
Web Service Selection using Particle Swarm Optimization and Genetic Algorithms

Simone A. Ludwig

Department of Computer Science

North Dakota State University

Fargo, ND, USA

simone.ludwig@ndsu.edu

Thomas Schoene

Department of Computer Science

University of Saskatchewan

Saskatoon, SK, Canada

ths299@mail.usask.ca

Abstract— Current service-oriented architecture standards

mainly rely on functional properties, however, service

registries lack mechanisms for managing services’ non-

functional properties. These non-functional properties are

expressed in terms of quality of service (QoS) attributes, which

gives consumers assurance and confidence to use the services,

as consumers aim to experience a good service performance,

e.g. low waiting time, high reliability, and availability. This

paper investigates service selection, and proposes two

approaches; one which is based on a genetic algorithm and the

other is based on a particle swarm optimization approach to

match consumers with services based on QoS attributes as

closely as possible. Both approaches are compared with an

optimal assignment algorithm called the Munkres algorithm.

Measurements are performed to quantify the overall match

score, the execution time, and the scalability.

Quality of service; evolutionary computing; swarm

intelligence; Munkres algorithm; matching problem

I. INTRODUCTION

Service-oriented computing is a computing paradigm that
provides an environment in which services are loosely
connected and interact with one another, as well as creates
dynamic business processes and applications. Services are
the fundamental building blocks in service-oriented
environments and support rapid, low-cost development of
distributed applications in heterogeneous environments.
Service-oriented architectures enable service discovery,
integration, and use by enabling application developers to
overcome many distributed computing challenges.

Due to the changing nature of service-oriented
environments, the ability to locate services of interest in such
an open, dynamic, and distributed environment has become
an essential requirement. Traditional approaches to service
discovery and selection have generally relied on the
existence of pre-defined registry services, which contain
descriptions that follow some shared data model. Often the
description of a service is also very limited in such registry
services, with little or no support for problem-specific
annotations that describe properties of a service.

Current service-oriented architecture standards mainly
rely on functional properties, however, the service registries
lack mechanisms for managing services’ non-functional
properties. Such non-functional properties are expressed in
terms of quality of service (QoS) parameters, which gives
consumers assurance and confidence to use the services.

Service registries host hundreds of similar web services,
which make it difficult for the service consumers to choose
from, given that the selection is only based on the functional
properties. The selection of an appropriate service for a
particular task has become a difficult challenge due to the
increasing number of web services offering similar
functionalities. Therefore, research was conducted to
investigate different approaches to address this problem.

The paper is structured as follows: Section 2 introduces
and discusses related work. In Section 3, the problem
specification and the approaches and implementations are
discussed. Section 4 describes the measurement setup and
discusses the results, and Section 5 concludes this paper with
a comparison analysis.

II. RELATED WORK

A model of web service configurations and associated
prices and preferences using utility function policies is
described in [1]. The approach takes ideas from multi-
attribute decision theory to develop an algorithm for optimal
service selection. This approach represents configurable web
service offers and requests in an ontology and uses
declarative logic-based matching rules with optimization
methods such as linear programming for solving it.

A non-functional property-based service selection
method, modifying the logic scoring preference method with
ordered weighted averaging operators is introduced in [2].
The dynamic mechanism for evaluating metadata based on
QoS criteria is proposed.

Research regarding the optimization of service selection
to determine the optimal selection of services based on a
measurable QoS metric is proposed by the following
approaches.

In [3], a broker-based architecture is proposed with a
technique that models the problem in two ways. A
combinatorial model and a graph model are proposed. The
combinatorial model defines the problem as a multi-
dimensional multi-choice 0-1 knapsack problem. The graph
model defines the problem as a multi-constraint optimal path
problem. Both models are studied and compared with each
other.

The service selection algorithm proposed in [4]
investigates the problem of composite web service selection.
A utility function is proposed to evaluate all QoS parameters
of each service based on the definition given in [3]. A multi-
dimensional QoS composite web service is mapped to the

multi-dimensional multi-choice knapsack. A fast heuristic
algorithm is proposed for solving the selection problem.

Evolutionary computing has also been introduced to the
service selection problem, in particular for workflow
problems, using a genetic algorithm (GA) approach.

A GA approach for the selection of services using QoS
requirements is introduced in [5]. A simple GA algorithm
was implemented and tested in a simulation environment
SENECA.

Another GA approach with a quick convergence method
is proposed in [6]. In particular, the quickly convergent
population diversity handling GA uses an enhanced initial
population policy and an evolution policy based on
population diversity and a relation matrix coding scheme.
The integration of the two policies overcomes shortcomings
resulting from the random nature of GA, such as slow
convergence, large variations among running results, soaring
overhead along with increasing size of service compositions.

