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Abstract— Many different kind of overlay networking 

technologies have emerged over the past years. The research 

has focused on the development of technologies for solving the 

challenges to provide reliable and efficient networks for data 

delivery. The ability to automatically reconfigure overlay 

networks is essential for the future of autonomous computer 

systems. This paper introduces two approaches for the 

automatic reconfiguration of overlay networks. The first is a 

Genetic Algorithm approach as proposed in previous 

literature, and the second is a Particle Swarm Optimization 

approach. Both approaches are implemented in order to 

compare and evaluate their response to link failures and 

complete network failures. 

Discrete optimization; genetic algorithm; particle swarm 

optimization; overlay networks 

I.  INTRODUCTION 

Many different kind of overlay networking technologies 
have emerged in the past years. Research and development 
of overlay systems have focused on developing technologies 
that solves the challenges of reliability and efficient data 
processing of networks by providing a higher-level network 
on top of the normal network, the so-called overlay network. 
As the overlay network is built on top of an existing network, 
it relies on the underlay network for basic networking 
function such as routing and forwarding. The nodes in an 
overlay network are connected via logical links and can span 
many physical links. 

In particular, the enormous number of Internet users, 
estimated to almost 2 billions to date [1], as well as the 
delivery of large amounts of data and media has become 
commonplace. Multimedia content such as videos is posing 
an increasing challenge to the network, as well as the social 
collaboration and social media web sites, which use and 
distribute large amounts of data on a daily basis. These 
developments of the evolving web have a profound impact 
on the networking requirements in terms of performance and 
reliability. Therefore, overlay networks have to ensure an 
efficient and scalable service for Internet users. 

An overlay network, built on top of an existing network, 
consists of a set of distributed nodes that are deployed on the 
Internet. The nodes of the overlay network are expected to 
meet the following requirements [2]: 

• Provide the infrastructure to support the 
execution of one or more distributed 
application(s). 

• Support high-level routing and forwarding tasks 
necessary in a network. The overlay network 
should provide data-forwarding capabilities that 
are different from the ones that are part of the 
Internet. 

• Deployment should be across the Internet to 
allow third parties to participate in the 
organization and operation of overlay networks. 

Overlay networks have many advantages that can be 
listed as such [3]: 

• Overlay networks are incrementally deployable 
– The overlay network does not require changes 
to the existing Internet infrastructure, only 
additional servers are necessary. Once nodes are 
added to an overlay network, the control of 
paths of data becomes possible with great 
precision. 

• Overlay networks are adaptable – Even though 
the abstraction of an overlay network constrains 
the packets to flow over a constrained set of 
links, the set of links can be constantly 
optimized over metrics that the different 
applications require. 

• Overlay networks are robust – Robustness is a 
result of the given increased control and 
adaptable nature of the overlay networks. With a 
sufficient number of nodes deployed, an overlay 
network should be able to route between any 
two nodes in two independent ways, i.e., 
overlay networks are able to route around faults 
occurring in the network. 

• Overlay networks are customizable – Given that 
overlay nodes can be multi-purpose computers, 
they can be easily equipped with whatever is 
necessary. To give an example, overlay 
networks make extensive use of disk space that 
allows overlay networks to provide savings in 
terms of bandwidth when the content is not 
consumed simultaneously in different parts of 
the network. 

The main properties of overlay networks are adaptability 
and robustness. These two features are the major driving 
force behind the research of overlay networks. The aim of 
this paper is the optimization of an overlay network in terms 
of cost, performance, and reliability, in particular the 
optimization of data mirrors is the focus. One “related work” 



implementation, as well as an additional implementation is 
compared to measure the performance. 

The remainder of this paper is as follows: Section 2 
describes related work; Section 3 introduces the approaches 
used; in Section 4 the experimental setup and results are 
described; and in Section 5 the findings are summarized. 

