aim to experience a good service performance, 

e.g. low waiting time, high reliability, and availability. This 

paper investigates service selection, and proposes two 

approaches; one which is based on a genetic algorithm and the 

other is based on a particle swarm optimization approach to 

match consumers with services based on QoS attributes as 

closely as possible. Both approaches are compared with an 

optimal assignment algorithm called the Munkres algorithm. 

Measurements are performed to quantify the overall match 

score, the execution time, and the scalability. 

Quality of service; evolutionary computing; swarm 

intelligence; Munkres algorithm; matching problem 

I.  INTRODUCTION 

Service-oriented computing is a computing paradigm that 
provides an environment in which services are loosely 
connected and interact with one another, as well as creates 
dynamic business processes and applications. Services are 
the fundamental building blocks in service-oriented 
environments and support rapid, low-cost development of 
distributed applications in heterogeneous environments. 
Service-oriented architectures enable service discovery, 
integration, and use by enabling application developers to 
overcome many distributed computing challenges.  

Due to the changing nature of service-oriented 
environments, the ability to locate services of interest in such 
an open, dynamic, and distributed environment has become 
an essential requirement. Traditional approaches to service 
discovery and selection have generally relied on the 
existence of pre-defined registry services, which contain 
descriptions that follow some shared data model. Often the 
description of a service is also very limited in such registry 
services, with little or no support for problem-specific 
annotations that describe properties of a service. 

Current service-oriented architecture standards mainly 
rely on functional properties, however, the service registries 
lack mechanisms for managing services’ non-functional 
properties. Such non-functional properties are expressed in 
terms of quality of service (QoS) parameters, which gives 
consumers assurance and confidence to use the services. 

Service registries host hundreds of similar web services, 
which make it difficult for the service consumers to choose 
from, given that the selection is only based on the functional 
properties. The selection of an appropriate service for a 
particular task has become a difficult challenge due to the 
increasing number of web services offering similar 
functionalities. Therefore, research was conducted to 
investigate different approaches to address this problem.  

The paper is structured as follows: Section 2 introduces 
and discusses related work. In Section 3, the problem 
specification and the approaches and implementations are 
discussed. Section 4 describes the measurement setup and 
discusses the results, and Section 5 concludes this paper with 
a comparison analysis.  

II. RELATED WORK 

A model of web service configurations and associated 
prices and preferences using utility function policies is 
described in [1]. The approach takes ideas from multi-
attribute decision theory to develop an algorithm for optimal 
service selection. This approach represents configurable web 
service offers and requests in an ontology and uses 
declarative logic-based matching rules with optimization 
methods such as linear programming for solving it. 

A non-functional property-based service selection 
method, modifying the logic scoring preference method with 
ordered weighted averaging operators is introduced in [2]. 
The dynamic mechanism for evaluating metadata based on 
QoS criteria is proposed.  

Research regarding the optimization of service selection 
to determine the optimal selection of services based on a 
measurable QoS metric is proposed by the following 
approaches.  

In [3], a broker-based architecture is proposed with a 
technique that models the problem in two ways. A 
combinatorial model and a graph model are proposed. The 
combinatorial model defines the problem as a multi-
dimensional multi-choice 0-1 knapsack problem. The graph 
model defines the problem as a multi-constraint optimal path 
problem. Both models are studied and compared with each 
other. 

The service selection algorithm proposed in [4] 
investigates the problem of composite web service selection. 
A utility function is proposed to evaluate all QoS parameters 
of each service based on the definition given in [3]. A multi-
dimensional QoS composite web service is mapped to the 



multi-dimensional multi-choice knapsack. A fast heuristic 
algorithm is proposed for solving the selection problem. 

Evolutionary computing has also been introduced to the 
service selection problem, in particular for workflow 
problems, using a genetic algorithm (GA) approach. 

A GA approach for the selection of services using QoS 
requirements is introduced in [5]. A simple GA algorithm 
was implemented and tested in a simulation environment 
SENECA.  

Another GA approach with a quick convergence method 
is proposed in [6]. In particular, the quickly convergent 
population diversity handling GA uses an enhanced initial 
population policy and an evolution policy based on 
population diversity and a relation matrix coding scheme. 
The integration of the two policies overcomes shortcomings 
resulting from the random nature of GA, such as slow 
convergence, large variations among running results, soaring 
overhead along with increasing size of service compositions. 

