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Abstract: Feature selection is a crucial step in the data preprocessing stage of machine learning. It 1

involves selecting a subset of relevant features for use in model construction. Feature selection helps 2

in improving model performance by reducing overfitting, enhancing generalization, and decreasing 3

computational cost. Techniques for feature selection can be broadly classified into filter methods, 4

wrapper methods, and embedded methods. This paper presents a feature selection method based on 5

Particle Swarm Optimization (PSO). The proposed algorithm makes use of a guided particle scheme 6

whereby three filter-based methods are incorporated. The proposed algorithm addresses the issue of 7

premature convergence to global optima compared to other PSO feature-based methods. In addition, 8

the algorithm is tested on very high-dimensional genome data that include up to 44,909 features. 9

Results of an experimental comparison with other state-of-the-art feature selection algorithms show 10

that the proposed algorithm produces overall better results. 11

Keywords: Classification; Feature selection; Cancer Genome Data 12

1. Introduction 13

Feature selection is a fundamental challenge in analyzing high-dimensional data, 14

where datasets often contain numerous irrelevant or redundant features. Removing these 15

features enhances predictive accuracy, reduces computational complexity, and improves 16

model interpretability. By selecting the most relevant subset, models can focus on informa- 17

tive data, leading to more efficient and accurate predictions. 18

In bioinformatics, feature selection helps identify key biological markers or genes 19

associated with specific processes or diseases, enabling deeper insights into biological 20

mechanisms while improving predictive reliability. It is also widely applied in fields such 21

as finance, healthcare, and text classification, where efficient handling of high-dimensional 22

data is essential. 23

As a crucial step in data preprocessing, feature selection reduces overfitting, enhances 24

generalization, and decreases computational costs. Methods for feature selection are 25

typically categorized into filter, wrapper, and embedded approaches [1] [2]. 26

Filter based feature selection methods utilize statistical measures in order to rank 27

features or to give various features in a dataset a numerical rank in order to be able to 28

discard irrelevant features with a low statistical score. Filter based methods are often 29

computationally efficient but they sacrifice accuracy due to the fact that they look at the 30

features individually without taking into account the relationships between features. For 31

example, two features may be insignificant on their own, but when paired together they 32

might heavily affect the data. 33

Wrapper methods are often referred to as trial and error methods because they take 34

into account every possible combination of features and choose the best one. As a result, 35

wrapper methods for feature selection are often the most computationally expensive, but 36

yield the most accurate results. The work being done focuses on performing feature selec- 37

tion for highly dimensional data (large number of features), so wrapper-based approaches 38

take an incredibly long time to run so testing them has proven to be difficult. 39
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Embedded methods perform feature selection during the model training process. 40

The benefit of these methods is that they take into account interactions between features, 41

something that filter-based approaches completely ignore. Embedded methods often 42

provide a good balance between computational cost and accuracy. 43

A hybrid method can be any combination of two types of feature selection methods or 44

even a feature selection method and another algorithm that may not generally be used for 45

feature selection. 46

2. Related Work 47

Feature selection is a critical process in data mining and machine learning, aiming 48

to identify the most relevant features from large datasets to improve model performance 49

and reduce dimensionality. Nature-inspired algorithms have shown significant promise in 50

optimizing feature selection [3]. This section expands on recent advancements and related 51

work in this area. 52

A comprehensive study focused on the scalability of feature selection algorithms in the 53

context of dynamic data generated by web-based applications and the Internet of Things 54

(IoT) [4]. The research emphasized the limitations of existing dimensionality reduction 55

techniques when dealing with noisy and rapidly inflating datasets. The study concluded 56

that feature selection methods are essential for reducing data load and avoiding overfitting, 57

thereby improving the efficiency of machine learning models. 58

Another comprehensive survey examined various nature-inspired metaheuristic meth- 59

ods for feature selection [5]. The study focused on the representation and search algorithms, 60

highlighting their potential for global search and optimization. The survey provided an 61

analysis of the advantages and disadvantages of different approaches, offering guidance 62

for future research to address unresolved issues in the literature. 63

Looking at particular nature-inspried algorithms starting with the Genetic Algorithm 64

(GA), which is one of the most widely used algorithms for feature selection. GA mimics the 65

process of natural selection by generating a population of candidate solutions and iteratively 66

evolving them to find the optimal feature subset. A study applied GAs for feature selection 67

in medical diagnosis, demonstrating significant improvements in classification accuracy 68

and computational efficiency [6]. 69

In [7], a feature selection method using the Ant Colony Optimization (ACO) algorithm, 70

aiming to address the challenges posed by high-dimensional data. By employing a heuristic 71

distance directly in the probability function, the algorithm avoids the need for sub-attribute 72

sets and iteratively creates a frequency order list to determine feature importance. The 73

technique’s effectiveness is validated through experiments that compare it with fifteen 74

other algorithms, using identical datasets, classifiers, and performance metrics. The paper 75

also demonstrates how feature selection improves classification performance and evaluates 76

the convergence performance of the proposed method, highlighting its effectiveness in 77

managing complex, multidimensional data. 78

In [8], a novel feature selection architecture integrating metaheuristic techniques with 79

evolutionary algorithms and chaos theory is introduced. The proposed method leverages 80

evolutionary concepts, such as mutation and crossover operators from genetic algorithms, 81

to enhance search space exploration and exploitation. Additionally, a chaotic map function 82

generates new random feature subsets to improve the optimization process. The method 83

was tested on 10 datasets across various machine learning models, showing significant 84

performance improvements compared to existing methods. 85

A feature selection architecture designed to enhance machine learning model perfor- 86

