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Abstract: Data science and machine learning, efficient and scalable algorithms are paramount for 1

handling large data sets and complex tasks. Classification algorithms, in particular, play a crucial 2

role in a wide range of applications, from image recognition and natural language processing to 3

fraud detection and medical diagnosis. Traditional classification methods, while effective, often 4

struggle with scalability and efficiency when applied to massive data sets. This challenge has driven 5

the development of innovative approaches that leverage modern computational frameworks and 6

parallel processing capabilities. This paper presents the Bison Algorithm, applied to classification 7

problems. The algorithm, inspired by the social behavior of bison, aims to enhance the accuracy of 8

classification tasks. The Bison Algorithm is implemented using PySpark, leveraging the distributed 9

computing power to handle large data sets efficiently. This study compares the performance of the 10

Bison algorithm on several data set sizes using speedup and scaleup as the performance measure. 11

Keywords: Parallelization; Spark; Classification 12

1. Introduction 13

Optimization is a fundamental mathematical discipline that deals with the process of 14

making something as effective or functional as possible. The roots of optimization can be 15

traced back to ancient times when scholars and engineers used basic principles to solve 16

practical problems. In modern times, optimization plays a crucial role in various fields, 17

including engineering, economics, and operations research, where the goal is often to 18

maximize or minimize a certain objective function. 19

Optimization problems can be broadly classified into different categories based on 20

the nature of the objective function and the constraints. Linear programming, for example, 21

deals with linear objective functions and linear constraints and has been extensively studied 22

since the pioneering work of George Dantzig in the 1940s [1]. Nonlinear programming, on 23

the other hand, involves nonlinear objective functions or constraints and presents additional 24

challenges due to the complexity of the solution landscape. 25

In recent years, the advent of advanced computational techniques and the availability 26

of large data sets have further expanded the scope and application of optimization. Ma- 27

chine learning, for instance, relies heavily on optimization algorithms to train models and 28

improve predictive accuracy. Metaheuristic algorithms, such as genetic algorithms and 29

particle swarm optimization, have also gained popularity for solving complex, real-world 30

optimization problems where traditional methods may fall short [2][3]. 31

Nature-inspired algorithms have garnered significant attention in the field of opti- 32

mization due to their robustness and ability to find near-optimal solutions for complex 33

problems. These algorithms are inspired by natural phenomena and processes, such as the 34

behavior of biological species, the laws of physics, and the principles of natural selection. 35

They offer an innovative approach to solving optimization problems, particularly those 36
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that are non-linear, non-differentiable, or multi-modal, where traditional methods often 37

struggle [4]. 38

One of the most well-known nature-inspired algorithms is the Genetic Algorithm 39

(GA), introduced by John Holland in the 1970s. GAs mimic the process of natural selection 40

by using operations such as selection, crossover, and mutation to evolve a population of 41

candidate solutions [2]. These algorithms have been successfully applied to a wide range 42

of optimization problems, from engineering design to machine learning and bioinformatics 43

[2]. 44

Ant Colony Optimization (ACO), proposed by Dorigo in the early 1990s, is another 45

influential nature-inspired algorithm. ACO is based on the foraging behavior of ants and 46

their ability to find the shortest path between their colony and a food source by depositing 47

pheromones. This algorithm has been particularly effective in solving combinatorial 48

optimization problems, such as the traveling salesman problem and network routing 49

[5]. 50

Optimization algorithms are fundamental in machine learning, particularly in classifi- 51

cation tasks where the objective is to accurately assign labels to instances. Particle Swarm 52