The aim of the research in this paper has a slightly 
different focus. First of all, only single service requests are 
investigated and it is envisioned that the necessity of service 
selection support will increase in future, not only because the 
number service-oriented applications is increasing, but also 
more and more services with similar functionality become 
available on the web. Therefore, a robust, time-efficient and 
scalable assignment algorithm is needed to perform the task 
of service selection. One optimal algorithm, known as the 
Munkres algorithm, has a time complexity of O(n

3
), and 

therefore, does not scale well with increasing numbers of 
consumers and providers. Thus, approximate algorithms are 
necessary, which on one hand provide an optimized 
assignment, and on the other hand scale closely to linear with 
increasing numbers of consumer-provider pairs. 

III. SERVICE SELECTION APPROACHES 

The problem of service selection on the web consists of 
having an efficient algorithm that can match multiple service 
consumers and service providers efficiently, while 
optimizing multiple objectives (QoS parameters). The 
problem is twofold: firstly, multiple clients requesting 
similar services should be satisfied, and secondly, the 
assignment process of the service consumers and the service 
providers should be optimized. Please note that one 
consumer can only be matched with one provider. 

The QoS criteria in the context of services are execution 
price, execution time, reliability, reputation, and availability. 
The values of these QoS parameters range from 0 to 1. Each 
consumer provides the QoS values based on its requirement 
of how the request must be executed, and each service 
provides the value based on its task execution capability. The 
service provider has a value for each QoS parameter. The 
service consumer requests a service provider specifying an 
upper and lower value for each QoS parameter, whereby for 
some QoS attributes the lower or upper bound is preferred. 
In particular, the lower bound is preferred for execution price 
and execution time, and the upper bound is preferred for 
reliability, reputation and availability. 

In order to calculate how good and close matches are, the 
following equations are proposed (keeping in mind that 

several consumers are matched with several providers 
simultaneously): 

 

vi =

0 if pi cui or pi < cli

1
cui pi
cui cli

if lower bound preferred
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whereby o is the overall match score of the problem (and 
therefore the fitness function for the algorithms), m  is the 
match score for a consumer-provider pair, vi  is the match 

value, cui  and cli  are the upper and lower value of the 

consumer respectively, pi  is the value of the provider, i  is 

the QoS parameter, and j  is the service number. 

As we have several service consumers and equally 
numbered service providers, the aim is to match the 
consumer–provider pairs as closely as possible using a GA 
and a particle swarm optimization (PSO) approach. 

A. Discrete Guaranteed Convergence Particle Swarm 

Optimization Algorithm: DGC-PSO 

PSO, as introduced in [7], is a swarm based global 
optimization algorithm. It models the behavior of bird 
swarms searching for an optimal food source. The movement 
of a single particle is influenced by its last movement, its 
knowledge, and the swarm’s knowledge. 

PSO’s basic equations are: 
xi (t +1) = xi (t) + vij (t +1) (4) 

vij (t +1) = w(t)vij (t) + c1r1 j (t) xBestij (t) xij (t)( )
+ c2r2 j (t) xGBest j (t) xij (t)( )

  (5) 

where x  represents a particle, i  denotes the particle's 
number, j  the dimension, t  a point in time, and v  is the 

particle's velocity. xBest  is the best location the particle ever 
visited (the particle's knowledge), and xGBest  is the best 
location any particle in the swarm ever visited (the swarm's 
knowledge). w  is the inertia weight and used to weigh the 

last velocity, c1  is a variable to weigh the particle's 

knowledge, and c2  is a variable to weigh the swarm's 

knowledge. r1  and r2  are uniformly distributed random 

numbers between zero and one. PSO is usually used on 
continuous and not discrete problems. In order to solve the 
discrete assignment problem using the PSO approach, 
several operations and entities have to be defined. This 
implementation follows the main ideas of the 
implementation for solving the traveling salesman problem 
as described in [8]. First, a swarm of particles is required. A 
single particle represents a match, i.e., every particle's 
position in the search space must correspond to a possible 



match. The match, that is the position, is implemented as a 
vector. Dimensions in the vector correspond to providers, 
and values correspond to consumers. Therefore, if the vector 
has value 3 at its 5

th
 position (dimension), consumer 3 is 

matched with provider 5. Every number representing a 
consumer has to be unique, otherwise, the vector represents a 
non-valid match. 