mance by selecting relevant features and eliminating redundancy is introduced in [9]. The 87

architecture combines metaheuristic techniques, evolutionary algorithms, and chaos theory 88

to address high-dimensional data challenges. Key elements include genetic algorithm- 89

inspired mutation and crossover operators for efficient search and a chaotic map function 90

for generating random feature subsets. Testing on 10 datasets demonstrated significant 91

performance improvements compared to existing methods. 92
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The study in [10] improves feature selection (FS) in hyperspectral image (HSI) classifi- 93

cation by proposing a new filter-wrapper (F-W) framework to enhance swarm intelligence 94

and evolutionary algorithms (SIEAs). The performance of ten SIEAs under this framework 95

is evaluated using three HSIs, focusing on accuracy, selected bands, convergence rate, and 96

runtime. Results show that overall, the SIEAs outperform traditional FS methods, achieving 97

higher accuracy and efficiency, especially in complex scenes. 98

Particle Swarm Optimization (PSO) is also a popular evolutionary computation (EC) 99

method that has been widely applied to feature selection problems. For example, an 100

adaptive Particle Swarm Optimization (PSO) method for feature selection that overcomes 101

the limitations of traditional PSO by incorporating adaptive parameter updating and 102

leadership learning strategies is presented in [11]. Experimental results on 10 UCI datasets 103

show that the proposed method outperforms other algorithms in both exploration and 104

exploitation, selecting fewer than 8% of the original features while achieving more effective 105

feature subsets than six traditional feature selection methods. 106

Binary Particle Swarm Optimization (BPSO) is a discrete variant of the Particle Swarm 107

Optimization (PSO) algorithm, designed to handle optimization problems where variables 108

are binary (i.e., they can take on values of 0 or 1). In traditional PSO, particles adjust their 109

positions and velocities in a continuous search space to find optimal solutions. However, 110

BPSO modifies this approach to operate within a binary search space. In BPSO, each particle 111

represents a candidate solution as a binary string. The concept of velocity is reinterpreted as 112

the probability of each bit in the string flipping from 0 to 1 or vice versa. This probability is 113

typically determined using a sigmoid function applied to the velocity component, ensuring 114

that updates remain within the binary constraints [12]. 115

A Stick Binary PSO (BPSO) by redefining momentum as stickiness and velocity as 116

flipping probability is introduced in [13]. The stickiness factor considers the stability of 117

particle states, encouraging particles that have remained unchanged for a long period 118

to flip, thereby increasing population diversity. However, unconstrained flipping in the 119

time dimension expands the search space, increasing computational costs and slowing 120

population convergence. 121

An applied PSO within an evolutionary multitasking framework is featured in [14]. 122

The first task involved selecting from all original features, while the second focused on 123

choosing from only the top-ranked features. Similarly, authors in [15] employed BPSO 124

for spam detection, introducing mutation operators to mitigate premature convergence 125

and improve algorithm performance. Their experimental results demonstrated superior 126

performance compared to other methods. 127

The ChaoticMap algorithm integrates two types of chaotic maps (logistic maps and 128

tent maps) into the Binary PSO (BPSO) [16]. The chaotic maps are used to determine the 129

inertia weight of the BPSO. The Chaotic Binary Particle Swarm Optimization (CBPSO) 130

for feature selection employs the K-nearest neighbor (K-NN) method with leave-one-out 131

cross-validation (LOOCV) as a classifier to evaluate classification accuracy. The proposed 132

feature selection method yields promising results in terms of reducing the number of 133

feature subsets while achieving superior classification accuracy compared to other methods 134

in the literature. 135

VLPSO, a PSO variant with dynamic and variable-length feature selection, which 136

achieved higher classification accuracy in less time is introduced in [17]. Additionally, 137

the Competitive Swarm Optimization (CSO) algorithm was introduced to explore novel 138

optimization strategies [18]. Nguyen et al. further enhanced CSO by incorporating per- 139

formance constraints and the Relief algorithm to improve population diversity and local 140

search efficiency [19]. They also employed SVM as a surrogate model to accelerate evalua- 141

tions. Their results showed that adaptive performance constraints guided particles toward 142

high-quality solutions, but this approach increased exploitation tendencies, making the 143

population more prone to local optima. 144

From this review so far, it is evident that existing PSO-based feature selection algo- 145

rithms largely rely on mathematical and evolutionary computation methods for population 146
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initialization and update strategies. However, these approaches struggle to provide effec- 147

tive initialization and guided updates when applied to large-scale datasets. 148

One research study addresses this issue introducing an importance-guided parti- 149

cle swarm optimization based on MLP (IGPSO) to enhance feature selection for high- 150

dimensional datasets [20]. The approach leverages a neural network-generated importance 151

vector to guide both population initialization and evolution, ensuring that optimization 152

focuses on the most relevant features. A two-stage training process refines this importance 153

vector by first identifying useful features from positive samples and then filtering out 154

irrelevant ones using negative samples. To further improve performance, IGPSO replaces 155

traditional PSO acceleration factors and inertia weight with importance-guided updat- 156

ing, where more critical features receive stronger influence while less important ones are 157

de-emphasized. This strategy balances exploration and exploitation, leading to efficient 158

feature selection with fewer features and improved classification accuracy on large-scale 159

datasets. 160

However, EC-based feature selection methods are generally effective for small-scale 161

problems with feature dimensions ranging from tens to hundreds [21],[22]. When dealing 162

with large-scale datasets containing thousands of dimensions, these methods become 163

computationally expensive and struggle to achieve satisfactory performance. Additionally, 164

the effectiveness of swarm intelligence-based algorithms is highly dependent on population 165