Optimization (PSO) is a well-known method that has been widely used due to its simplicity 53

and effectiveness. However, PSO and similar algorithms often encounter issues such as 54

local minima and convergence inefficiencies. 55

In many classification problems, regression-based approaches are employed to predict 56

continuous values which are then thresholded to obtain discrete class labels. Traditional 57

optimization algorithms like PSO are often used to optimize the weights in regression 58

models. Despite their success, these algorithms can be improved by incorporating more 59

sophisticated strategies for balancing exploration and exploitation. 60

This paper uses the Bison Algorithm [18]. The algorithm is inspired by the collective 61

behavior of bison herds, which exhibit efficient exploration and exploitation strategies 62

during migration. By mimicking these strategies, we aim to develop an optimization 63

algorithm that can better navigate the search space, avoid local minima, and achieve 64

higher accuracy in classification tasks. A distinctive feature of the Bison Algorithm is 65

its division into two groups: swarmers and runners. The swarmers focus on global 66

exploration of the search space, while the runners concentrate on local exploitation. This 67

dual approach allows the algorithm to perform exploration and exploitation simultaneously 68

in every iteration, thereby overcoming the drawbacks of PSO related to local minima and 69

convergence inefficiencies. A key feature of the Bison Algorithm is its implementation using 70

PySpark, a robust framework for big data processing that allows for parallel computation 71

across distributed systems. 72

Through this study, we aim to contribute to the growing body of knowledge in 73

machine learning by introducing an efficient and scalable solution for classification tasks. 74

The Bison Algorithm not only bridges the gap between regression and classification but 75

also exemplifies the power of parallel computing in enhancing algorithmic performance. 76

The structure of this paper is as follows: Section 2 provides a detailed overview of 77

related work in the fields of classification algorithms and parallel processing. Section 3 78

describes the theoretical foundation of the Bison Algorithm and its implementation details. 79

Section 4 presents experimental results demonstrating the algorithm’s performance on 80

various benchmark data sets. Finally, Section 5 discusses the implications of these results 81

and potential avenues for future research. 82

2. Related Work 83

Parallelization techniques for nature-inspired algorithms are crucial for handling large 84

data sets and computationally intensive tasks. MPI (Message Passing Interface) is one of the 85

early frameworks used for this purpose. It provides a standard for communication between 86

multiple nodes in a distributed system, enabling efficient parallel computations. Several 87

studies have explored using MPI to parallelize nature-inspired algorithms. For instance, 88

a parallel GA based on the MPI environment was developed, adapting the serial GA to a 89
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parallel implementation [6]. Another example is the MPI-OpenMP hybrid approach used 90

to implement a multi-objective Particle Swarm Optimization (PSO) algorithm, combining 91

distributed memory (MPI) and shared memory (OpenMP) parallelization [7]. Additionally, 92

an MPI-based parallel GA was proposed for multiple geographical optimization problems, 93

using a hybrid of fixed-position and sliding models. 94

MapReduce, introduced by Dean and Ghemawat [8], revolutionized the way large- 95

scale data processing tasks are handled by abstracting the data processing into two fun- 96

damental operations: Map and Reduce. This framework has been effectively used to 97

parallelize algorithms like Genetic Programming and Particle Swarm Optimization. For 98

example, a MapReduce-based Particle Swarm Optimization algorithm was developed to 99

handle large-scale clustering tasks, showing notable improvements in processing time and 100

scalability [9]. 101

Apache Spark, an advancement over MapReduce, offers in-memory computation, 102

which significantly speeds up data processing tasks. For instance, Ludwig and Miryala [10] 103

compared the performance of Glowworm Swarm Optimization (GSO) when implemented 104

using Spark and MapReduce. Their findings indicated that Spark’s in-memory computation 105

capabilities provided faster and more efficient processing, making it more suitable for high- 106

dimensional function optimization tasks. 107

Ludwig involved the implementation of a parallel fuzzy clustering algorithm using 108

Spark. This study demonstrated that the Spark-based algorithm outperformed traditional 109

clustering methods, providing better scalability and handling of real-time data streams 110