Velocities are implemented as lists of changes that can be 
applied to a particle (its vector) and will move the particle to 
a new position (a new match). Changes are exchanges of 
values, i.e., an entity containing two values that have to be 
exchanged within a vector. This means that any occurrence 
of the first value is replaced by the second value, and any 
occurrence of the second is exchanged by the first value. 
Further, minus between two matches (particles), 
multiplication of a velocity with a real number, and the 
addition of velocities have to be defined. Minus is 
implemented as a function of particles. This function returns 
the velocity containing all changes that have to be applied to 
move from one particle to another in the search space. 
Multiplication randomly deletes single changes from the 
velocity vector, if the multiplied real number is smaller than 
one. When a velocity is added to another velocity, the two 
lists containing the changes will be concatenated.  

The PSO implemented uses guaranteed convergence, 
which means that the best particle is guaranteed to search 
within a certain radius, implying that the global best particle 
will not get trapped in a local optima. This discrete 
guaranteed convergence algorithm is referred to as DGC-
PSO from now on. 

Configurable parameters in the implementation include 
numbers of particles (size of the swarm), number of 
iterations, c1  (the weighting of the local knowledge), c2  (the 

weighting of the global knowledge), w  (the weighting of the 
last velocity), radius (defines the radius in which the global 
best particles searches randomly), global best particle swarm 
optimization (determines whether global best particle swarm 
or local best particle swarm optimization is used), and 
neighborhood size (defines the neighborhood size for local 
best particle swarm optimization). 

B. Genetic Algorithm with Elitism: GA-E 

GA is a global optimization algorithm that models 
natural evolution [9]. In GA, individuals form a generation. 
An individual (similar to a particle in the PSO) corresponds 
to one match. The match is implemented as a vector, which 
is also referred to as a chromosome. Dimensions in the 
vector correspond to providers, and values correspond to 
consumers. Therefore, if the vector has value 3 at its 5th 
position (dimension), consumer 3 is matched with provider 
5. Every number representing a consumer can only be at one 
position in the vector, otherwise, the vector represents a non-
valid match.  

At the beginning, the first population is randomly 
initialized. After that, the fitness of the individuals is 
evaluated using the fitness function (Equations (1)–(3)). 
After the fitness is evaluated, individuals have to be selected 
for paring. The selection method used is tournament 
selection. Always two individuals are paired, resulting in an 

offspring of two new individuals. In the pairing phase, a 
random crossover mask is used, i.e. the positions 
(dimensions) for which crossover occurs are selected 
randomly. If crossover occurs at certain positions 
(dimensions), individuals that are mated exchange their 
values at that position and the resulting individuals are used 
as offspring. The crossover has to make sure that the 
offspring present a valid match. Therefore, if two values are 
exchanged, other positions in the two match vectors are 
usually effected as well. The offspring faces mutation with a 
certain low probability. After mutation, the fitness of the 
offspring is calculated. Then, either all individuals from the 
last generation compete against the whole offspring, or the 
offspring only compete with its corresponding parents. In 
this implementation, all individuals from the old generation 
compete with all individuals in the new generation. After the 
new generation is selected, the GA will start over, and 
continue with parent selection and crossover. The 
implemented GA algorithm with elitism is referred to as GA-
E from now on. 

Configurable parameters in the implementation include 
number of iterations, tournament size (the size of the 
tournament used to select parents), crossover probability, 
effected positions (how many positions are set to crossover 
in the crossover mask), and mutation probability. 

C. Munkres Algorithm 

The Hungarian algorithm is a combinatorial optimization 
algorithm and solves the assignment problem in polynomial 
time. The algorithm was developed by Harold Kuhn in 1955 
[10,11], who named it "Hungarian method" since the 
algorithm was mainly based on the earlier works of two 
Hungarian mathematicians (Denes Koenig and Jeno 
Egervary). 