The aim of the research in this paper has a slightly
different focus. First of all, only single service requests are
investigated and it is envisioned that the necessity of service
selection support will increase in future, not only because the
number service-oriented applications is increasing, but also
more and more services with similar functionality become
available on the web. Therefore, a robust, time-efficient and
scalable assignment algorithm is needed to perform the task
of service selection. One optimal algorithm, known as the
Munkres algorithm, has a time complexity of O(n

3
), and

therefore, does not scale well with increasing numbers of
consumers and providers. Thus, approximate algorithms are
necessary, which on one hand provide an optimized
assignment, and on the other hand scale closely to linear with
increasing numbers of consumer-provider pairs.

III. SERVICE SELECTION APPROACHES

The problem of service selection on the web consists of
having an efficient algorithm that can match multiple service
consumers and service providers efficiently, while
optimizing multiple objectives (QoS parameters). The
problem is twofold: firstly, multiple clients requesting
similar services should be satisfied, and secondly, the
assignment process of the service consumers and the service
providers should be optimized. Please note that one
consumer can only be matched with one provider.

The QoS criteria in the context of services are execution
price, execution time, reliability, reputation, and availability.
The values of these QoS parameters range from 0 to 1. Each
consumer provides the QoS values based on its requirement
of how the request must be executed, and each service
provides the value based on its task execution capability. The
service provider has a value for each QoS parameter. The
service consumer requests a service provider specifying an
upper and lower value for each QoS parameter, whereby for
some QoS attributes the lower or upper bound is preferred.
In particular, the lower bound is preferred for execution price
and execution time, and the upper bound is preferred for
reliability, reputation and availability.

In order to calculate how good and close matches are, the
following equations are proposed (keeping in mind that

several consumers are matched with several providers
simultaneously):

vi =

0 if pi cui or pi < cli

1
cui pi
cui cli

if lower bound preferred

1
pi cli
cui cli

if upper bound preferred

 (1)

m =
1

5
vi

i=1

5

 (2)

o =
1

n
m j

j=1

n

 (3)

whereby o is the overall match score of the problem (and
therefore the fitness function for the algorithms), m is the
match score for a consumer-provider pair, vi is the match

value, cui and cli are the upper and lower value of the

consumer respectively, pi is the value of the provider, i is

the QoS parameter, and j is the service number.

As we have several service consumers and equally
numbered service providers, the aim is to match the
consumer–provider pairs as closely as possible using a GA
and a particle swarm optimization (PSO) approach.

A. Discrete Guaranteed Convergence Particle Swarm

Optimization Algorithm: DGC-PSO

PSO, as introduced in [7], is a swarm based global
optimization algorithm. It models the behavior of bird
swarms searching for an optimal food source. The movement
of a single particle is influenced by its last movement, its
knowledge, and the swarm’s knowledge.

PSO’s basic equations are:
xi (t +1) = xi (t) + vij (t +1) (4)

vij (t +1) = w(t)vij (t) + c1r1 j (t) xBestij (t) xij (t)()
+ c2r2 j (t) xGBest j (t) xij (t)()

 (5)

where x represents a particle, i denotes the particle's
number, j the dimension, t a point in time, and v is the

particle's velocity. xBest is the best location the particle ever
visited (the particle's knowledge), and xGBest is the best
location any particle in the swarm ever visited (the swarm's
knowledge). w is the inertia weight and used to weigh the

last velocity, c1 is a variable to weigh the particle's

knowledge, and c2 is a variable to weigh the swarm's

knowledge. r1 and r2 are uniformly distributed random

numbers between zero and one. PSO is usually used on
continuous and not discrete problems. In order to solve the
discrete assignment problem using the PSO approach,
several operations and entities have to be defined. This
implementation follows the main ideas of the
implementation for solving the traveling salesman problem
as described in [8]. First, a swarm of particles is required. A
single particle represents a match, i.e., every particle's
position in the search space must correspond to a possible

match. The match, that is the position, is implemented as a
vector. Dimensions in the vector correspond to providers,
and values correspond to consumers. Therefore, if the vector
has value 3 at its 5

th
 position (dimension), consumer 3 is

matched with provider 5. Every number representing a
consumer has to be unique, otherwise, the vector represents a
non-valid match.

