
Nature-Inspired Reconfiguration of Overlay Networks

Simone A. Ludwig

Department of Computer Science

North Dakota State University

Fargo, ND, USA

simone.ludwig@ndsu.edu

Abstract— Many different kind of overlay networking

technologies have emerged over the past years. The research

has focused on the development of technologies for solving the

challenges to provide reliable and efficient networks for data

delivery. The ability to automatically reconfigure overlay

networks is essential for the future of autonomous computer

systems. This paper introduces two approaches for the

automatic reconfiguration of overlay networks. The first is a

Genetic Algorithm approach as proposed in previous

literature, and the second is a Particle Swarm Optimization

approach. Both approaches are implemented in order to

compare and evaluate their response to link failures and

complete network failures.

Discrete optimization; genetic algorithm; particle swarm

optimization; overlay networks

I. INTRODUCTION

Many different kind of overlay networking technologies
have emerged in the past years. Research and development
of overlay systems have focused on developing technologies
that solves the challenges of reliability and efficient data
processing of networks by providing a higher-level network
on top of the normal network, the so-called overlay network.
As the overlay network is built on top of an existing network,
it relies on the underlay network for basic networking
function such as routing and forwarding. The nodes in an
overlay network are connected via logical links and can span
many physical links.

In particular, the enormous number of Internet users,
estimated to almost 2 billions to date [1], as well as the
delivery of large amounts of data and media has become
commonplace. Multimedia content such as videos is posing
an increasing challenge to the network, as well as the social
collaboration and social media web sites, which use and
distribute large amounts of data on a daily basis. These
developments of the evolving web have a profound impact
on the networking requirements in terms of performance and
reliability. Therefore, overlay networks have to ensure an
efficient and scalable service for Internet users.

An overlay network, built on top of an existing network,
consists of a set of distributed nodes that are deployed on the
Internet. The nodes of the overlay network are expected to
meet the following requirements [2]:

• Provide the infrastructure to support the
execution of one or more distributed
application(s).

• Support high-level routing and forwarding tasks
necessary in a network. The overlay network
should provide data-forwarding capabilities that
are different from the ones that are part of the
Internet.

• Deployment should be across the Internet to
allow third parties to participate in the
organization and operation of overlay networks.

Overlay networks have many advantages that can be
listed as such [3]:

• Overlay networks are incrementally deployable
– The overlay network does not require changes
to the existing Internet infrastructure, only
additional servers are necessary. Once nodes are
added to an overlay network, the control of
paths of data becomes possible with great
precision.

• Overlay networks are adaptable – Even though
the abstraction of an overlay network constrains
the packets to flow over a constrained set of
links, the set of links can be constantly
optimized over metrics that the different
applications require.

• Overlay networks are robust – Robustness is a
result of the given increased control and
adaptable nature of the overlay networks. With a
sufficient number of nodes deployed, an overlay
network should be able to route between any
two nodes in two independent ways, i.e.,
overlay networks are able to route around faults
occurring in the network.

• Overlay networks are customizable – Given that
overlay nodes can be multi-purpose computers,
they can be easily equipped with whatever is
necessary. To give an example, overlay
networks make extensive use of disk space that
allows overlay networks to provide savings in
terms of bandwidth when the content is not
consumed simultaneously in different parts of
the network.

The main properties of overlay networks are adaptability
and robustness. These two features are the major driving
force behind the research of overlay networks. The aim of
this paper is the optimization of an overlay network in terms
of cost, performance, and reliability, in particular the
optimization of data mirrors is the focus. One “related work”

implementation, as well as an additional implementation is
compared to measure the performance.

The remainder of this paper is as follows: Section 2
describes related work; Section 3 introduces the approaches
used; in Section 4 the experimental setup and results are
described; and in Section 5 the findings are summarized.

II. RELATED WORK

There are several different overlay network
implementation developed. One is called Overcast [4], which
is an application-level multicast system that can be
incrementally deployed making use of the Internet
infrastructure. Basically, the implementation consists of a
collection of nodes that are placed at strategic locations in an
existing network, which in turn implement a network
abstraction on top of the network provided by the underlying
network. Overcast provides multicast that is scalable and
reliable by using a simple protocol for building efficient data
distribution trees that automatically adapt to changing
network conditions. The simulations conducted indicate that
Overcast provides roughly 70-100% of the total bandwidth
possible, at a cost of somewhat less than twice the network
load.