initialization [23]. 166

Thus, our approach enables the exploration of large datasets with high-dimensional 167

feature spaces by introducing a new feature selection method based on PSO. By incorpo- 168

rating a guided particle scheme with three filter-based methods, the proposed algorithm 169

effectively tackles critical challenges in high-dimensional data analysis, such as prema- 170

ture convergence to sub-optimal solutions, which often hinder the performance of tradi- 171

tional PSO-based techniques. This advancement is particularly important for complex, 172

high-dimensional datasets, where the large number of features typically poses significant 173

challenges. The algorithm’s ability to efficiently navigate large search spaces and identify 174

the most relevant features makes it a robust and promising algorithm for enhancing the 175

accuracy and efficiency of data analysis across diverse applications. 176

3. Approach 177

An overview of the proposed approach is shown in Figure 1. The two proposed 178

algorithm has two goals in mind: (1) expansion of the search space using three filter-based 179

methods to generate the particles, and (2) using a fitness factor that weights accuracy and 180

size of feature set including knowledge transfer in order to prevent premature convergence. 181

The figure as well as Algorithm 1 describe the approach. 182

The Guided Particle Swarm Optimization (PSO) algorithm for feature selection begins 183

by initializing a swarm of particles, where each particle represents a potential subset of 184

features. The goal of the algorithm is to identify the best feature subset that maximizes a 185

fitness function, which likely measures the subset’s ability to accurately classify or predict 186

outcomes based on the dataset provided. 187

Each particle in the swarm is assigned a random position (corresponding to a feature 188

subset) and velocity, while the global best position, denoted as gbest, is initialized with an 189

extremely high score, ensuring that any better solution will replace it. The initial positions 190

of the particles are informed by three feature selection methods: Gini index, ANOVA, and 191

ReliefF. Particles are divided equally among the positions computed by these methods, 192

and their feature subsets are initialized using the knee point method, which balances the 193

number of features with their relevance. 194

The algorithm then enters an iterative process, where it repeatedly evaluates and 195

updates the particles over a series of iterations. During each iteration, the fitness of each 196

particle’s feature subset is calculated. Fitness is calculated according to Eq. 3: 197

f itness = γ · CER + (1 − γ) · (SFS/TFS) (1)
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Figure 1. Overview of Proposed Guided Feature Selection PSO

where γ is the weighting factor, CER is the classification error rate, SFS is the selected 198

feature set, and TFS is the total feature set. 199

If a particle’s current subset yields a better fitness score than its previously best-known 200

score, the particle updates its best-known position. Similarly, if a particle’s fitness score is 201

better than the global best score across the entire swarm, the global best position is updated. 202

The following velocity and position update equations are used: 203

v(t+1)
i = ωv(t)i + c1r1(pbesti − x(t)i ) + c2r2(gbest − x(t)i ) (2)

s(v(t+1)
i ) =

1

1 + e−v(t+1)
i

(3)

x(t+1)
i =

{
1, if r < s(v(t+1)

i )

0, otherwise
(4)

where v(t+1)
i is the updated velocity of particle i at time step t + 1; ω is the inertia 204

weight; v(t)i is the previous velocity of the particle; c1 and c2 are the cognitive and social 205

coefficients; r1, r2 ∼ U(0, 1) are random numbers sampled from a uniform distribution; 206

pbesti is the personal best position of particle i; gbest is the global best position; x(t)i is 207

the current position of particle i; s(v(t+1)
i ) is the sigmoid function applied to the velocity; 208

r ∼ U(0, 1) is a random number sampled from a uniform distribution; x(t+1)
i is the updated 209

binary position of the particle. 210

After evaluating all particles, the swarm is sorted based on their best scores. A subset 211

of elite particles - those with the best performance - is identified, and knowledge from 212

these elite particles is transferred to others in the swarm to guide the search towards more 213

promising areas of the solution space, i.e., this is what we refer to as the knowledge transfer 214

mechanism. Finally, each particle’s velocity and position are updated, allowing the swarm 215



Version March 23, 2025 submitted to Journal Not Specified 6 of 18

to explore new subsets of features while being influenced by both individual and collective 216

experiences. 217

This process continues until the maximum number of iterations is reached, after which 218

the algorithm returns the global best feature subset found, representing the most optimal 219

selection of features according to the fitness function used. 220

Algorithm 1 Guided Particle Swarm Optimization for Feature Selection

1: Input: Dataset D, Number of particles N, Number of features F, Maximum iterations
Imax

2: Output: Best feature subset gbest
3: Initialize particles with positions and velocities
4: Initialize global best position gbest and score gbest_score to infinity
5: for each particle i in the swarm do
6: Compute Gini, ANOVA, and ReliefF positions for the dataset
7: Divide particles equally among these positions
8: Initialize feature subset fsi using the knee point method
9: end for

10: for each iteration t from 1 to Imax do
11: for each particle i in the swarm do
12: Evaluate fitness of fsi using the fitness function
13: if fitness is better than particle’s best score then
14: Update particle’s best position and score
15: end if
16: if fitness is better than global best score then
17: Update global best position and score
18: end if
19: end for
20: Sort swarm based on particle best scores
21: Update elite particles
22: Transfer knowledge from elite particles to others
23: for each particle i in the swarm do
24: Update velocity and position of the particle
25: end for
26: end for
27: return gbest