[11]. This research highlights Spark’s capability to efficiently process and analyze large 111

data sets, making it a preferred choice for implementing nature-inspired algorithms in a 112

parallel computing environment. 113

Al-Sawwa implemented a scalable design of an artificial bee colony for big data 114

classification using Apache Spark [12]. The performance results reveal that the proposed 115

fitness algorithm can efficiently deal with unbalanced datasets as well as scale very well 116

achieving excellent speedup and scaleup results. Similar implementations were done for 117

the Differential Evolution (DE) [14] and the PSO algorithms [14]. 118

GPU-based parallelization, although not specifically MPI, MapReduce, or Spark, is 119

another common approach. Tan conducted a survey focused on GPU-based parallel im- 120

plementations of Swarm Intelligence algorithms, including GA and Differential Evolution 121

[15]. Similarly, Kroemer et al. presented a survey specifically on GPU-based parallel imple- 122

mentations of Particle Swarm Optimization (PSO) [16]. Lalwani et al. surveyed parallel 123

swarm optimization algorithms, covering CPU- and GPU-based implementations using 124

frameworks like OpenMP, MPI, and R, though focused specifically on PSO [17]. A review 125

of parallelization strategies for Swarm Intelligence algorithms identified particle-level 126

parallelization as a common approach, easily implemented using OpenMP for multi-core 127

CPUs. 128

Overall, the integration of MPI, MapReduce, and Spark into the parallelization of 129

nature-inspired algorithms has shown significant improvements in performance and scala- 130

bility. These frameworks provide the necessary tools to handle the growing complexity 131

and size of data in various computational intelligence applications. 132

In this paper, we have parallelized the Bison algorithm [18], which is another nature- 133

inspired algorithm applied to optimization problems. We have used the Bison algorithm 134

and first of all, applied it to the classification problem in data mining, and secondly, 135

parallelized the code using the Spark framework to investigate its efficiency. 136

3. Proposed Approach 137

This section starts with an overview of the Bison algorithm, followed by an introduc- 138

tion to Apache Spark, and the details about the parallel Bison algorithm implementation 139

provided at the end of this section. 140
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3.1. Overview of Bison Algorithm 141

The Bison Algorithm is inspired by the collective behavior of bison herds, which 142

exhibit efficient exploration and exploitation strategies during migration. The algorithm 143

divides the bison herd into elite, swarmer, and runner groups, each contributing uniquely 144

to the optimization process. 145

The following is the overview description of the Bison Algorithm. 146

1. Initialization: A population of bisons is initialized with random positions in the 147

search space. 148

2. Fitness Evaluation: The fitness of each bison is evaluated using a predefined 149

fitness function. 150

3. Elite Group: The best-performing bisons are selected as the elite group, repre- 151

senting the best solutions found so far. 152

4. Swarmers: The positions of swarmer bisons are adjusted towards the elite center, 153

promoting exploitation. 154

5. Runners: Runner bisons explore the search space randomly, promoting explo- 155

ration. 156

6. Iteration: The process is repeated for a predetermined number of iterations or 157

until convergence criteria are met. 158

The detailed algorithm description is the following applied to the classification task: 159

1. Initialization: 160

• Generate a random population of bisons within the defined search space 161

bounds. 162

• Define the number of iterations (max_iter) and the size of the bison popula- 163

tion (swarm_size). 164

2. Fitness Function: 165

• The fitness function evaluates the accuracy of the classification model. In 166

this case, it is defined as the negative accuracy to facilitate minimization. 167

3. Iteration Loop: 168

• For each iteration: 169

(a) Evaluate the fitness of each bison. 170

(b) Update the best-known positions (elite group). 171

(c) Calculate the elite center as the mean position of the elite group. 172

(d) Adjust the positions of swarmer bisons towards the elite center with 173

a random step size. 174

(e) Allow runner bisons to explore randomly within the search space 175

bounds. 176

4. Convergence: 177

• The process continues until the maximum number of iterations is reached 178

or convergence criteria are met. 179

3.2. Apache Spark 180

Apache Spark is a popular open-source analytics engine used for large-scale data 181

processing [24]. Spark uses parallelization, which is a computation technique used to 182

divide a task into smaller, independent sub-tasks that can be executed simultaneously 183

across multiple processors, or cores. Parallelization aims to increase computational speed 184

by reducing the overall time required to complete a task. By distributing a workload across 185

multiple cores, performing operations, such as classification, can be done in parallel and 186

ease computational load. 187

The main program that runs the user application is called the driver program, which 188

defines the high- level logic of the application, including details about the execution of tasks. 189
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Figure 1. Spark’s data processing overview