Another well-known overlay network implementation is
RON (Resilient Overlay Network) [5]. RON is an
architecture that allows distributed Internet applications to
detect path errors/outages and recover from them within
seconds, thus improving wide-area routing protocols that
take several minutes to recover. It is an application-layer
overlay on top of the existing Internet routing substrate.
RON monitors the quality of the Internet paths in order to
decide whether a route change of the packets need to take
place to improve the overall quality of the overlay network.
RON was able to improve the loss rate, latency, or
throughput perceived by data transfers (5% of the transfers
doubled their TCP throughput, and 5% of the transfers had
the data loss reduced by a factor of 0.05).

Nature-inspired networking techniques have also been
investigated for quite some time. The research and
development have fostered new techniques in networking, in
particular due to their dynamic nature, resource constraints
and heterogeneity. In particular, an Ant Colony Optimization
approach was used in the AntNet routing protocol [6]. Their
protocol uses agents to concurrently explore the network and
exchange collected information in the same way as ants
explore the environment. The main idea is used from ants
and their indirect communication capability using
pheromone.

Multi-objective evolutionary algorithms, in particular,
NSGA-II was used in [7] to optimize a multicast overlay
network based on two criteria; the first was to optimize the
total end-to-end delay of a multicast tree, and the second was
to maximize the link utilization.

A swarm-intelligence based approach called Particle
Swarm Optimization was used in a layered overlay multicast
approach for routing web streams [8]. An architecture was
adopted to improve service capabilities, for satisfying the
request of multi-constrained Quality of Service (QoS)
routing of large-scale multi-domain web streams. The

approach is based on meeting the uncertainty of the network
status description, in order to find the QoS-satisfied routes
using an effective mathematical model and Particle Swarm
Optimization.

A multi-swarm approach for neighbor selection in peer-
to-peer (P2P) overlay networks is described in [9]. Their
approach is inspired by the communalities of P2P systems
and Particle Swarm in a dynamic environment. A multi-
swarm interactive pattern was introduced to match the
dynamic nature of P2P networks.

In [10] genetic algorithms are applied to reconfigure the
topology and link capacities of an operational network. It
does this in order to adapt to changes in its operation
conditions, in which nodes and links might become
unavailable, the traffic patterns might change, and the quality
of service requirement and priorities of different users and
applications might change suddenly.

Another example of a genetic algorithm approach is the
Genetic-Algorithm-Based Neighbor-Selection Strategy for
Hybrid Peer-to-Peer Networks [11]. The strategy enhances
the decision process performed for transfer coordination. An
investigation of the strategy revealed that it affects the
system throughput and distribution efficiency as well as peer
contribution, in particular for low-connectivity peers.

Plato is a genetic algorithm approach to run-time
reconfiguration [12]. The genetic algorithm approach uses
the evolutionary computation technique to automate the
decision-making process of an autonomic system. It enables
a system to dynamically evolve target reconfigurations at run
time, and at the same time, it balances the tradeoffs between
functional and non-functional requirements to changes in the
environmental requirements and conditions. In particular,
their approach is applied to the reconfiguration of a
collection of remote data mirrors, and demonstrates a good
optimization method for diffusing data, and minimizing
operational costs; at the same time it maximizes data
reliability and network performance.

This paper closely follows the Plato approach using
genetic algorithms to optimize an overlay network based on
cost, performance, and reliability. However, in this paper the
fitness functions are normalized in order to compare the
three different measures and to provide a fitness score in the
range between zero and one. Also, besides the use of genetic
algorithms, an algorithm based on Particle Swarm
Optimization is implemented and evaluated. As can be seen
in the evaluation section, the additionally implemented
algorithm shows a better performance than the Genetic
algorithm approach.

III. APPROACHES

This research addresses the dynamic reconfiguration of a
collection of remote data mirrors. In remote data mirroring,
data copies of critical data is stored at one or more secondary
site(s), which prevents the protected data from failures that
may affect the primary copy [13].

There are two important design criteria for remote data
mirroring; the first is to choose the type of network link
connection to the mirrors, and the second is to choose the
remote mirroring protocol. Each link in the network has a

cost associated, as well as throughput, latency and loss rate
which determine the overall remote mirror design
performance [13].

There are two types of remote mirroring protocols that
are synchronous or asynchronous propagation, both affecting
network performance and data reliability. In synchronous
propagation the secondary site applies each write before the
write completes at the primary site, and in asynchronous
propagation updates get queued at the primary site and are
periodically propagated to the secondary site in batch-style.

TABLE I. LINK PROPAGATION METHODS

Time

interval

Avg. data batch

size in GB

0 0

1 min 0.0436

5 mins 0.2067

1 hr 2.091

4 hrs 6.595

12 hrs 15.12

24 hrs 27.388

The optimization design criteria are the same as for Plato

[12]. The main goal is the construction and maintenance of
an overlay network for the data to be distributed to all nodes
while fulfilling the following requirements:

1. Overlay network must remain connected at all
times;

2. Overlay network should never exceed the
allocated monetary budget;

3. The data should be distributed as efficiently as
possible, meaning the amount of bandwidth
consumed when diffusing data should be
minimized.

