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Abstract. Worldwide, breast cancer is the second most common type of cancer 
after lung cancer and the fifth most common cause of cancer death. In 2004, 
breast cancer caused 519,000 deaths worldwide. In order to reduce the cancer 
deaths and thereby increasing the survival rates an automatic approach is 
necessary to aid physicians in the prognosis of breast cancer. This paper 
investigates the prognosis of breast cancer using a machine learning approach, 
in particular genetic programming, whereas earlier work has approached the 
prognosis using linear programming. The genetic programming method takes a 
digitized image of a patient and automatically generates the prediction of the 
time to recur as well as the disease-free survival time. The breast cancer 
dataset from the University of California Irvine Machine Learning Repository 
was used for this study. The evaluation shows that the genetic programming 
approach outperforms the linear programming approach by 33 %. 

Keywords: genetic programming, selection, crossover, mutation, breast cancer, 
recurrent surface approximation. 

1   Introduction 

Worldwide, breast cancer is the second most common type of cancer after lung 

cancer (10.4 % of all cancer incidence) and the fifth most common cause of cancer 

death. In 2004, breast cancer caused 519,000 deaths worldwide (7 % of cancer deaths; 

almost 1 % of all deaths) [1]. Breast cancer is the most common malignancy in 

women, except for non-melanoma skin cancers. It continues to be a major health care 

problem worldwide. Cancer occurs when cells in a part of the body begin to grow out 

of control. Normal cells divide and grow in an orderly fashion, but cancer cells do 

not. They continue to grow and crowd out normal cells. Although there are many 

kinds of cancer, they all have in common this out-of-control growth of cells [2]. 

Different kinds of cancer can behave very differently. For example, lung cancer 

and breast cancer are very different diseases. They grow at different rates and respond 

to different treatments. That is why people with cancer need treatment that is aimed at 

their kind of cancer. Therefore, it is important to identify the type of cancer 

accurately, so that the correct treatment can be started. 

Breast cancer is a cancer that starts in the tissues of the breast. There are two main 

types of breast cancer [3]: (1) Ductal carcinoma starts in the tubes (ducts) that move 



milk from the breast to the nipple. Most breast cancers are of this type. (2) Lobular 

carcinoma starts in parts of the breast, called lobules that produce milk. 

The good news is that early detection and new treatments have improved survival 

rates of breast cancer. The 5-year survival rate for women diagnosed with cancer is 80 

%. About 88 % of women diagnosed with breast cancer will survive at least 10 years. 

Unfortunately, women in lower social and economic groups still have significantly 

lower survival rates than women in higher groups. The good news is that women are 

living longer with breast cancer. Survivors must live with the uncertainties of possible 

recurrent cancer and some risk for complications from the treatment itself [4]. 

Recurrences of cancer usually develop within 5 years of treatment. However, 25 % 

of recurrences and half of new cancers in the opposite breast occur after 5 years. 

In order to aid the physicians in the prognosis of whether the breast cancer is likely 
to recur in patients, the linear programming approach has be introduced in 1994 [7]. It 
has achieved good results with an expected error of 13.0 to 18.3 months, which was 
better than the prognosis correctness achieved by other available techniques at that 
time. However, the proposed approach outlined in this paper, takes another step 
towards the improvement of the prognosis correctness using a genetic programming 
approach. 

This paper is structured as follows. First, some background information regarding 
the previous work using the linear programming technique, the data collection and 
analysis is outlined in Section 2. In Section 3, the proposed approach using genetic 
programming is introduced outlining the different parameters involved. The 
experiments and results are given in Section 4. Section 5 concludes this paper with a 
summary and analysis of the results obtained. 

2   Previous Work 

The dataset used for the prognosis of breast cancer is publicly available at the UCI 

Machine Learning Repository [5]. The dataset was collected by researchers from the 

University of Wisconsin as follows. First, a sample of fluid was taken from the 

patient’s breast. This fluid was then placed on a glass slide and stained to highlight 

the nuclei of the constituent cells. An image from the FNA is transferred to a 

workstation by a video camera mounted on a microscope. A program, called Xcyt [6], 

was developed which uses a curve-fitting program to determine the exact boundaries 

of the nuclei. The boundaries were initialized by an operator using a mouse pointer. 