Velocities are implemented as lists of changes that can be
applied to a particle (its vector) and will move the particle to
a new position (a new match). Changes are exchanges of
values, i.e., an entity containing two values that have to be
exchanged within a vector. This means that any occurrence
of the first value is replaced by the second value, and any
occurrence of the second is exchanged by the first value.
Further, minus between two matches (particles),
multiplication of a velocity with a real number, and the
addition of velocities have to be defined. Minus is
implemented as a function of particles. This function returns
the velocity containing all changes that have to be applied to
move from one particle to another in the search space.
Multiplication randomly deletes single changes from the
velocity vector, if the multiplied real number is smaller than
one. When a velocity is added to another velocity, the two
lists containing the changes will be concatenated.

The PSO implemented uses guaranteed convergence,
which means that the best particle is guaranteed to search
within a certain radius, implying that the global best particle
will not get trapped in a local optima. This discrete
guaranteed convergence algorithm is referred to as DGC-
PSO from now on.

Configurable parameters in the implementation include
numbers of particles (size of the swarm), number of
iterations, c1 (the weighting of the local knowledge), c2 (the

weighting of the global knowledge), w (the weighting of the
last velocity), radius (defines the radius in which the global
best particles searches randomly), global best particle swarm
optimization (determines whether global best particle swarm
or local best particle swarm optimization is used), and
neighborhood size (defines the neighborhood size for local
best particle swarm optimization).

B. Genetic Algorithm with Elitism: GA-E

GA is a global optimization algorithm that models
natural evolution [9]. In GA, individuals form a generation.
An individual (similar to a particle in the PSO) corresponds
to one match. The match is implemented as a vector, which
is also referred to as a chromosome. Dimensions in the
vector correspond to providers, and values correspond to
consumers. Therefore, if the vector has value 3 at its 5th
position (dimension), consumer 3 is matched with provider
5. Every number representing a consumer can only be at one
position in the vector, otherwise, the vector represents a non-
valid match.

At the beginning, the first population is randomly
initialized. After that, the fitness of the individuals is
evaluated using the fitness function (Equations (1)–(3)).
After the fitness is evaluated, individuals have to be selected
for paring. The selection method used is tournament
selection. Always two individuals are paired, resulting in an

offspring of two new individuals. In the pairing phase, a
random crossover mask is used, i.e. the positions
(dimensions) for which crossover occurs are selected
randomly. If crossover occurs at certain positions
(dimensions), individuals that are mated exchange their
values at that position and the resulting individuals are used
as offspring. The crossover has to make sure that the
offspring present a valid match. Therefore, if two values are
exchanged, other positions in the two match vectors are
usually effected as well. The offspring faces mutation with a
certain low probability. After mutation, the fitness of the
offspring is calculated. Then, either all individuals from the
last generation compete against the whole offspring, or the
offspring only compete with its corresponding parents. In
this implementation, all individuals from the old generation
compete with all individuals in the new generation. After the
new generation is selected, the GA will start over, and
continue with parent selection and crossover. The
implemented GA algorithm with elitism is referred to as GA-
E from now on.

Configurable parameters in the implementation include
number of iterations, tournament size (the size of the
tournament used to select parents), crossover probability,
effected positions (how many positions are set to crossover
in the crossover mask), and mutation probability.

C. Munkres Algorithm

The Hungarian algorithm is a combinatorial optimization
algorithm and solves the assignment problem in polynomial
time. The algorithm was developed by Harold Kuhn in 1955
[10,11], who named it "Hungarian method" since the
algorithm was mainly based on the earlier works of two
Hungarian mathematicians (Denes Koenig and Jeno
Egervary).

In 1957 James Munkres reviewed and enhanced the
algorithm and it has since been known also as Kuhn-
Munkres algorithm or Munkres assignment algorithm
[12,13]. The original algorithm was O(n

4
), however,

Edmonds and Karp, and independently Tomizawa noticed
that it can be modified to achieve a O(n

3
) running time.

An implementation developed by Nedas in Java, which is
freely available at [14] was slightly adapted and used to
provide the benchmark for the service selection investigation
since it provides the optimal assignment of consumer and
provider pairs.

IV. EXPERIMENTS AND RESULTS

All three approaches as introduced in the previous
section were implemented using Java. Experiments were
designed to measure the overall match score and the
execution time of all approaches. The DGC-PSO and GA-E
algorithms were further analyzed with regard to the number
of iterations and the number of particles/individuals used. All
measurement points shown are average results taken from 30
runs to guarantee an equal distribution and statistical
correctness. The data sets for the consumers and providers
were randomly generated and solved by Munkres, DGC-
PSO, and GA-E. All match scores shown are normalized
with respect to the Munkres algorithm. For both, the DGC-

PSO and GA-E approaches, parameters have been optimized
in two stages. In the first stage, values were optimized to
yield high match scores. In the second stage, parameters
have been optimized to yield fast execution times.