In 1957 James Munkres reviewed and enhanced the 
algorithm and it has since been known also as Kuhn-
Munkres algorithm or Munkres assignment algorithm 
[12,13]. The original algorithm was O(n

4
), however, 

Edmonds and Karp, and independently Tomizawa noticed 
that it can be modified to achieve a O(n

3
) running time. 

An implementation developed by Nedas in Java, which is 
freely available at [14] was slightly adapted and used to 
provide the benchmark for the service selection investigation 
since it provides the optimal assignment of consumer and 
provider pairs. 

IV. EXPERIMENTS AND RESULTS 

All three approaches as introduced in the previous 
section were implemented using Java. Experiments were 
designed to measure the overall match score and the 
execution time of all approaches. The DGC-PSO and GA-E 
algorithms were further analyzed with regard to the number 
of iterations and the number of particles/individuals used. All 
measurement points shown are average results taken from 30 
runs to guarantee an equal distribution and statistical 
correctness. The data sets for the consumers and providers 
were randomly generated and solved by Munkres, DGC-
PSO, and GA-E. All match scores shown are normalized 
with respect to the Munkres algorithm. For both, the DGC-



PSO and GA-E approaches, parameters have been optimized 
in two stages. In the first stage, values were optimized to 
yield high match scores. In the second stage, parameters 
have been optimized to yield fast execution times. 

Preliminary results suggested that the number of 
iterations and number of particles (individuals) should be 
scaled with the number of consumer-provider pairs to 
achieve stable match scores for varying numbers of 
consumer-provider pairs, i.e., larger matches. The following 

scaling factor was used: s f =
nT
nB

, where nT  corresponds to 

the number of consumer-provider pairs tested, and nB  

corresponds to the number of consumer-provider pairs for 
which the basic time defining parameters have been set to 
yield a certain execution time. In this implementation, the 
values of the parameters that influence the execution time the 
most (number of iterations and number of 
particles/individuals) were set to yield half the execution 
time of the Munkres algorithm for 200 consumer-provider 
pairs. Therefore, nB  is set to 200. Furthermore, the 

parameters for both DGC-PSO and GA-E were optimized for 
200 consumer-provider pairs. 

The following parameters have been chosen due to their 
superior performance on the service selection problem. For 
the DGC-PSO, the parameters were set to: numbers of 
particles = 100, number of iterations = 140, c1  = 0.5, c2  = 

1.8, w  = 0.05, radius = 5.0 and using global best PSO. The 
GA-E settings were: population size = 150, number of 
individuals = 250, mutation probability = 0.2, crossover 
probability = 1.0, size of the tournament selection = 4, and 
number of positions that are selected for crossover (in 
percent) = 0.1.  

The experiments were conducted on one core of a AMD 
Turion X2 Dual-Core Mobile RM-72 (2.1GHz, 512KB L2 
Cache) on a Toshiba laptop with 2836 MB DDR2 memory 
using a Java Version 1.6.0 OpenJDK Runtime Environment 
on an Ubuntu 9.10 with runtime parameters set to: “–
Xms512 –Xmx1024m –server”. The normalized match score 
of all three algorithms measured, using 200 consumer-
provider pairs are 1, 0.782, 0.761 for the Munkres DGC-PSO 
and GA-E respectively. As expected, the Munkres algorithm 
achieves an optimal match score of 1, whereby both 
evolutionary algorithms achieve match scores close to 0.8. 

 

 

Figure 1.  Normalized match score vs. number of iterations / particles of 

DGC-PSO algorithm. 

The execution time in seconds of all three algorithms, 
again using 200 consumer-provider pairs are as follows: 
Munkres: 3547 ms, DGC-PSO: 1938 ms, and GA-E: 1875 
ms. As can be seen, Munkres, being an optimal algorithm, 
has the largest execution time, followed by the DGC-PSO 
algorithm and the GA-E algorithm. 

Figure 1 shows the normalized match score of the DGC-
PSO algorithm for increasing numbers of iterations and 
increasing numbers of particles respectively. The distribution 
shows an early significant increase of the match score, with a 
smaller increase for larger numbers of iterations and particles 
respectively. 

 

 

Figure 2.  Normalized match score vs. number of iterations / individuals of 

GA-E algorithm. 

A similar trend can be observed for the GA-E algorithm 
in Figure 2. A large increase of the match score for smaller 
number of iterations and individuals can be seen, followed 
by a smaller increase for larger numbers of iterations and 
individuals. 