Two algorithms have been implemented in order to
evaluate and compare their performance. The first algorithm
is an implementation of Genetic Algorithms as in the Plato
implementation [12]; the second one is an implementation of
the discrete Particle Swarm Optimization approach.

The fitness function used as a measure for the two
algorithms are slightly modified compared to the Plato
approach [12]. The differences are that normalization of the
overall fitness value is done in order to have an overall
fitness value in the range of 0 and 1. The fitness function
consist of three parts (as in Plato); the first part evaluates the
overlay network in terms of cost, the second in terms of
performance, and the third part evaluates the reliability of the
overlay network.

The overall fitness function (Eq. (1)) is the weighted
average of all three fitness portions. Please note that the sum
of the weights needs to sum up to 1 (Eq. (2)).

Fitoverall = w1 * Fitcost +w2 * Fit perf +w3 * Fitrel (1)

wi
i=1

3

= 1
 (2)

Looking at the different fitness sub-functions, the Fitness
sub-function for cost is given as:

Fcost = 1
cost

budget (3)
where cost is the sum of operational expenses of all

active links and budget is a user supplied value (maximum

amount of money for an operating overlay network).
The sub-function for the performance consists of two

parts, latency and bandwidth as given below:

Fperf = 0.5* (1
latencyavg
latencywc

)

+ 0.5* (
bandwidthsys bandwidtheff

bandwidthsys
+ bound)

 (4)
where latencyavg is the average latency over all active

links, and latencywc is the largest latency value measured

over all links in the underlying network; and bandwidthsys is

the total available bandwidth across the overlay network

given by the active links, and bandwidtheff is the total

effective bandwidth across the overall network after data has
been coalesced, and bound is a limit on the best value that
can be achieved throughout the network.

The last fitness sub-function measures the overlay
network in terms of reliability consisting of two parts as
given below:

Fitrel = 0.5* (
linksused
linksmax

) + 0.5* (1
datalosspot
datalossmax

)
 (5)

where linksused is the number of active links, and latency

over all active links, and linksmax is the maximum number of

possible links given by the network structure; and datalosspot

is the total amount of data that could be lost during write
coalescing using the propagation methods as given in Table
1, and datalosswc is the amount of data that could be lost

during write coalescing using the propagation method with
the largest time window.

A. Genetic Algorithm Approach

Genetic algorithms (GA) [14] are a class of stochastic
search algorithms based on biological evolution. In
particular, the principles of evolution via natural selection
are applied, employing a population of individuals that
undergo selection, as well as variation-inducing operators
such as mutation and crossover. A fitness function is used to
evaluate individuals.

TABLE II. GA PARAMETERS

Parameter Value

Population size: 100

Selection method: Tournament (k=2)

Crossover: Two-point

Crossover probability: 0.1

Mutation probability: 0.05

Table 2 lists the parameters used for the implementation,

which are identical to the ones proposed in Ramirez et al.
[12] with the exception of the normalized fitness function as

outlined earlier. Two-point crossover is employed, as well as
Tournament selection is used.

B. Particle Swarm Optimization Approach

Particle Swarm Optimization (PSO) as introduced in
[15], is a swarm based global optimization algorithm. The
algorithm models the behavior of bird swarms searching for
an optimal food source. The movement of a single particle is
influenced by its last movement, its knowledge, and the
swarm’s knowledge. PSO’s basic equations are:

xi (t +1) = xi (t) + vij (t +1) (6)

vij (t +1) = w(t)vij (t) + c1r1 j (t) xBestij (t) xij (t)()
+ c2r2 j (t) xGBest j (t) xij (t)()

 (7)

where x represents a particle, i denotes the particle's
number, j the dimension, t a point in time, and v is the

particle's velocity. xBest is the best location the particle ever
visited (the particle's knowledge), and xGBest is the best
location any particle in the swarm ever visited (the swarm's
knowledge). w is the inertia weight and used to weigh the
last velocity, c1 is a variable to weigh the particle's

knowledge, and c2 is a variable to weigh the swarm's

knowledge. r1 and r2 are uniformly distributed random

numbers between zero and one.
PSO is usually used on continuous and not discrete

problems. In order to solve the discrete overlay network
assignment using the PSO approach, several operations and
entities have to be defined. The implementation follows in
part the implementation for solving the traveling salesman
problem as described in [16]. First, a swarm of particles is
required. A single particle represents one overlay network,
i.e., every particle's position in the search space must
correspond to a possible overlay network. Velocities are
implemented as lists of changes that can be applied to a
particle and will move the particle to a new position (a new
overlay network). Changes are exchanges of values of the
overlay network. Further, minus between two matches
(particles), multiplication of a velocity with a real number,
and the addition of velocities have to be defined. Minus is
implemented as a function of particles. This function returns
the velocity containing all changes that have to be applied to
move from one particle to another in the search space.
Multiplication randomly deletes single changes from the
velocity vector with a certain probability.