II. RELATED WORK 

There are several different overlay network 
implementation developed. One is called Overcast [4], which 
is an application-level multicast system that can be 
incrementally deployed making use of the Internet 
infrastructure. Basically, the implementation consists of a 
collection of nodes that are placed at strategic locations in an 
existing network, which in turn implement a network 
abstraction on top of the network provided by the underlying 
network. Overcast provides multicast that is scalable and 
reliable by using a simple protocol for building efficient data 
distribution trees that automatically adapt to changing 
network conditions. The simulations conducted indicate that 
Overcast provides roughly 70-100% of the total bandwidth 
possible, at a cost of somewhat less than twice the network 
load. 

Another well-known overlay network implementation is 
RON (Resilient Overlay Network) [5]. RON is an 
architecture that allows distributed Internet applications to 
detect path errors/outages and recover from them within 
seconds, thus improving wide-area routing protocols that 
take several minutes to recover. It is an application-layer 
overlay on top of the existing Internet routing substrate. 
RON monitors the quality of the Internet paths in order to 
decide whether a route change of the packets need to take 
place to improve the overall quality of the overlay network. 
RON was able to improve the loss rate, latency, or 
throughput perceived by data transfers (5% of the transfers 
doubled their TCP throughput, and 5% of the transfers had 
the data loss reduced by a factor of 0.05). 

Nature-inspired networking techniques have also been 
investigated for quite some time. The research and 
development have fostered new techniques in networking, in 
particular due to their dynamic nature, resource constraints 
and heterogeneity. In particular, an Ant Colony Optimization 
approach was used in the AntNet routing protocol [6]. Their 
protocol uses agents to concurrently explore the network and 
exchange collected information in the same way as ants 
explore the environment. The main idea is used from ants 
and their indirect communication capability using 
pheromone.  

Multi-objective evolutionary algorithms, in particular, 
NSGA-II was used in [7] to optimize a multicast overlay 
network based on two criteria; the first was to optimize the 
total end-to-end delay of a multicast tree, and the second was 
to maximize the link utilization.  

A swarm-intelligence based approach called Particle 
Swarm Optimization was used in a layered overlay multicast 
approach for routing web streams [8]. An architecture was 
adopted to improve service capabilities, for satisfying the 
request of multi-constrained Quality of Service (QoS) 
routing of large-scale multi-domain web streams. The 

approach is based on meeting the uncertainty of the network 
status description, in order to find the QoS-satisfied routes 
using an effective mathematical model and Particle Swarm 
Optimization. 

A multi-swarm approach for neighbor selection in peer-
to-peer (P2P) overlay networks is described in [9]. Their 
approach is inspired by the communalities of P2P systems 
and Particle Swarm in a dynamic environment. A multi-
swarm interactive pattern was introduced to match the 
dynamic nature of P2P networks. 

In [10] genetic algorithms are applied to reconfigure the 
topology and link capacities of an operational network. It 
does this in order to adapt to changes in its operation 
conditions, in which nodes and links might become 
unavailable, the traffic patterns might change, and the quality 
of service requirement and priorities of different users and 
applications might change suddenly.  

Another example of a genetic algorithm approach is the 
Genetic-Algorithm-Based Neighbor-Selection Strategy for 
Hybrid Peer-to-Peer Networks [11]. The strategy enhances 
the decision process performed for transfer coordination. An 
investigation of the strategy revealed that it affects the 
system throughput and distribution efficiency as well as peer 
contribution, in particular for low-connectivity peers. 

Plato is a genetic algorithm approach to run-time 
reconfiguration [12]. The genetic algorithm approach uses 
the evolutionary computation technique to automate the 
decision-making process of an autonomic system. It enables 
a system to dynamically evolve target reconfigurations at run 
time, and at the same time, it balances the tradeoffs between 
functional and non-functional requirements to changes in the 
environmental requirements and conditions. In particular, 
their approach is applied to the reconfiguration of a 
collection of remote data mirrors, and demonstrates a good 
optimization method for diffusing data, and minimizing 
operational costs; at the same time it maximizes data 
reliability and network performance.  

This paper closely follows the Plato approach using 
genetic algorithms to optimize an overlay network based on 
cost, performance, and reliability. However, in this paper the 
fitness functions are normalized in order to compare the 
three different measures and to provide a fitness score in the 
range between zero and one. Also, besides the use of genetic 
algorithms, an algorithm based on Particle Swarm 
Optimization is implemented and evaluated. As can be seen 
in the evaluation section, the additionally implemented 
algorithm shows a better performance than the Genetic 
algorithm approach. 