In terms of the complexity analysis, the time complexity is: 221

O(Imax · N · M · F)

and the space complexity is: 222

O(N · F)

where N is the number of particles in the swarm, F is the number of features in the 223

dataset, M is the number of samples in the dataset, and Imax is the maximum number of 224

iterations. 225

The algorithm is computationally intensive for large datasets (large M and F) and 226

large swarm sizes (N), but its linear scaling with respect to Imax and N makes it manageable 227

for large dataset sizes. 228

4. Experiments and Setup 229

This section first describes the datasets used followed by the descriptions of the 230

comparison algorithms. Then, the evaluation measures are listed, and the experiments and 231

results are shown and discussed. 232
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Table 1. Description of the Datasets

Dataset Rows (Samples) Columns (Features) Class 1 Class 2
CHOL 44 43,697 39 5
COAD 522 37,677 509 13
HNSC 564 35,958 535 29
KICH 91 43,806 60 31
KIRC 613 44,909 609 4
KIRP 322 44,874 236 86
LIHC 421 35,924 322 99
LUSC 553 44,894 494 59
PRAD 553 44,824 472 81
STAD 448 44,878 358 80
THCA 564 36,120 380 184
UCEC 588 36,086 345 243

4.1. Dataset Description 233

Twelve datasets have been used for the experiments. These have been extracted from 234

the Cancer Genome Atlas (TCGA) [24]. TCGA is a pioneering cancer genomics initiative, 235

has molecularly characterized more than 20,000 primary cancer samples and corresponding 236

normal tissues across 33 cancer types. This collaborative project, launched in 2006 by 237

the National Cancer Institute (NCI) and the National Human Genome Research Institute, 238

brought together experts from various fields and institutions. 239

Over the course of twelve years, TCGA produced more than 2.5 petabytes of data, 240

encompassing genomic, epigenomic, transcriptomic, and proteomic information. This vast 241

dataset, which has already contributed to advancements in cancer diagnosis, treatment, 242

and prevention, continues to be publicly accessible to the research community. 243

The twelve datasets used are given in Table 1. As one can see, the number of features 244

vary between 35,924 to 44,909. Since we are investigating feature selection, these dataset are 245

consider very large and appropriate for our experiments. The dataset abbreviations stand 246

for Cholangiocarcinoma (CHOL), Colon Adenocarcinoma (COAD), Head and Neck Squa- 247

mous Cell C. Check important info.arcinoma (HNSC), Kidney Renal Clear Cell Carcinoma 248

(KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), Liver Hepatocellular Carcinoma 249

(LIHC), Lung Squamous Cell Carcinoma (LUSC), Prostate Adenocarcinoma (PRAD), Stom- 250

ach Adenocarcinoma (STAD), Thyroid Carcinoma (THCA), Uterine Corpus Endometrial 251

Carcinoma (UCEC). All datasets are binary with two classes of cancer or not cancer. 252

4.2. Comparison Approaches 253

The following comparison approaches have been used to select the best features. As 254

for the classification portion, the K-Nearest Neighbor (KNN) has been used. 255

ANOVA (Analysis of Variance): ANOVA is a statistical method used to analyze the 256

differences among group means among each other [25]. It determines whether there are any 257

statistically significant differences between the means of independent groups by comparing 258

the variability within groups to the variability between groups. Within Feature Selection, 259

ANOVA F-test identifies features that have significant differences across different classes 260

and how different a feature is within its own class, helping to select the most relevant 261

features for improving model performance. It uses ANOVA to select the top 10% of features 262

based on their statistical significance, while retaining important features despite reducing 263

dimensionality. 264

EN (Elastic Net): Elastic Net is an embedded method that combines both L1 (Lasso) 265

and L2 (Ridge) embedded methods to enhance the performance of regression models [26], 266

specifically their penalty coefficients. Elastic Net will be typically used in scenarios when 267

the number of predictors exceeds the number of observations or when predictors are highly 268

correlated. By linearly combining the penalties, Elastic Net encourages sparsity like lasso, 269



Version March 23, 2025 submitted to Journal Not Specified 8 of 18

which helps in variable selection, while also stabilizing the solution like ridge regression, 270

which improves prediction accuracy. 271

BPSO (Binary PSO): BPSO was described in the Section 2. 272

IG (Information Gain): Information gain is a criterion used in feature selection to 273

measure how much information a given feature contributes to reducing uncertainty in a 274

classification task. It is based on the concept of entropy from information theory, where 275

entropy represents the amount of randomness or impurity in the dataset. The information 276

gain of a feature is computed as the reduction in entropy achieved by partitioning the 277

data based on that feature. A higher information gain indicates that the feature is more 278

informative and useful for classification [27]. 279

CS (Chi-Square Test): The Chi-Square Test is a filter type of feature selection method. 280

It evaluates each feature individually without considering a specific model. This method is 281

effective across different models as it is model-agnostic. The ChiSquare Test assigns each 282

feature a Chi-value based on its statistical relevance to the target variable. This approach is 283

fast and efficient, particularly suitable for high-dimensional datasets. It works well with 284

categorical datasets but can also handle qualitative data points [28]. 285

CSA (ChiSimAnneal): ChiSimAnneal is a hybrid feature selection algorithm that 286

combines the chi-square statistical test with a simulated annealing optimization strategy. 287

The chi-square test evaluates the dependency between categorical features and the target 288

variable, selecting features that exhibit strong statistical associations. Simulated annealing, 289

a probabilistic optimization technique inspired by the annealing process in metallurgy, is 290

then applied to refine the feature subset by exploring different combinations and avoiding 291

local optima. This approach enhances the selection process by balancing exploration and 292

exploitation, leading to an optimal subset of features that improve model performance [29]. 293

PSO (4-2): PSO (4-2) allows particles to vary in length, reducing search space and 294

improving PSO’s performance by focusing on relevant features. This technique enhances 295