The cluster manager manages the cluster of machines, or nodes, and allocates resources to 190

the Spark application. 191

Worker nodes are the machines in the cluster that execute the tasks assigned by the 192

driver program. Each worker node runs an executor that executes the individual tasks. 193

Apache Spark leverages distributed computing by breaking down large data processing 194

tasks into smaller ones that are executed in parallel across clusters of computers, or cores, 195

(seen in Figure 1) enabling efficient handling of large amounts of data processing, improving 196

speed and scalability [25]. 197

3.3. Bison Algorithm for Classification implemented with Spark 198

The Bison algorithm for classification implemented with Spark can be thought of an 199

iterative algorithm that uses a swarm of solutions (bisons) to find the best way to classify 200

data points in a data set. The algorithm improves over time by learning from the best- 201

performing bisons, adjusting the positions of the others, and testing the resulting model on 202

unseen data, thus, achieving a high level of accuracy in clustering and classifying data. 203

In order to enable the Bison algorithm to perform the classification task, a few steps 204

need to be taken. The algorithm combines elements of classification and clustering to 205

classify data points. The process starts with a setup phase where a configuration file is read 206

to determine key parameters, such as how many "bisons" (representing possible solutions) 207

will be used, how many iterations the algorithm should run, and the paths to the necessary 208

input data files. These parameters are essential as they dictate the behavior of the algorithm, 209

including how it processes data and how much computational power it allocates. 210

After the setup is complete, the algorithm moves into the data preparation phase. 211

Here, the data set is loaded, and this data consists of features and the classification label, 212

which classifies each point. To ensure that all features contribute equally during processing, 213

the algorithm scales them so that no single feature can dominate due to its magnitude. The 214

labels are also converted into numerical form. Then, the data set is split into two parts: one 215

part will be used for training, and the other will be used for testing. 216

Then, the swarm of bisons is initialized. Please note that each bison represents a 217

random point in the search space, and these points act as potential centroids around which 218

data points can be clustered. Essentially, each bison is a "guess" for where groups of similar 219

data points might gather in the feature space. The goal of the algorithm is to improve these 220

centroid locations over time converging to the optimal centroid position. 221

During the training phase, the algorithm goes through several iterations where it 222

evaluates how well the bisons are classifying the data points. For each data point, the 223

algorithm calculates which bison’s centroids are closest to the point using a distance 224

measure. 225

If the centroids associated with a bison misclassify a point, that bison receives a penalty. 226

Over time, bisons with fewer penalties are considered better classifiers since they better 227
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assign points to clusters. Once the algorithm has evaluated the bisons in an iteration, it 228

updates their positions. The bisons that performed best in this round are designated as 229

elite bisons. These elite bisons represent the best solutions at this stage. The remaining 230

bisons adjust their positions based on these elite bisons. Some bisons, called swarmers, 231

move closer to the elite bisons, trying to emulate their success. Others (runners), move 232

in random directions, exploring new parts of the solution space that may provide better 233

results. This balance between exploration and exploitation allows the algorithm to avoid 234

getting stuck in local optima and helps to search more broadly for better centroids. 235

After completing the training phase, the algorithm selects the best-performing bison, 236

which had the lowest classification error across the iterations. This best bison represents the 237

most accurate model for classifying the data set. The next step is the testing phase where 238

the best bison is applied to the testing data set in order to test the model in classifying new 239

data points. After the classification is done, the algorithm evaluates its performance using 240

several metrics (more description in Section 4.3. 241

the algorithm leverages Spark’s distributed computing capabilities to perform data 242

preprocessing, training, and testing in parallel. It distributes the data across multiple worker 243

nodes, processes it simultaneously, and aggregates the results using accumulators and 244

broadcast variables. This parallelization allows the algorithm to scale efficiently and handle 245