Ten features were computed for each nucleus: area, radius, perimeter, symmetry, 

number and size of concavities, fractal dimension (of the boundary), compactness, 

smoothness (local variation of radial segments), and texture (variance of gray levels 

inside the boundary). The mean value, extreme value (i.e. largest or worst value: 

biggest size, most irregular shape) and standard error of each of these cellular features 

were computed for each image. Furthermore, tumor size and lymph node status make 

up a total of 32 real-valued features. The dataset contains 198 observations; with 47 

recur cases and 151 non-recur cases. 

Using this dataset, Street et al. [7] applied linear programming to predict the Time 

To Recur (TTR), which is a mapping of an n-dimensional input of cytological and 



other features to a one-dimensional time output. One complicating factor for the 

prediction is that TTR is known for only a subset of patients and not for others for 

which we know only the time of their last check-up, or Disease-Free Survival time 

(DFS). However, all available cases were used for this investigation. The solution to 

this estimation program is termed the Recurrence Surface Approximation (RSA) 

technique [7,8,9]. RSA basically uses linear programming to determine a linear 

combination of the input features that accurately predicts TTR. The linear program to 
be solved for a given training set is given in [8]. The motivation for the RSA approach 

was the following: (1) Recurrences actually take place at some point in time prior to 

their detection. However, the difference between the time a recurrence is detectable 

(actual TTR) and the time it is actually detected (observed TTR) is assumed to be 

small. (2) Observed DFS is a lower bound on the recurrence time of that patient. 

Therefore, three types of absolute errors need to be considered. Let  be the 

average overestimation using only the set of patients with a recurrence (i.e., the set of 

recurrent cases). The average underestimation of DFS using only the set of patients 

without an observed recurrence is denoted with . Since DFS is a lower bound for 

the TTR, overestimation is not considered an error. Thus, the third type of error, , 

is the average underestimation of TTR (on the set of patients having a recurrence). 

Underestimation of TTR is not considered as severe as overestimation, hence the RSA 

approach tries to minimize:  (1) 

where  defines the influence of underestimating TTR in relation to 

overestimating TTR. For the genetic programming approach, Equation (1) is used as 

the fitness function, thus allowing a direct comparison. Note that it is not sensible for 

machine learning algorithms to set , even considering that the recurrence 

appeared at some point before it was detected. Allowing , the algorithm could 

simply perform a classification into recurrent and non-recurrent cases. Then 0 could 

be predicted for all recurrent cases (underestimating TTR in all cases), while some 

large value (meaning greater than the maximal DFS in the set) is predicted for the 

non-recurrent cases (always overestimating DFS). However, the goal of this research 

is to perform regression analysis for medical prognostics, and therefore, symbolic 

regression and not classification was used.  

In [7],  was chosen such, that of those values for which  are minimal, the 

one that minimizes  is chosen. Based on the perturbation theorem [10], such that a 

,  for some , exists. For the proposed genetic programming approach, the 

influence of various  on the fitness and the expected error is investigated, as well as 

on ,  and  each. 

In order to obtain the best generalization, it is important to choose the right subset 

of features. The appropriate feature set was chosen for the linear programming 

approach in the following automatic fashion. A tuning test (one tenth of the training 

cases) was first set aside. The RSA linear program was then solved using all input 

features, and the resulting surface was tested on the tuning set. Features were then 

removed one by one. Each new problem was solved and the result tested on the tuning 

set, until only one feature remained. Using the features that showed the best 

performance on the tuning set, all the training data was then re-optimized. Feature 

selection is done differently for the proposed genetic algorithm approach and will be 

outlined in the following section. 



3   Genetic Programming Approach 

The origins of evolutionary computation reach back to the 50's of the last century. 