TABLE III. PSO PARAMETERS

Parameter Value

Number of particles: 100

Inertia weight: 0.001

Weight of local knowledge: 0.5

Weight of global

knowledge:

0.5

Radius: 2

Neighborhood size: 4

The PSO implemented uses guaranteed convergence,

which means that the best particle is guaranteed to search

within a certain radius, implying that the global best particle
will not get trapped in local optima. Table 3 shows the
specific parameters chosen for the implementation.

IV. EXPERIMENTS AND RESULTS

The two algorithms were tuned with the parameter values
as given in the previous section. Since the GA and PSO
implementation involve probabilities, all parameters of the
algorithms were set, so that the number of iterations needed
were kept constant, but at the same time the number of
function evaluations is kept as equal as possible.
Furthermore, all experiments were conducted 25 times in
order to account for statistical variations.

TABLE IV. FITNESS FUNCTION AND FITNESS VALUES (500

ITERATIONS)

Fitness
function

w1 w2 w3 Best
fitness -
GA

Best
fitness –
PSO

F1 1/3 1/3 1/3 0.82331 0.83333

F2 1 0 0 0.89102 0.91290

F3 0 1 0 0.89653 0.90872

F4 0 0 1 0.60379 0.60862

F5 0.5 0.5 0 0.89786 0.89995

F6 0 0.5 0.5 0.73942 0.75000

F7 0.5 0 0.5 0.73018 0.74992

The first set of experiments was performed measuring the

accuracy of both approaches given different settings of the
weights, comparing the different effects on the accuracy. The
second set investigates single link failures, and the third set
evaluates complete network failures.

Table 4 shows the results of the fitness scores of both
approaches using different weight combinations, thereby
favoring cost, performance or reliability. The values were
taken at iteration 500. It can be seen that the highest fitness
score can be achieved with F2 and F3, which only consider
the cost and performance fitness sub-functions respectively.
The worst fitness score is observed for F4, when optimizing
the overlay network based on reliability.

Figure 1. Fitness of GA and PSO approach.

Figure 1 shows the fitness values plotted for increasing
iterations. It can be observed that the PSO approach reaches
the maximum fitness score of 0.83333 at iteration 270, which
is much earlier than the GA approach, which needs 1,100
iterations. The fitness function F1 with an equal weight
distribution was used.

A. Investigation of Link Failures

Figure 2 shows the fitness curves for successive link
failures without reconfiguration. It can be seen that the
generation of new overlay network configurations work fine
until 84% of link failures occur, however, at the cost of
reducing fitness scores. Decreasing fitness scores can be
observed with the lowest of 0.34 when 80% of link failures
occur; after 84% an overlay network cannot be constructed
anymore, and therefore the automatic reconfiguration needs
to be restarted.

Figure 2. Fitness scores with increasing percentage of link failures.

B. Investigation of Network Failures

Figure 3 shows three complete reconfigurations of a 25-
node overlay network. The simulation runs the optimization
every 2,500 iterations, due to an artificially induced
breakdown of the network. As can be seen in Figure 2, both
approaches, GA and PSO, can reconfigure overlay networks
and achieve the maximum fitness score after around 1,200
and 300 iterations respectively. As expected, the trend of
both curves is as in Figure 1.

Figure 3. Reconfiguration of complete overlay network with 25 nodes.

Figure 4. Reconfiguration of 25-node network with varying weight

distribution of fitness function.

Figure 4 shows the reconfiguration of a 25-node network.
The first evolution shows the fitness trend when F1 is used
(weights are all 1/3). After a failure occurs the network
switches the weights to w1=w2=0.25 and w3=0.5 in order to
stress more on reliability rather than an equal contribution of
all three fitness sub-functions. Even though the fitness score
is lower with the second weight setting, however, the
network configuration is more stable to protect against future
failures.

V. CONCLUSION

This paper investigated two approaches for the
reconfiguration of overlay networks and the experimental
results could be used as a guideline for overlay network
construction and configuration. The first approach was based
on genetic algorithms as used in literature; the second
approach was based on a discrete implementation of Particle
Swarm Optimization.