PSO’s ability to avoid local optima and produce high classification performance with fewer 296

features in shorter time frames, as shown in tests on high-dimensional datasets [17], and 297

was also described in Section 2. 298

RR (Ridge Regression): Ridge Regression integrates feature selection within the train- 299

ing process of a model. It is an example of an embedded method. During model training, 300

Ridge Regression calculates coefficients for each feature, indicating their importance. Fea- 301

tures with coefficients above a specified threshold (e.g., 0.2) are selected. This method is 302

efficient and leverages the model’s learning process for feature selection. However, it may 303

not eliminate irrelevant features entirely and requires careful parameter tuning to identify 304

the most relevant features accurately [30]. 305

GA (Genetic Algorithm): GA was described in the Section 2. 306

IGPSO: IGPSO was described in the Section 2. 307

ChaoticMap: ChaoticMap was described in the Section 2. 308

VLPSO (Variable-length PSO): VLPSO was described in the Section 2. 309

The last two algorithms listed, ChaoticMap and Variable-length PSO, were imple- 310

mented for the comparison experiments, however, given the large dataset sizes, both could 311

not be run due to their time-complexity. However, all other comparison algorithms were 312

included. 313

4.3. Algorithm Parameters 314

Table 2 lists the parameters used for the experiments for the different algorithms. 315

Please note that for IGPSO, the parameter values were set to those of GPSO as well as the 316

other nature-inspired algorithm,s in order to make sure that the same search effort was 317

used. 318

4.4. Computing Infrastructure for Experiments 319

The experiments were conducted using the infrastructure of the Center for Compu- 320

tationally Assisted Science and Technology (CCAST), which offers advanced cyberinfras- 321
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Table 2. Parameters used for the algorithms.

Algorithm Parameters

GA
num_iterations = 100, population_size = 30,
mutation_rate = 0.01, crossover_rate = 0.9

BPSO
max_iterations = min(50, num_ f eatures × 5),
num_particles = min(30, num_ f eatures × 2),
w = 0.5, c1 = 2.0, c2 = 2.0

PSO(4-2)
max_iterations = 100, num_particles = 30,
w = 0.7298, c1 = 1.49618, c2 = 1.49618

IGPSO
max_iterations = 100, num_particles = 30, w = 0.9,
c1 = 2.0, c2 = 2.0, hiddenLayers = 100, learningRate = 0.001

GPSO
max_iterations = 100, num_particles = 30,
w = 0.5, c1 = 1.5, c2 = 1.5, γ = 0.95

tructure for research and education at NDSU and beyond. CCAST manages and operates 322

high-performance, cloud, and interactive computing resources while also educating re- 323

searchers on the effective and efficient utilization of these resources and other relevant 324

topics in the computational science and engineering fields. 325

5. Results 326

This section presents the results of the experiments conducted. Table 3 shows the 327

accuracy results obtained running all algorithms on all datasets. The best values achieved 328

for each dataset is highlighted in bold. As can be seen, our proposed algorithm as well as 329

the BPSO obtains the highest accuracy for 4 datasets, the ANOVA, EN and IG algorithms 330

achieve the highest accuracy for 3 dataset, the CSA and GA for 2 datasets, and the CS and 331

RR algorithms score best for 1 dataset. 332

As for the precision results given in Table 4, the proposed algorithm scores highest for 333

7 datasets, BPSO scores best for 5 datasets, ANOVA and EN for 3 datasets, IG, CSA and 334

IGPSO for 2 datasets, and CS and RR for 1 dataset. 335

Next up are the recall results given in Table 5. As can be seen from the results in the 336

table, GPSO again scores best for 6 datasets, followed by BPSO with 5 datasets, ANOVA 337

with 4 datasets, EN and IG with 3 datasets, CSA and GA for 2 datasets, and PSO(4-2), CS 338

and RR for 1 dataset. 339

F1-scores are displayed in Table 6. The table shows that the proposed algorithm, GPSO, 340

obtains the best results for 7 datasets followed by BPSO with 5 datasets, ANOVA, EN, IG 341

for 3 datasets, CSA and GA for 2 datasets, and again and PSO(4-2), CS, RR and IGPSO for 1 342

dataset. 343

Figures 2, 3, 4, and 5 show the accuracy, precision, recall and F1-Score results as box 344

plots. 345

In order to evaluate the different algorithms fairly we are investigating their execution 346

times as well. Table 8 lists the running time / execution time of all algorithms run on all 347

datasets. As can be seen, the fastest algorithms are CS followed by RR taking our proposed 348

algorithm. However, as we have seen both algorithm do not score very highly in terms of 349

accuracy, precision, recall, and F1-Score. The IGPSO takes the longest with an average of 350

10,790.84 seconds (179.85 minutes) followed by our algorithm with an average of 2,919.84 351

seconds (48.66 minutes). However, our algorithm scores overall better based on the other 352

measures. Not unexpected, the third slowest algorithm is GA followed by PSO(4-2) and 353