Genetic programming, in itself, was not considered until the middle of the 80's. The 

term first appeared in [11], the main development took place in the early and middle 

90's, particularly through work by Koza [12]. 

Genetic programming uses the concepts of genetics and Darwinian natural 

selection to generate and evolve entire computer programs. Genetic programming 

largely resembles genetic algorithms in terms of its basic algorithm. The notions of 

mutation, reproduction (crossover) and fitness are essentially the same, however, 

genetic programming requires special attention when using those operations. While 

genetic algorithms are concerned with modifying fixed-length strings, usually 

associated with parameters to a function, genetic programming is concerned with 

actually creating and manipulating the (non-fixed length) structure of the program (or 

function). Therefore, genetic programming is more complex than genetic algorithms 

[13] and works as follows. In genetic programming the aim is to find solutions to 

some problem in the form of a computer program. It is a stochastic search strategy 

that is particularly powerful in the circumstances where one cannot make any 

assumptions about the characteristics of the solution. The solution is developed by 

first creating a number of initial programs, which are then recombined and changed in 

each evolution step [14]. 

Genetic programming performs the following steps: 
Step 1: Assign the maximum number of generations to be run and 

probabilities for cloning, crossover and mutation.  

Step 2: Generate an initial population of computer programs of 

size N by combining randomly selected functions and terminals. 

Step 3: Execute each computer program in the population and 

calculate its fitness with an appropriate fitness function. 

Designate the best-so-far individual as the result of the run. 

Step 4: With the assigned probabilities, select a genetic 

operator to perform cloning, crossover or mutation. 

Step 5: If cloning operator is chosen, select one computer 

program from the current population of programs and copy it into a 

new population. If crossover operator is chosen, select a pair of 

computer programs from the current population, create a pair of 

offspring programs and place them into the new population. If 

mutation operator is chosen, select one computer program from the 

current population, perform mutation and place the mutant into the 

new population. 

Step 6: Repeat Step 4 until the size of the new population of 

computer programs becomes equal to the size of the initial 

population N. 

Step 7: Replace the current (parent) population with the new 

(offspring) population. 

Step 8: Go to Step 3 and repeat the process until the termination 

criterion is satisfied. 

The Java Genetic Algorithms Package (JGAP) [15] was chosen as the 
programming platform. JGAP is a Genetic Algorithms and Genetic Programming 
package written in Java. It is designed to require minimum effort to use, but is also 
designed to be highly modular. It provides basic genetic mechanisms that can be used 
to apply evolutionary principles to solve problems. 



4   Experiments and Results 

The experiments were done as follows. First of all, the dataset was pre-processed 

normalizing the values by subtracting the mean and dividing by the standard 

deviation. There were 4 missing values for the lymph node status, which were 

replaced by the mean. For the division of training and test data, the leave-one-out 

method was used as this sampling method was also used for the linear programming 

approach. Then, the genetic programming was fine-tuned with the selection of 

parameters such as function set, feature selection, maximal crossover depth, crossover 

and mutation rate, population size, and number of generations. Afterwards, the 

varying  values were investigated. 

In general for the fine-tuning, the initial choice of parameters was: tournament 

selection of size 4, population size 1,000, minimal initial depth 5, maximal crossover 

depth 12, crossover rate 0.9, mutation rate 0.3, and a  value of 0.01. Basic 

mathematical operations (addition, subtraction, multiplication, division), comparison 

operators (<,>), if-statement, logarithm and exponential made up the function set. For 

those parameters that were analysed, the best performing value was used for all 

following tests. If not otherwise stated, 30 tests were performed for each choice of 

parameter. Note that the results were compared using the average expected error, not 

the fitness value. However, the lowest expected error always corresponds to the 

lowest fitness value. The expected error only considers known errors, meaning the 

underestimation of DFS and the overestimation of TTR.  