In summary, the experiments conducted show that for
networks of 25 nodes the PSO approach achieves the
maximum fitness score much faster than the GA approach.
PSO usually takes 270 iterations to reach the maximum
fitness value, whereas GA needs 1,100 iterations to achieve
the same for a 25-node network. Furthermore, the
experiments regarding link and complete network failures
showed that both approaches are able to reconfigure the
networks in a reasonable amount of time. It takes a network
of 20 nodes to be reconfigured by GA on average 376 ms
and PSO 51 ms. Again, PSO outperformed GA.

In conclusion, the PSO algorithm outperforms the GA
algorithm when reconfiguring overlay networks. However, a
scalability analysis needs to be conducted in order to find out
which approach will scale better with increasing network
sizes. Besides this, future work will investigate and
implement another evolutionary method based on Artificial
Immune Systems in order to examine the suitability in the
area of overlay networks.

ACKNOWLEDGMENT

This material is based on work supported by North
Dakota EPSCoR and National Science Foundation Grant
EPS-0814442.

REFERENCES

[1] Internet Usage Statistics, World Internet Users and Population Stats,
last retrieved in May 2011 at

http://www.internetworldstats.com/stats.htm.

[2] S. Tarkoma, Overlay Networks: Toward Information Networking,

CRC Press, Auerbach Publications, ISBN: 978-1-4398-1371-3,
2010.

[3] Baruch Awerbuch, Andreas Terzis, A Robust Routing Algorithm for

Overlay Networks, Technical Report, last retrieved at
http://www.cs.jhu.edu/~terzis/reprouting.pdf, 2004.

[4] J. Jannotti, D.K. Gifford, K.L. Johnson, M. Frans Kaashoek, and

J.W. O'Toole. Overcast: reliable multicasting with on overlay
network. Proceedings of 4th conference on Symposium on Operating

System Design & Implementation - Volume 4 (OSDI'00), Vol. 4.
USENIX Association, Berkeley, CA, USA, 14-14, 2000.

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient

overlay networks. In Proceedings of the eighteenth ACM
symposium on Operating systems principles (SOSP '01). ACM, New

York, NY, USA, 131-145, 2001.

[6] G. Di Caro and M. Dorigo. AntNet: distributed stigmergetic control
for communications networks. J. Artif. Int. Res. 9, 1 (December

1998), 317-365, 1998.

[7] J. Montoya, Y. Donoso, E. Montoya, and D Echeverri,
Multiobjective model for multicast overlay networks over IP/MPLS

using MOEA. 2008 International Conference on Optical Network
Design and Modeling, 1-6, 2008.

[8] Y. Zhao, J. Wang, Y. An, and F. Xia. A Layered Overlay Multicast
Algorithm with PSO for Routing Web Streams. In Proceedings of

the International Conference on Web Information Systems and

Mining (WISM '09), Wenyin Liu, Xiangfeng Luo, Fu Lee Wang,

and Jingsheng Lei (Eds.). Springer-Verlag, Berlin, Heidelberg, 205-
213, 2009.

[9] A. Abraham, H. Liu, Y. Badr, and C. Grosan. A multi-swarm
approach for neighbor selection in peer-to-peer networks. In

Proceedings of the 5th international conference on Soft computing
as transdisciplinary science and technology (CSTST '08). ACM,

New York, NY, USA, 178-184, 2008.

[10] D. Montana, T. Hussain, T. Saxena: Adaptive reconfiguration of
data networks using genetic algorithms. In: Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 1141–1149,
San Francisco, CA, USA, 2002.

[11] S.G.M. Koo, K. Kannan, C.S.G. Lee, On neighbor-selection strategy

in hybrid peer-to-peer networks, Journal of Future Generation
Comp. Syst. pp. 732-741, 2006.

[12] A.J. Ramirez, D.B. Knoester, B.H.C. Cheng, and P.K. McKinley.

Plato: A Genetic Algorithm Approach to Run-Time Reconfiguration
in Autonomic Computing Systems. Journal of Cluster Computing,

2010.

[13] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes: Designing for
disasters. Proceedings of the 3rd USENIX Conference on File and

Storage Technologies, pp. 59-62. Berkeley, CA, USA, 2004.

[14] J.H. Holland: Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[15] J. Kennedy, R. Eberhart: Particle swarm optimization. Proceedings
of IEEE International Conference on Neural Networks, 1995.

[16] M. Clerc: Discrete particle swarm optimization - illustrated by the

traveling salesman problem. New Optimization Techniques in
Engineering, Springer, 2004.