III. APPROACHES 

This research addresses the dynamic reconfiguration of a 
collection of remote data mirrors. In remote data mirroring, 
data copies of critical data is stored at one or more secondary 
site(s), which prevents the protected data from failures that 
may affect the primary copy [13].  

There are two important design criteria for remote data 
mirroring; the first is to choose the type of network link 
connection to the mirrors, and the second is to choose the 
remote mirroring protocol. Each link in the network has a 



cost associated, as well as throughput, latency and loss rate 
which determine the overall remote mirror design 
performance [13].  

There are two types of remote mirroring protocols that 
are synchronous or asynchronous propagation, both affecting 
network performance and data reliability. In synchronous 
propagation the secondary site applies each write before the 
write completes at the primary site, and in asynchronous 
propagation updates get queued at the primary site and are 
periodically propagated to the secondary site in batch-style. 

TABLE I.  LINK PROPAGATION METHODS 

Time 

interval 

Avg. data batch 

size in GB 

0 0 

1 min 0.0436 

5 mins 0.2067 

1 hr 2.091 

4 hrs 6.595 

12 hrs 15.12 

24 hrs 27.388 

 
The optimization design criteria are the same as for Plato 

[12]. The main goal is the construction and maintenance of 
an overlay network for the data to be distributed to all nodes 
while fulfilling the following requirements: 

1. Overlay network must remain connected at all 
times; 

2. Overlay network should never exceed the 
allocated monetary budget; 

3. The data should be distributed as efficiently as 
possible, meaning the amount of bandwidth 
consumed when diffusing data should be 
minimized. 

Two algorithms have been implemented in order to 
evaluate and compare their performance. The first algorithm 
is an implementation of Genetic Algorithms as in the Plato 
implementation [12]; the second one is an implementation of 
the discrete Particle Swarm Optimization approach. 

The fitness function used as a measure for the two 
algorithms are slightly modified compared to the Plato 
approach [12]. The differences are that normalization of the 
overall fitness value is done in order to have an overall 
fitness value in the range of 0 and 1. The fitness function 
consist of three parts (as in Plato); the first part evaluates the 
overlay network in terms of cost, the second in terms of 
performance, and the third part evaluates the reliability of the 
overlay network. 

The overall fitness function (Eq. (1)) is the weighted 
average of all three fitness portions. Please note that the sum 
of the weights needs to sum up to 1 (Eq. (2)). 

Fitoverall = w1 * Fitcost +w2 * Fit perf +w3 * Fitrel  (1) 

wi
i=1

3

= 1
 (2) 

Looking at the different fitness sub-functions, the Fitness 
sub-function for cost is given as: 

Fcost = 1
cost

budget  (3) 
where cost  is the sum of operational expenses of all 

active links and budget  is a user supplied value (maximum 

amount of money for an operating overlay network). 
The sub-function for the performance consists of two 

parts, latency and bandwidth as given below: 

Fperf = 0.5* (1
latencyavg
latencywc

)

+ 0.5* (
bandwidthsys bandwidtheff

bandwidthsys
+ bound)

 (4) 
where latencyavg  is the average latency over all active 

links, and latencywc  is the largest latency value measured 

over all links in the underlying network; and bandwidthsys  is 

the total available bandwidth across the overlay network 

given by the active links, and bandwidtheff  is the total 

effective bandwidth across the overall network after data has 
been coalesced, and bound  is a limit on the best value that 
can be achieved throughout the network. 

The last fitness sub-function measures the overlay 
network in terms of reliability consisting of two parts as 
given below: 

Fitrel = 0.5* (
linksused
linksmax

) + 0.5* (1
datalosspot
datalossmax

)
 (5) 

where linksused  is the number of active links, and  latency 

over all active links, and linksmax  is the maximum number of 

possible links given by the network structure; and datalosspot  

is the total amount of data that could be lost during write 
coalescing using the propagation methods as given in Table 
1, and datalosswc  is the amount of data that could be lost 

during write coalescing using the propagation method with 
the largest time window. 