large datasets without sacrificing speed or accuracy. Spark ensures that the algorithm can 246

take advantage of cluster resources, making the training and testing phases much faster 247

than they would be on a single machine. 248

The algorithm uses Apache Spark to parallelize both the data processing and the 249

training of the Bison model by distributing tasks across multiple nodes in a cluster. When 250

the data set is loaded, it is stored as a DataFrame, which Spark automatically splits and 251

distributes across different worker nodes. Each node processes a portion of the data in 252

parallel. For example, feature scaling, label encoding, and data splitting are all performed 253

concurrently on each partition of the data set. After the initial data preparation, the 254

DataFrame is converted into an RDD (Resilient Distributed Dataset), which allows the 255

algorithm to perform custom operations such as mapping and reducing in parallel. 256

In the training phase, the swarm of bisons (candidate solutions) is broadcast to all 257

worker nodes, ensuring that every node has access to the current bison positions without 258

redundant data transfers. Each worker node evaluates how well these bisons classify the 259

data points in its partition, and updates the accumulator, a Spark variable that aggregates 260

the misclassification counts from all nodes. This allows the algorithm to compute fitness 261

(classification accuracy) in parallel, as each node processes its data independently. Once the 262

fitness of each bison is evaluated, the bisons are updated, and the next iteration begins. This 263

parallel approach allows the algorithm to scale efficiently, making it capable of handling 264

large data sets and complex computations faster than if it were run on a single machine. 265

The algorithm description is provided in Algorithm 1. 266

Figure 2 shows how the data set is partitioned and then used by the Spark framework. 267

Each partition is sent to an executor, which performs the closest centroid calculations. 268

3.4. Time Complexity Analysis 269

The time complexity of the Spark Bison Algorithm when run in a serial manner is: 270

O(T · (|B|+ n · k)) 271

The time complexity of the Spark Bison Algorithm when run in parallel is: 272

O
(

T ·
(
|B|+ n·k

p

))
273

where 274

T is the number of iterations of the algorithm. 275

|B| is the number of bisons (or centroids) in the Bison group. 276

n is the number of elements in the dataset. 277

k is the number of centroids (or bisons) to which elements are assigned. 278

p is the number of partitions (or parallel workers in the cluster) used by Apache Spark. 279
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Algorithm 1: Bison Algorithm with RDD
1: Initialize the Bison group randomly
2: Initialize the Runner group around xbest
3: Initialize the run direction vector
4: Read the dataset into an RDD
5: Initialize Accumulator Accu
6: loop
7: Broadcast Bison group
8: for each element in RDD do
9: Assign the element to the closest centroids

10: Update Accu
11: end for
12: Update the fitness of the bisons based on the values in Accu
13: Update xbest
14: Update Bison Group according to the original algorithm
15: Reset Accu
16: end loop

Figure 2. Partitioning of Data Set
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4. Experimental Setup 280

This section starts off with a description of the data set and the pre-processing of 281

thereof, followed by the experimental setup as well as the results obtained from the 282

experiments. 283

4.1. Data Set Description 284

The data set used for our experiments was carefully pre-processed to ensure it was 285

suitable for the Bison algorithm and to maintain the integrity of the classification task. The 286

Mice Protein Expression data set contains measurements from an experiment conducted 287

on mice to study the effects of trisomy (Down syndrome) on protein expression in the 288

cerebral cortex. The data set used was the Mice Protein Expression data set, which contains 289

measurements from an experiment conducted on mice to study the effects of trisomy 290

(Down syndrome) on protein expression in the cerebral cortex. Seventy-two mice were 291

studied and their measurements were recorded. The goal for the collection of this data 292

set was to analyze protein expression and behavior, predict whether a mouse underwent 293

behavioral testing or received drug treatment, and assess the impact of trisomy on protein 294

levels. We have opted to use the binary outcome Behavior as the classification variable. 295

Table 1 contains more descriptions. 296

The following steps show the pre-processing steps taken. 297

Table 1. Data set characteristics for the study on expression levels of proteins in the cerebral cortex