BPSO. 354
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Table 3. Accuracy

dataset ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 0.918918919 0.927927928 0.933734940 0.937142857 0.928571429 0.854285714 0.928571429 0.928571429 1.000000000 0.957831330 0.999808907
PRAD 0.954954955 0.918918919 0.969879518 1.000000000 0.993630573 0.994394904 0.993630573 0.987261146 0.990500000 0.945783130 0.999864635
THCA 0.991150442 0.982300885 0.983764706 0.985176471 0.976470588 0.983058824 0.994117647 0.994117647 0.973500000 0.976470590 0.999402064
KICH 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 0.970000000 0.928571429 0.928571429 0.978960000 0.785714290 0.999807100
STAD 0.888888889 0.888888889 0.954666667 1.000000000 1.000000000 0.995000000 1.000000000 1.000000000 1.000000000 0.933333330 0.999893115
KIRP 0.861538462 0.707692308 0.894845361 0.874226804 0.845360825 0.860206186 0.824742268 0.824742268 0.793909656 0.927835050 0.998809975
KIRC 1.000000000 1.000000000 1.000000000 0.794645669 0.780157480 0.858267717 0.826771654 0.818897638 0.785860000 0.994565220 0.998207277
LIHC 0.858823529 0.858823529 0.851653543 0.944337349 0.913975904 0.913734940 0.903614458 0.897590361 0.931500000 0.929133860 0.998702470
HNSC 0.991150442 0.991150442 0.994117647 0.934216867 0.932289157 0.948192771 0.909638554 0.909638554 0.915300000 0.988235290 0.999074136
CHOL 1.000000000 1.000000000 1.000000000 0.938962963 0.957925926 0.935407407 0.888888889 0.888888889 0.893340000 0.928571430 0.998928181
UCEC 0.872881356 0.771186441 0.891073446 0.972705882 0.953411765 0.963529412 0.970588235 0.964705882 0.916820000 0.943502820 0.998391428
COAD 0.990476190 0.980952381 0.998980892 0.777853107 0.783954802 0.839774011 0.757062147 0.728813559 0.722020000 0.980891720 0.996616323

Table 4. Precision

dataset ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 0.721428571 0.800925926 0.932653886 0.528571429 0.464285714 0.741915228 0.933673469 0.933673469 1.000000000 0.979452050 1.000000000
PRAD 0.913107511 0.957142857 0.965955305 1.000000000 0.996753247 0.994467040 0.993671933 0.987425519 0.995100000 0.951388890 1.000000000
THCA 0.993750000 0.987654321 0.999245283 0.992437775 0.988095238 0.982644656 0.994153298 0.994153298 0.486700000 0.980769230 1.000000000
KICH 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 0.972303770 0.935714286 0.935714286 0.971440000 0.642857140 1.000000000
STAD 0.813936249 0.826666667 0.930932182 1.000000000 1.000000000 0.991471723 1.000000000 1.000000000 1.000000000 0.800000000 1.000000000
KIRP 0.845025510 0.650000000 0.910681690 0.919573818 0.907432249 0.860018161 0.830402264 0.830402264 0.788695417 0.927536230 0.989361702
KIRC 1.000000000 1.000000000 1.000000000 0.891427300 0.885523547 0.872411609 0.859625305 0.854498957 0.809400000 0.925131000 0.927631579
LIHC 0.922077922 0.922077922 0.833752518 0.970447492 0.955748163 0.907109452 0.888522242 0.883924587 0.965320000 0.988505750 0.981132075
HNSC 0.995495495 0.995495495 1.000000000 0.963582103 0.962600204 0.948634266 0.918439994 0.918439994 0.955420000 0.833333330 0.984848485
CHOL 1.000000000 1.000000000 1.000000000 0.907256762 0.960964283 0.935505558 0.884848485 0.884848485 0.819760000 1.000000000 0.974025974
UCEC 0.918478261 0.870192308 0.864785550 0.980787469 0.968068064 0.964303382 0.971803597 0.965215686 0.935560000 0.944444440 0.987654321
COAD 0.995145631 0.990384615 1.000000000 0.864773098 0.867560880 0.869656895 0.827171729 0.813339203 0.850640000 0.666666670 0.877450980
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Table 5. Recall

dataset ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 0.651960784 0.606209150 0.997278912 0.560000000 0.500000000 0.854285714 0.928571429 0.928571429 1.000000000 0.972789120 1.000000000
PRAD 0.889583333 0.700000000 0.999424460 1.000000000 0.875000000 0.994394904 0.993630573 0.987261146 0.833300000 0.985611510 1.000000000
THCA 0.985294118 0.970588235 0.949629630 0.790000000 0.666666667 0.983058824 0.994117647 0.994117647 0.500000000 0.944444440 1.000000000
KICH 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 0.970000000 0.928571429 0.928571429 0.984600000 0.900000000 1.000000000
STAD 0.841257051 0.796132151 0.861333333 1.000000000 1.000000000 0.995000000 1.000000000 1.000000000 1.000000000 0.933333330 1.000000000
KIRP 0.809496568 0.654462243 0.938181818 0.804252199 0.758064516 0.860206186 0.824742268 0.824742268 0.795537907 0.969696970 0.973684211
KIRC 1.000000000 1.000000000 1.000000000 0.604848485 0.576969697 0.858267717 0.826771654 0.818897638 0.555380000 0.706954000 0.725000000
LIHC 0.700000000 0.700000000 0.999574468 0.756842105 0.624210526 0.913734940 0.903614458 0.897590361 0.577800000 0.914893620 0.777777778
HNSC 0.833333333 0.833333333 0.833333333 0.797777778 0.791851852 0.948192771 0.909638554 0.909638554 0.686660000 0.833333330 0.900000000
CHOL 1.000000000 1.000000000 1.000000000 0.919333333 0.916285714 0.935407407 0.888888889 0.888888889 0.889120000 0.923076920 0.882352941
UCEC 0.817073171 0.670731707 0.971698113 0.957037037 0.926666667 0.963529412 0.970588235 0.964705882 0.868440000 0.962264150 0.970588235
COAD 0.833333333 0.666666667 0.960000000 0.723098592 0.730704225 0.839774011 0.757062147 0.728813559 0.600040000 0.500000000 0.695121951