A. Genetic Algorithm Approach 

Genetic algorithms (GA) [14] are a class of stochastic 
search algorithms based on biological evolution. In 
particular, the principles of evolution via natural selection 
are applied, employing a population of individuals that 
undergo selection, as well as variation-inducing operators 
such as mutation and crossover. A fitness function is used to 
evaluate individuals.  

TABLE II.  GA PARAMETERS 

Parameter Value 

Population size: 100 

Selection method: Tournament (k=2) 

Crossover: Two-point 

Crossover probability: 0.1 

Mutation probability: 0.05 
 
Table 2 lists the parameters used for the implementation, 

which are identical to the ones proposed in Ramirez et al. 
[12] with the exception of the normalized fitness function as 



outlined earlier. Two-point crossover is employed, as well as 
Tournament selection is used.  

B. Particle Swarm Optimization Approach 

Particle Swarm Optimization (PSO) as introduced in 
[15], is a swarm based global optimization algorithm. The 
algorithm models the behavior of bird swarms searching for 
an optimal food source. The movement of a single particle is 
influenced by its last movement, its knowledge, and the 
swarm’s knowledge. PSO’s basic equations are: 

xi (t +1) = xi (t) + vij (t +1)  (6) 

vij (t +1) = w(t)vij (t) + c1r1 j (t) xBestij (t) xij (t)( )
+ c2r2 j (t) xGBest j (t) xij (t)( )

 (7) 

where x  represents a particle, i  denotes the particle's 
number, j  the dimension, t  a point in time, and v  is the 

particle's velocity. xBest  is the best location the particle ever 
visited (the particle's knowledge), and xGBest  is the best 
location any particle in the swarm ever visited (the swarm's 
knowledge). w  is the inertia weight and used to weigh the 
last velocity, c1  is a variable to weigh the particle's 

knowledge, and c2  is a variable to weigh the swarm's 

knowledge. r1  and r2  are uniformly distributed random 

numbers between zero and one.  
PSO is usually used on continuous and not discrete 

problems. In order to solve the discrete overlay network 
assignment using the PSO approach, several operations and 
entities have to be defined. The implementation follows in 
part the implementation for solving the traveling salesman 
problem as described in [16]. First, a swarm of particles is 
required. A single particle represents one overlay network, 
i.e., every particle's position in the search space must 
correspond to a possible overlay network. Velocities are 
implemented as lists of changes that can be applied to a 
particle and will move the particle to a new position (a new 
overlay network). Changes are exchanges of values of the 
overlay network. Further, minus between two matches 
(particles), multiplication of a velocity with a real number, 
and the addition of velocities have to be defined. Minus is 
implemented as a function of particles. This function returns 
the velocity containing all changes that have to be applied to 
move from one particle to another in the search space. 
Multiplication randomly deletes single changes from the 
velocity vector with a certain probability.  

TABLE III.  PSO PARAMETERS 

Parameter Value 

Number of particles: 100 

Inertia weight: 0.001 

Weight of local knowledge: 0.5 

Weight of global 

knowledge: 

0.5 

Radius: 2 

Neighborhood size: 4 

 
The PSO implemented uses guaranteed convergence, 

which means that the best particle is guaranteed to search 

within a certain radius, implying that the global best particle 
will not get trapped in local optima. Table 3 shows the 
specific parameters chosen for the implementation.  

IV. EXPERIMENTS AND RESULTS 

The two algorithms were tuned with the parameter values 
as given in the previous section. Since the GA and PSO 
implementation involve probabilities, all parameters of the 
algorithms were set, so that the number of iterations needed 
were kept constant, but at the same time the number of 
function evaluations is kept as equal as possible. 
Furthermore, all experiments were conducted 25 times in 
order to account for statistical variations. 