Characteristic Details

Expression levels 77 proteins measured
Region Cerebral cortex
Classes 8 (control and Down syndrome mice)
Exposure Context fear conditioning
Task Assessing associative learning
Data Set Characteristics Multivariate
Subject Area Biology
Associated Tasks Classification, Clustering
Feature Type Real
Instances 1080
Features 80

4.1.1. Data Cleaning 298

Initially, any row with a missing value was removed from the data set. This step was 299

crucial to prevent the introduction of biases and inaccuracies that can arise from imputing 300

or otherwise handling missing data improperly. The resulting data set was free of any 301

missing values, ensuring a clean baseline for further processing. 302

4.1.2. Data Normalization 303

To facilitate the optimization process and enhance the performance of the algorithm, 304

the entire data set was normalized within the range of 0 to 1. This scaling process was done 305

to ensure that all features contributed equally to the model, preventing any single feature 306

from dominating due to its scale. 307

4.1.3. Class Selection 308

For the purpose of this study, only the instances belonging to the class ’behavior’ were 309

used. This choice was driven by the specific objectives of our classification task, focusing 310

on accurately predicting behavioral outcomes based on the provided features. 311
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4.1.4. Data Set Folding 312

In order to conduct scaling experiments, we utilized a folding technique to artificially 313

expand the data set. This method involved repeating the entire set of instances multiple 314

times. After the initial pre-processing steps, the number of instances in the data set was 315

reduced to 552. To simulate larger data sets and assess the performance of our algorithm 316

under varying scales, we created folds of the data set at different scales. Specifically, we 317

created data sets with 1,000, 2,000, 3,000, 4,000, 5,000, 8,000, 16,000, 32,000 and 64,000 folds 318

of the original 552 instances. This approach allowed us to systematically evaluate the 319

scalability and efficiency of the Bison algorithm in handling larger data sets. 320

4.2. Setup of Experiments 321

The pre-processed and folded data sets were then used to run a series of experiments 322

aimed at testing the Bison algorithm’s performance. Each experiment involved initializing 323

the Bison algorithm with the same parameters and running it on data sets of increasing 324

size to observe how well the algorithm scaled and how quickly it could produce accurate 325

classifications. The results from these experiments provide valuable insights into the 326

algorithm’s capability to handle large-scale data and its potential application in real-world 327

scenarios. 328

By carefully pre-processing the data and employing a methodical approach to scaling 329

the data set, we ensured that our experiments were both robust and relevant, providing 330

meaningful results that contribute to the understanding and improvement of the Bison 331

algorithm for classification tasks. 332

Table 2. Generated Data Sets

Data Set Name Number of Folds Number of Instances Size in GB
1,000 1,000 552,000 0.5
2,000 2,000 1,104,000 1.0
3,000 3,000 1,656,000 1.5
4,000 4,000 2,208,000 2.0
5,000 5,000 2,760,000 2.5
8,000 8,000 4,416,000 4.0

16,000 16,000 8,832,000 8.0
32,000 32,000 17,664,000 16.0
64,000 64,000 35,328,000 32.0

4.3. Performance Metrics 333

The performance of the algorithm was assessed using the following metrics: 334

Accuracy: The proportion of correct predictions among the total number of examples. 335

Precision: The proportion of true positive predictions among the total positive predic- 336

tions. 337

Recall: The proportion of true positive predictions among the total actual positives. 338

F1-score: The harmonic mean of precision and recall, providing a single metric that 339

balances both concerns. 340

In addition, the speedup measures the parallelization ability of the algorithm by taking 341

the ratio of the running time on a single node to the running time on parallel nodes n. The 342

speedup is calculated as follows, where the data set size is fixed while the number of nodes 343

is increased in a certain ratio. 344

Speedup =
T1

Tn
(1)

where T1 is the running time using a single node, and Tn is the running time using n nodes. 345