Preliminary results suggested that the number of
iterations and number of particles (individuals) should be
scaled with the number of consumer-provider pairs to
achieve stable match scores for varying numbers of
consumer-provider pairs, i.e., larger matches. The following

scaling factor was used: s f =
nT
nB

, where nT corresponds to

the number of consumer-provider pairs tested, and nB

corresponds to the number of consumer-provider pairs for
which the basic time defining parameters have been set to
yield a certain execution time. In this implementation, the
values of the parameters that influence the execution time the
most (number of iterations and number of
particles/individuals) were set to yield half the execution
time of the Munkres algorithm for 200 consumer-provider
pairs. Therefore, nB is set to 200. Furthermore, the

parameters for both DGC-PSO and GA-E were optimized for
200 consumer-provider pairs.

The following parameters have been chosen due to their
superior performance on the service selection problem. For
the DGC-PSO, the parameters were set to: numbers of
particles = 100, number of iterations = 140, c1 = 0.5, c2 =

1.8, w = 0.05, radius = 5.0 and using global best PSO. The
GA-E settings were: population size = 150, number of
individuals = 250, mutation probability = 0.2, crossover
probability = 1.0, size of the tournament selection = 4, and
number of positions that are selected for crossover (in
percent) = 0.1.

The experiments were conducted on one core of a AMD
Turion X2 Dual-Core Mobile RM-72 (2.1GHz, 512KB L2
Cache) on a Toshiba laptop with 2836 MB DDR2 memory
using a Java Version 1.6.0 OpenJDK Runtime Environment
on an Ubuntu 9.10 with runtime parameters set to: “–
Xms512 –Xmx1024m –server”. The normalized match score
of all three algorithms measured, using 200 consumer-
provider pairs are 1, 0.782, 0.761 for the Munkres DGC-PSO
and GA-E respectively. As expected, the Munkres algorithm
achieves an optimal match score of 1, whereby both
evolutionary algorithms achieve match scores close to 0.8.

Figure 1. Normalized match score vs. number of iterations / particles of

DGC-PSO algorithm.

The execution time in seconds of all three algorithms,
again using 200 consumer-provider pairs are as follows:
Munkres: 3547 ms, DGC-PSO: 1938 ms, and GA-E: 1875
ms. As can be seen, Munkres, being an optimal algorithm,
has the largest execution time, followed by the DGC-PSO
algorithm and the GA-E algorithm.

Figure 1 shows the normalized match score of the DGC-
PSO algorithm for increasing numbers of iterations and
increasing numbers of particles respectively. The distribution
shows an early significant increase of the match score, with a
smaller increase for larger numbers of iterations and particles
respectively.

Figure 2. Normalized match score vs. number of iterations / individuals of

GA-E algorithm.

A similar trend can be observed for the GA-E algorithm
in Figure 2. A large increase of the match score for smaller
number of iterations and individuals can be seen, followed
by a smaller increase for larger numbers of iterations and
individuals.

Figure 3. Scalability of algorithms – for scaled number of iterations and

number of particles / individuals times s f .

However, this investigation is primarily concerned with
the scalability of the algorithms, in particular, the
observation of the match score and execution time with
increasing numbers of consumer-provider pairs. Figure 3 to 6
display the results using different scaling methods. Figure 3
shows the normalized match score of all algorithms scaling
the number of iterations as well as the number of
particles/individuals with s f .

Figure 4. Scalability of algorithms – for scaled number of iterations and

number of particles / individuals times s f .

Figure 4 shows the execution time of all algorithms
scaling the number of iterations as well as the number of
particles/individuals with s f showing that the Munkres

algorithm does not scale as well as the evolutionary
algorithms.

Figure 5. Scalability of algorithms – for scaled number of iterations times

s f
1.75

.

Figure 6. Scalability of algorithms – for scaled number of iterations times

s f
1.75

.

Figure 5 shows the normalized match score of all

algorithms scaling the number of iterations with s f
1.75 . This

figure shows similar values (DGC-PSO: 0.780 / GA-E:
0.763) compared to Figure 5 (DGC-PSO: 0.782 / GA-E:
0.761).

Figure 6 shows the execution time of all algorithms

scaling the number of iterations with s f
1.75 . It can be seen,

comparing this figure with Figure 4, that the execution times
are smaller for larger numbers of consumer-provider pairs,
thus the scaling is improved.