Table 6. F1-Score

dataset ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 0.678260870 0.647619048 0.963853022 0.543703704 0.481481481 0.793330403 0.894179894 0.894179894 1.000000000 0.976109220 1.000000000
PRAD 0.900839736 0.763326226 0.982363144 1.000000000 0.926942764 0.993391544 0.993185988 0.985179364 0.897600000 0.968197880 1.000000000
THCA 0.989392659 0.978598485 0.973683196 0.861522292 0.743975904 0.981626562 0.993859207 0.993859207 0.493300000 0.962264150 1.000000000
KICH 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 0.969733992 0.926482874 0.926482874 0.976600000 0.750000000 1.000000000
STAD 0.826388889 0.809966216 0.893507467 1.000000000 1.000000000 0.993155412 1.000000000 1.000000000 1.000000000 0.861538460 1.000000000
KIRP 0.824060150 0.652014652 0.923813504 0.835557293 0.789293947 0.854992101 0.826748797 0.826748797 0.785075784 0.948148150 0.981110142
KIRC 1.000000000 1.000000000 1.000000000 0.612031700 0.568196159 0.835315666 0.792538433 0.780333793 0.541860000 0.760849000 0.771337735
LIHC 0.743460765 0.743460765 0.909023894 0.823405680 0.674311398 0.895034526 0.887988042 0.866681585 0.614740000 950276240 0.847527473
HNSC 0.897737557 0.897737557 0.909090909 0.854337133 0.849022355 0.944066609 0.894574359 0.894574359 0.746680000 0.833333330 0.936752137
CHOL 1.000000000 1.000000000 1.000000000 0.912996557 0.936060988 0.934552442 0.885130374 0.885130374 0.845520000 0.960000000 0.920000000
UCEC 0.843681003 0.679959819 0.914633668 0.967728257 0.943889994 0.963085341 0.970184608 0.964326252 0.893420000 0.953271030 0.978598485
COAD 0.897560976 0.745145631 0.977142857 0.730099899 0.738942797 0.830294654 0.724785912 0.684607063 0.578680000 0.571428570 0.710869352
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Table 7. Number of Features

dataset All ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 43696 4489 4489 11388 13968 4336 4369 10924 4589 21833 37 167
PRAD 37676 4482 4482 3685 12137 3033 3767 9419 7753 18813 16 102
THCA 35957 3611 3611 4801 10480 4397 4144 8989 7050 17952 200 430
KICH 43805 4380 4380 21819 15846 7028 4380 10951 5689 21864 2 169
STAD 44908 4487 4487 6593 13185 2505 4490 11227 7052 22496 31792 96
KIRP 44873 4487 4487 22245 16002 6531 7595 11218 6660 44873 186 1068
KIRC 35923 4490 4490 22335 11919 5722 4763 8980 7286 17863 1 1288
LIHC 44893 3592 3592 6747 15401 5206 3750 11223 7198 22360 1314 1165
HNSC 44823 3595 3595 18188 13359 6116 6755 11205 7151 22374 12 830
CHOL 44877 4369 4369 21787 14843 5151 7188 11219 6932 22361 2 962
UCEC 36119 3608 3608 241 11021 5159 5510 9029 7397 17976 2207 1162
COAD 36085 3767 3767 18691 13019 5483 4060 9021 7636 18011 2 2442

Table 8. Execution Time in Seconds

dataset ANOVA EN BPSO IG CSA PSO(4-2) CS RR GA IGPSO GPSO
LUSC 8.344077873 8.046691179 215.7868326 116.1854684 5.728559017 756.1332397 0.201476097 0.220444441 2061.760082 11760.0400000 4727.830717
PRAD 8.281743498 8.080709219 71.73043895 119.4153876 6.43004775 579.0874655 0.162760019 0.233434916 1704.856312 8977.9900000 3468.037741
THCA 7.023365498 6.383810997 103.2177551 96.31234741 5.476798296 1001.062687 0.132241011 0.161518335 1496.199089 6857.7800000 3996.665895
KICH 1.902150631 1.893776417 43.85510159 62.40318799 3.061998367 128.7656426 0.074776888 0.030544043 513.1460321 1580.8700000 579.6270921
STAD 6.801307201 6.506551266 116.9085333 105.4947674 5.681056976 719.1091413 0.122227192 0.153008461 2035.534001 47514.1000000 4584.996282
KIRP 5.174985647 4.774347305 96.44906592 91.59079242 4.331308365 558.1365902 0.105087519 0.092389584 1163.142314 3679.3100000 3026.042607
KIRC 9.101013899 8.821824551 219.8901556 125.1197939 4.912036657 439.8042846 0.197125673 0.276264906 1111.391231 6409.1700000 1929.743119
LIHC 5.159692764 5.282177925 93.40946531 81.89385223 4.901816607 386.6665111 0.131872177 0.109116077 1556.080096 14811.1700000 2382.776136
HNSC 6.716423035 6.691006422 177.0269773 93.53505182 4.944217443 505.0531957 0.147221565 0.171553373 868.4110465 12283.4200000 2802.933625
CHOL 1.191920996 1.373466492 23.94001317 57.90781331 2.576358557 67.65457416 0.068276167 0.013371468 184.4370654 1768.1600000 393.1442497
UCEC 6.922133207 6.824393749 27.79974627 97.69451523 5.227145195 538.350606 0.133640528 0.191025019 1747.461532 5680.6000000 5587.026212
COAD 6.522175074 6.235757828 106.4919822 93.48602939 4.649344683 232.7946894 0.139748335 0.172054291 1252.530542 8167.4100000 1559.296618
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Figure 2. Accuracy Box Plot