The Scaleup measures how the cluster of nodes are utilized efficiently by the parallel 346

algorithm. The scaleup is calculated as follows, where the data set size and the number of 347

nodes are increased by the same ratio. 348



Version October 25, 2024 submitted to Journal Not Specified 10 of 16

Table 3. Accuracy, Precision, Recall, and F1-Score

Data Set Accuracy Precision Recall F1 Score
1,000 0.97826087 0.98850575 0.96629214 0.97727273
2,000 0.97435987 0.98671365 0.96598933 0.97628493
3,000 0.97963341 0.98754650 0.99678469 0.97863215
4,000 0.97571463 0.98943264 0.97542914 0.97498216
5,000 0.97738793 0.98547925 0.96749315 0.97769850
8,000 0.97884539 0.98896458 0.98326430 0.97849352

16,000 0.97554697 0.98478950 0.97394583 0.97978316
32,000 0.97832146 0.98736512 0.98323540 0.97769815
64,000 0.97634821 0.98793543 0.98674513 0.97856435

Scaleup =
Tsn

TRsn
(2)

where Tsn is the running time for the data set with size s using n nodes, R is the increasing 349

ratio, and TRsn is the running time for the data set with size Rs using Rn nodes. 350

4.4. Infrastructure for Running Experiments 351

The nodes used for the experiments were the Pittsburgh Supercomputing Center’s 352

Bridges-2 system, which is equipped with two AMD EPYC 7742 CPUs, each featuring 64 353

cores (128 threads total per node) with a clock speed between 2.25 GHz and 3.40 GHz. 354

These nodes have either 512 GB of RAM and 3.84 TB of local NVMe SSD storage. The 355

nodes are connected via Mellanox ConnectX-6 HDR InfiniBand with 200 Gbps bandwidth, 356

providing efficient communication across the system, which is key for high-performance 357

computing tasks such as used in this study. 358

5. Results 359

This sections shows the results of the experiments. First, we run the experiments 360

measuring the execution time to calculate the speedup for data sets 1,000, 2,000, 3,000, 4,000 361

and 5,000. Afterwards, we run experiments to measure the execution time to calculate the 362

scaleup for data sets 1,000, 2,000, 4,000, 8,000, 16,000 and 32,000. The parameters for the 363

Bison algorithms were set to number of bisons equals 100 and the number of iterations 364

equals 100. 365

Table 3 shows the results in terms of the performance measures for the classification 366

task. Accuracy, precision, recall, and F1-Score are listed. As can be seen, very good results 367

for each measure is achieved. Also, the increasing data set size does not influence any of 368

the measures negatively. 369

In terms of execution time and speedup for the 1,000 data set, the execution time and 370

speedup are provided in Table 4 and Figure 3. As can be seen, an exponential trend for 371

the execution time is achieved with the speedup showing closer alignment to the ideal 372

speedup (shown as the red-dashed line) up to 64 nodes but then drifting speedup results in 373

increasing node sizes. 374

Similar trends can be observed for the execution time and speedup for the 2,000 data 375

set. The execution time and speedup are provided in Table 5 and Figure 4. 376

Moreover, for the 3,000 data set, the execution time and speedup are provided in Table 377

6 and Figure 5. 378

The execution time and speedup for the 4,000 data set are provided in Table 7 and 379

Figure 6. 380

The execution time and speedup are provided in Table 8 and Figure 7 for the 5,000 data 381

set. What we can see is that with increasing data set sizes, the speedup slightly improves as 382

expected. 383
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Table 4. Execution Time and Speedup for 1,000 Data Set

Number of nodes Execution time (seconds) Speedup
1 25,946.03 1.00
2 13,571.13 1.91
4 66,32.55 3.91
8 3,197.00 8.11

16 1,592.43 16.29
32 814.96 31.83
64 418.65 61.97

128 270.63 95.87

Figure 3. Execution time and Speedup for 1,000 Data Set

Table 5. Execution Time and Speedup for 2,000 Data Set

Number of nodes Execution time (seconds) Speedup
1 51,449.84 1.00
2 27,051.38 1.90
4 13,148.17 3.91
8 6,442.22 7.98