TABLE IV.  FITNESS FUNCTION AND FITNESS VALUES (500 

ITERATIONS) 

Fitness 
function 

w1 w2 w3 Best 
fitness - 
GA 

Best 
fitness – 
PSO 

F1 1/3 1/3 1/3 0.82331 0.83333 

F2 1 0 0 0.89102 0.91290 

F3 0 1 0 0.89653 0.90872 

F4 0 0 1 0.60379 0.60862 

F5 0.5 0.5 0 0.89786 0.89995 

F6 0 0.5 0.5 0.73942 0.75000 

F7 0.5 0 0.5 0.73018 0.74992 

 
The first set of experiments was performed measuring the 

accuracy of both approaches given different settings of the 
weights, comparing the different effects on the accuracy. The 
second set investigates single link failures, and the third set 
evaluates complete network failures.  

Table 4 shows the results of the fitness scores of both 
approaches using different weight combinations, thereby 
favoring cost, performance or reliability. The values were 
taken at iteration 500. It can be seen that the highest fitness 
score can be achieved with F2 and F3, which only consider 
the cost and performance fitness sub-functions respectively. 
The worst fitness score is observed for F4, when optimizing 
the overlay network based on reliability. 

 

 

Figure 1.  Fitness of GA and PSO approach. 



Figure 1 shows the fitness values plotted for increasing 
iterations. It can be observed that the PSO approach reaches 
the maximum fitness score of 0.83333 at iteration 270, which 
is much earlier than the GA approach, which needs 1,100 
iterations. The fitness function F1 with an equal weight 
distribution was used. 

A. Investigation of Link Failures 

Figure 2 shows the fitness curves for successive link 
failures without reconfiguration. It can be seen that the 
generation of new overlay network configurations work fine 
until 84% of link failures occur, however, at the cost of 
reducing fitness scores. Decreasing fitness scores can be 
observed with the lowest of 0.34 when 80% of link failures 
occur; after 84% an overlay network cannot be constructed 
anymore, and therefore the automatic reconfiguration needs 
to be restarted. 

 

 

Figure 2.  Fitness scores with increasing percentage of link failures. 

B. Investigation of Network Failures 

Figure 3 shows three complete reconfigurations of a 25-
node overlay network. The simulation runs the optimization 
every 2,500 iterations, due to an artificially induced 
breakdown of the network. As can be seen in Figure 2, both 
approaches, GA and PSO, can reconfigure overlay networks 
and achieve the maximum fitness score after around 1,200 
and 300 iterations respectively. As expected, the trend of 
both curves is as in Figure 1. 

 

 
Figure 3.  Reconfiguration of complete overlay network with 25 nodes. 

 

Figure 4.  Reconfiguration of 25-node network with varying weight 

distribution of fitness function. 

Figure 4 shows the reconfiguration of a 25-node network. 
The first evolution shows the fitness trend when F1 is used 
(weights are all 1/3). After a failure occurs the network 
switches the weights to w1=w2=0.25 and w3=0.5 in order to 
stress more on reliability rather than an equal contribution of 
all three fitness sub-functions. Even though the fitness score 
is lower with the second weight setting, however, the 
network configuration is more stable to protect against future 
failures. 

V. CONCLUSION 

This paper investigated two approaches for the 
reconfiguration of overlay networks and the experimental 
results could be used as a guideline for overlay network 
construction and configuration. The first approach was based 
on genetic algorithms as used in literature; the second 
approach was based on a discrete implementation of Particle 
Swarm Optimization. 

In summary, the experiments conducted show that for 
networks of 25 nodes the PSO approach achieves the 
maximum fitness score much faster than the GA approach. 
PSO usually takes 270 iterations to reach the maximum 
fitness value, whereas GA needs 1,100 iterations to achieve 
the same for a 25-node network. Furthermore, the 
experiments regarding link and complete network failures 
showed that both approaches are able to reconfigure the 
networks in a reasonable amount of time. It takes a network 
of 20 nodes to be reconfigured by GA on average 376 ms 
and PSO 51 ms. Again, PSO outperformed GA. 

In conclusion, the PSO algorithm outperforms the GA 
algorithm when reconfiguring overlay networks.  However, a 
scalability analysis needs to be conducted in order to find out 
which approach will scale better with increasing network 
sizes. Besides this, future work will investigate and 
implement another evolutionary method based on Artificial 
Immune Systems in order to examine the suitability in the 
area of overlay networks. 
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