In terms of the number of features used and selected during the feature selection 355

process, Table 7 shows the results. As can be seen, IGPSO uses by far the fewest numbers 356

of features during the process followed by GPSO. All other algorithms select and use more 357

features for the classification task. 358

Tables 9, 10, 11, and 12 show the results of the Mann-Whitney U Test comparing 359

GPSO with all other algorithms in terms of accuracy, precision, recall, and F1-Score. The 360

analysis revealed several findings regarding the performance of GPSO compared to other 361

algorithms. 362

Table 9. Mann-Whitney U Test Results - Accuracy

Algorithm U Statistic p-value
ANOVA 36.0 0.0402

EN 36.0 0.0402
BPSO 42.0 0.0883

IG 36.0 0.0402
CSA 24.0 0.0061

PSO(4-2) 0.0 <0.0001
CS 12.0 0.0006
RR 12.0 0.0006
GA 24.0 0.0061

IGPSO 0.0 <0.0001

Based on these results, GPSO shows statistically significant differences in accuracy 363

compared to 9 out of the 10 other algorithms, with only BPSO showing a non-significant 364

difference (though still trending toward significance with p=0.0883). The very low p-values 365

against several algorithms (particularly PSO(4-2) and IGPSO) suggest that GPSO performs 366

either significantly better or significantly worse than these algorithms. 367

For precision, GPSO shows statistically significant differences compared to 5 out of 368

the 10 other algorithms (PSO(4-2), CS, RR, GA, and IGPSO). The differences with CSA are 369

close to significance (p=0.0847). The remaining algorithms (ANOVA, EN, BPSO, and IG) 370

do not show statistically significant differences in precision when compared with GPSO. 371

For recall metrics, GPSO does not show statistically significant differences compared 372

to any of the 10 other algorithms at the conventional significance level of α=0.05. However, 373

three algorithms show trends toward significance (p < 0.10): 374

• EN vs GPSO (p=0.0826) 375
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Figure 3. Precision Box Plot

Figure 4. Recall Box Plot
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Figure 5. F1-Score Box Plot

Table 10. Mann-Whitney U Test Results - Precision

Algorithm U Statistic p-value
ANOVA 52.5 0.2638

EN 51.0 0.2278
BPSO 61.5 0.5490

IG 45.5 0.1262
CSA 42.0 0.0847

PSO(4-2) 27.0 0.0099
CS 32.5 0.0233
RR 30.5 0.0171
GA 34.0 0.0284

IGPSO 27.5 0.0105

• CSA vs GPSO (p=0.0575) 376

• GA vs GPSO (p=0.0575) 377

This suggests that while there may be some differences in recall performance between 378

GPSO and these three algorithms, the differences are not strong enough to be considered 379

statistically significant with the current sample size and at the conventional significance 380

threshold. 381

In summary, GPSO shows a statistically significant difference only when compared to 382

GA (p = 0.0329). It shows marginally significant differences (p < 0.1) when compared to EN, 383

CSA, and IGPSO. For all other algorithms, there are no statistically significant differences 384

in performance based on the provided test results. 385

6. Conclusions 386

In this paper, we proposed a feature selection method based on Particle Swarm Opti- 387

mization. The proposed algorithm makes use of a guided particle scheme whereby three 388

filter-based methods are incorporated. The proposed algorithm addressed the issue of 389

premature convergence to global optima compared to other PSO feature-based methods by 390

the expansion of the search space using 3 filter-based methods to generate particles, and by 391

using a fitness factor that weights accuracy and size of feature set including knowledge 392

transfer. The proposed method was compared to state-of-the-art feature selection algo- 393

rithms. ANOVA, EN, BPSO, IG, CSA, PSO(4-2), CS, RR, and GA, IGPSO were implemented 394

and experimented with. The twelve genome datasets we used included up to 44,909 fea- 395
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Table 11. Mann-Whitney U Test Results - Recall

Algorithm U Statistic p-value
ANOVA 55.5 0.3465

EN 42.0 0.0826
BPSO 76.5 0.8140

IG 50.5 0.2168
CSA 39.0 0.0575

PSO(4-2) 58.0 0.4337
CS 61.0 0.5411
RR 59.5 0.4850
GA 39.0 0.0575

IGPSO 51.5 0.2460

Table 12. Mann-Whitney U Test Results - F1-Score

Algorithm U Statistic p-value
ANOVA 51.5 0.2394

EN 42.0 0.0826
BPSO 66.5 0.7687

IG 47.5 0.1581
CSA 39.0 0.0575

PSO(4-2) 52.0 0.2582
CS 49.5 0.2006
RR 48.5 0.1809
GA 35.0 0.0329

IGPSO 42.0 0.0871

tures, which is consider high-dimensional data. The results as well as statistical analysis 396

show that the proposed algorithm compares better to other state-of-the-art feature selection 397

algorithms. In summary, GPSO achieves competitive or better accuracy and precision 398

compared to most algorithms, with similar recall and some variation in F1-score. This 399

indicates its strength in balancing accuracy and precision while maintaining performance 400

on other metrics. 401

Future work will involve conducting additional experiments to further evaluate the 402

robustness and adaptability of the knowledge-transfer mechanism across diverse datasets 403

and problem domains. This should include fine-tuning the parameters and design of the 404

mechanism to enhance its effectiveness and efficiency. Additionally, a systematic compari- 405

son with alternative knowledge-transfer solutions, such as transfer learning frameworks, 406

meta-learning approaches, and domain adaptation techniques, could be done. Moreover, 407

exploring hybrid approaches that combine multiple knowledge-transfer techniques may 408

lead to improved performance. 409
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