 

 

Figure 3.  Scalability of algorithms – for scaled number of iterations and 

number of particles / individuals times s f . 

However, this investigation is primarily concerned with 
the scalability of the algorithms, in particular, the 
observation of the match score and execution time with 
increasing numbers of consumer-provider pairs. Figure 3 to 6 
display the results using different scaling methods. Figure 3 
shows the normalized match score of all algorithms scaling 
the number of iterations as well as the number of 
particles/individuals with s f . 

 



 

Figure 4.  Scalability of algorithms – for scaled number of iterations and 

number of particles / individuals times s f . 

Figure 4 shows the execution time of all algorithms 
scaling the number of iterations as well as the number of 
particles/individuals with s f  showing that the Munkres 

algorithm does not scale as well as the evolutionary 
algorithms. 

 

 

Figure 5.  Scalability of algorithms – for scaled number of iterations times 

s f
1.75

. 

 

Figure 6.  Scalability of algorithms – for scaled number of iterations times 

s f
1.75

. 

Figure 5 shows the normalized match score of all 

algorithms scaling the number of iterations with s f
1.75 . This 

figure shows similar values (DGC-PSO: 0.780 / GA-E: 
0.763) compared to Figure 5 (DGC-PSO: 0.782 / GA-E: 
0.761). 

Figure 6 shows the execution time of all algorithms 

scaling the number of iterations with s f
1.75 . It can be seen, 

comparing this figure with Figure 4, that the execution times 
are smaller for larger numbers of consumer-provider pairs, 
thus the scaling is improved.  

V. CONCLUSION 

This paper investigated three approaches for the selection 
of services, and in particular the selection of multiple 
consumers and providers based on five QoS attributes. The 
Munkres algorithm provides an optimal assignment, 
however, it has a computational time complexity of O(n

3
), 

and thus, does not scale very well. Therefore, the two 
approaches based on evolutionary algorithms, the DGC-PSO 
and GA-E algorithm were developed and implemented. The 
DGC-PSO and GA-E approaches matched the consumers 
with services based on the five QoS attributes yielding 
relatively good match scores while performing the 
matchmaking in a reasonable amount of time. Experiments 
showed that both algorithms provided an acceptable overall 
match score of close to 0.8 (DGC-PSO: 0.782 and GA-E: 
0.761), and it only took approximately one sixth of the time 
for single scaling (compare Figure 5 and 6) and one fourth of 
the time for double scaling (compare Figure 3 and 4) 
compared to the Munkres algorithm for a match of 600 
consumers and 600 providers. Single scaling refers to the 

scaling of number of iterations with s f
1.75 , and double 

scaling refers to the scaling of iterations and number of 
particles/individuals times s f . 

The evaluation showed that for larger problems, i.e., 
larger consumer-provider pairs, at least the iterations have to 
be scaled in order to keep the results of the DGC-PSO and 
GA-E algorithms on the same high match scores. If a fast 
service selection time is required for larger problems, only 
the number of iterations could be increased, yet the scaling 

factor has to be raised to a higher power. If the factor s f  is 

not raised to a higher power for this case, the match score 
will decrease for a higher number of consumer-provider 
pairs. In this particular case, DGC-PSO showed better results 
than the GA-E. This further suggests, that if the number of 
iterations and number of particles/individuals are scaled with 

an even higher factor than s f , the two methods will probably 

be able to find the optimal result. However, the execution 
time of the algorithms will increase drastically.  

As a recommendation, if the match quality of consumers 
and providers is paramount, then the Munkres algorithm 
should be chosen, taking into consideration that the 
execution time can be very high for large numbers of 
consumers and providers. If on the other hand speed is 
paramount, then both the DGC-PSO and the GA-E 
approaches should be chosen, preferably the DGC-PSO 
approach as it achieves slightly higher overall match scores. 
For small number of consumer-provider pairs the GA-E is 
slightly faster, for large number of consumer-provider pairs 
the DGC-PSO is faster, i.e., the scalability is better. 

Future work will implement a non-dominated sorting 
GA, and a multi-objective PSO approach in order to compare 
it with the current approaches. Also, different selection 
matching functions will be tested. 
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