V. CONCLUSION

This paper investigated three approaches for the selection
of services, and in particular the selection of multiple
consumers and providers based on five QoS attributes. The
Munkres algorithm provides an optimal assignment,
however, it has a computational time complexity of O(n

3
),

and thus, does not scale very well. Therefore, the two
approaches based on evolutionary algorithms, the DGC-PSO
and GA-E algorithm were developed and implemented. The
DGC-PSO and GA-E approaches matched the consumers
with services based on the five QoS attributes yielding
relatively good match scores while performing the
matchmaking in a reasonable amount of time. Experiments
showed that both algorithms provided an acceptable overall
match score of close to 0.8 (DGC-PSO: 0.782 and GA-E:
0.761), and it only took approximately one sixth of the time
for single scaling (compare Figure 5 and 6) and one fourth of
the time for double scaling (compare Figure 3 and 4)
compared to the Munkres algorithm for a match of 600
consumers and 600 providers. Single scaling refers to the

scaling of number of iterations with s f
1.75 , and double

scaling refers to the scaling of iterations and number of
particles/individuals times s f .

The evaluation showed that for larger problems, i.e.,
larger consumer-provider pairs, at least the iterations have to
be scaled in order to keep the results of the DGC-PSO and
GA-E algorithms on the same high match scores. If a fast
service selection time is required for larger problems, only
the number of iterations could be increased, yet the scaling

factor has to be raised to a higher power. If the factor s f is

not raised to a higher power for this case, the match score
will decrease for a higher number of consumer-provider
pairs. In this particular case, DGC-PSO showed better results
than the GA-E. This further suggests, that if the number of
iterations and number of particles/individuals are scaled with

an even higher factor than s f , the two methods will probably

be able to find the optimal result. However, the execution
time of the algorithms will increase drastically.

As a recommendation, if the match quality of consumers
and providers is paramount, then the Munkres algorithm
should be chosen, taking into consideration that the
execution time can be very high for large numbers of
consumers and providers. If on the other hand speed is
paramount, then both the DGC-PSO and the GA-E
approaches should be chosen, preferably the DGC-PSO
approach as it achieves slightly higher overall match scores.
For small number of consumer-provider pairs the GA-E is
slightly faster, for large number of consumer-provider pairs
the DGC-PSO is faster, i.e., the scalability is better.

Future work will implement a non-dominated sorting
GA, and a multi-objective PSO approach in order to compare
it with the current approaches. Also, different selection
matching functions will be tested.

REFERENCES

[1] S. Lamparter, A. Ankolekar, R. Studer, S. Grimm,

Preference-based selection of highly configurable web

services, Proceedings of the 16th international conference on

World Wide Web (WWW), 2007.

[2] H.Q. Yu, S. Reiff-Marganiec, A Method for Automated Web

Service Selection, Proceedings of the 2008 IEEE Congress

on Services, 2008.

[3] T. Yu, Y. Zhang, K. Lin, Efficient algorithms for Web

services selection with end-to-end QoS constraints, ACM

Transaction Web, vol. 1, no. 1, pp. 1-26, 2007.

[4] R. Wang, C. Chi, J. Deng, A Fast Heuristic Algorithm for the

Composite Web Service Selection, Proceedings of the Joint

international Conferences on Advances in Data and Web

Management, 2009.

[5] M.C. Jaeger, G. Mühl, QoS-based selection of services: The

implementation of a genetic algorithm, Proceeding of KiVS

(Kommunikation in Verteilten Systemen) in Workshop:

Service-Oriented Architectures und Service Oriented

Computing, 2007.

[6] Y. Ma, C. Zhang, Quick convergence of genetic algorithm

for QoS-driven web service selection, Journal of Computer

Networks, vol. 52, no. 5, pp. 1093-1104, 2008.

[7] J. Kennedy and R. Eberhart, Particle swarm optimization,

Proceedings of IEEE International Conference on Neural

Networks, 1995.

[8] M. Clerc, Discrete particle swarm optimization - illustrated

by the traveling salesman problem, New Optimization
Techniques in Engineering, Springer, 2004.

[9] J.H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press, Ann Arbor, 1975.

[10] H.W. Kuhn, The Hungarian method for the assignment

problem, Naval Research Logistics, 52(1), 1955.

[11] H.W. Kuhn, The hungarian method for solving the

assignment problem, Naval Research Logistics Quarterly,

2:83, 1955.

[12] J. Munkres, Algorithms for the Assignment and

Transportation Problems, Journal of the Society for

Industrial and Applied Mathematics, 5:32, 1957.

[13] F. Bourgeois, J.C. Lassalle, An extension of the munkres

algorithm for the assignment problem to rectangular

matrices, Commun. ACM, 14(12), 1971.

[14] K. Nedas, Munkres' (Hungarian) Algorithm, Java

implementation, last retrieved on March 2009 from

http://konstantinosnedas.com/dev/soft/munkres.htm.