16 3,292.42 15.62
32 1,673.75 30.73
64 864.14 59.53

128 525.92 97.82

Table 6. Execution Time and Speedup for 3,000 Data Set

Number of nodes Execution time (seconds) Speedup
1 78,477.07 1.00
2 40,198.49 1.95
4 21,006.39 3.73
8 10,542.96 7.44

16 5,343.68 14.68
32 2,498.81 31.40
64 1,258.43 62.36

128 765.07 102.57
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Figure 4. Execution time and Speedup for 2,000 Data Set

Figure 5. Execution time and Speedup for 3,000 Data Set

Table 7. Execution Time and Speedup for 4,000 Data Set

Number of nodes Execution time (seconds) Speedup
1 10,3606.60 1.00
2 52,226.85 1.98
4 26,583.26 3.89
8 13,039.79 7.94

16 8,491.96 12.20
32 3,245.16 31.92
64 1,661.19 62.36

128 991.96 104.44
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Figure 6. Execution time and Speedup for 4,000 Data Set

Table 8. Execution Time and Speedup for 5,000 Data Set

Number of nodes Execution time (seconds) Speedup
1 129,357.60 1.00
2 64,471.76 2.00
4 33,343.78 3.87
8 17,415.78 7.42

16 8,620.33 15.00
32 4,139.66 31.24
64 2,129.46 60.74

128 1,237.78 104.50

Figure 7. Execution time and Speedup for 5,000 Data Set
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Table 9. Scaleup for All Data Sets

Data set Number of nodes Execution time (seconds) Scaleup
1,000 2 13,571.13 1.00
2,000 4 13,148.17 1.03
4,000 8 12,542.96 1.08
8,000 16 13,724.50 0.99

16,000 32 13,758.79 0.99
32,000 64 14,148.23 0.96
64,000 128 15,966.44 0.85

Figure 8. Scaleup Experiments

And last but not least, the scaleup results are are provided in Table 9 and Figure 8. 384

Scaleup evaluates how well our parallel implementation of the Bison algorithm handles 385

increasing data set sizes as more processing nodes (executors) are added. It basically 386

measures the algorithm’s ability to handle proportionally larger data set sizes when the 387

processing nodes are scaled up. As can be seen from the table and the figure, we observe 388

a stable scaleup for up to data set size of 32,000-fold using 64 processing nodes (scaleup 389

= 0.96), with a scaleup declining for the 64,000-fold data set using 128 processing nodes 390

(scaleup of 0.85). The scaleup using 4 nodes and 8 nodes is slightly higher than 1.0 with 391

values of 1.3 and 1.08, respectively. This can be due to a few reasons such as improved 392

resource utilization, decreased contention, and more optimal task scheduling. 393

6. Conclusions 394

This paper presented an implementation of the parallelization of the Bison Algorithm, 395

applied to classification problems. The Bison Algorithm is implemented using PySpark in 396

order to leverage the distributed computing power and to handle large data sets efficiently. 397

Besides evaluating the classification measures such as accuracy, precision, recall, and F1- 398

Score, this study compared the performance of the Bison algorithm on several data set sizes 399

using speedup and scaleup as performance measures. As for the results, very good accuracy, 400

precision, recall and F1 scores were achieved with average values over the 9 data sets were 401

0.97714764, 0.98741471, 0.97768657, and 0.97771218, respectively. Furthermore, regarding 402

the scalability analysis, very good speedup results were achieved when increasing the data 403

set sizes. Ideal speedup values were obtained on all data set running the algorithm up to 64 404

processing nodes. The data set sizes used for the experiments were 0.5 GB up to 32.0 GB. 405

Future research will explore even larger data set sizes and also explore Apache Spark’s 406

other ways of parallelizing the data processing task. In addition, a potential comparison 407

of the different parallelization techniques could be conducted. Moreover, it would be 408
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interesting to investigate whether the programming language used for the algorithm 409

implementation has a factor on the overall performance. 410
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