Feature selection: 180 test cases over 300 generations were run, and it was counted 

how often each feature showed up in the best solution of the run. Afterwards test 

cases each with the 4 and 8 most frequent features (all others were contained in less 

than 10 %) were run. The best result was achieved when 8 features were used: 13.02 

in comparison to 13.62 (4 features). Using all features led to an average error of 

13.80. The 8 features are (in the order of the number of times they are used): Tumor 

size, lymph node status, mean symmetry, extreme area, standard deviation of radius, 

standard deviation of area, extreme compactness, and extreme concave points. This is 

quite different to the 5 features found by Street et al. [5]: mean area, mean perimeter, 

mean fractal dimension, extreme value for area and perimeter. The explanation for 

this lies in the resulting programs of the genetic programming method which 

produces, given the function set used, also if conditions. An example of part of the 

resulting programs frequently contained the condition: if tumor size > mean 

symmetry and lymph node status > 0.0 … . Such relationships between 

the different features can influence the outcome more than the actual values of the 

features.  

Function set: 300 generations were used and every function set tested contained at 

least the four basic mathematical operations (addition, subtraction, multiplication and 

division). Additionally, function sets using comparison operators, if-statements, 

logarithm, exponential, min, max, cosine, sine, random numbers or sigmoid functions 

were considered. The best performance was achieved when using nothing but basic 

mathematical operations, comparison operators and if-statements. Function sets 

without the later two performed considerably worse (above 15), while function sets 

consisting at least of the above functions had on average an expected error of 12.60 to 

14.44. 



For reasons of time constraints only 200 generations were used for finding the next 

3 parameters (maximal crossover depth, crossover and mutation rates). 

Maximal crossover depth: Maximal crossover depths of 9, 12 and 17 were tested. 

Using 9 resulted in a higher expected error (13.61) than the 12 or 17. 

Crossover and mutation: The crossover rates 0.5, 0.7, 0.8, 0.9 were used, together 

with mutation rates between 0.1 and 0.5. The crossover rate of 0.9 and the mutation 

rate of 0.1 produced the highest expected error of 13.09. 

Population size: Taking 2,000 individuals and 300 generations improved the 

average error to 12.24. For 5,000 and 10,000 individuals only 10 test cases were run. 

In case of 5,000 individuals the expected error decreases significantly to 10.88. 

Surprisingly, the test runs with a population size of 10,000 do not achieve a similar 

increased performance. With an average expected error of 12.17, the performance is 

hardly better than for a population size of 2,000. This might be due to the low number 

of tests, so that one or two tests with a bad result influence the average result 

significantly. More tests would be needed to verify if 5,000 is indeed the best choice 

for the population size. However, using higher population sizes increases the time 

cost. The execution times measured, taking the average of 10 runs, are shown in 

Figure 1. As estimated, a linear increase in the execution time can be observed while 

increasing the population size. 

 

 

Fig. 1. Performance vs. population size. 

Number of generations: Running 10 tests with 1,000 generations resulted in an 

expected error of 10.9. On average, the best result was found after 734 generations. 

The second part of the evaluation was to investigate the average error in 

comparison to varying  values. The best parameter settings found earlier were used: 

population size: 2,000, number of generations: 300, mutation rate: 0.1, crossover rate: 

0.9, maximal init depth: 5, maximal crossover depth: 9, new individuals per 

generation: 0.1, function set: addition, subtraction, multiplication, division, logical 

and, logical or, >, <, if, feature set: tumor size, lymph node status, mean symmetry, 

extreme radius, standard deviation of radius, extreme perimeter, mean fractal 

dimension and extreme area of cell nuclei. 



 

Fig. 2. Expected error vs. varying  values. 

Figure 2 shows the expected error for varying  values. As can be seen, the error 

for the recurs is clearly increasing with the value of , corresponding to the higher 

emphasis on underestimation of TTR in contrast to overestimation. The increase, 

considering all data points, is less noticeable since the slight decrease of the expected 

error on the non-recurs balances the increase on the recurs to some extent. The 

performance on recurs is better for low values of , while for higher values the 

performance on the non-recurs exceeds the one on recurs. From this one might guess 

that the prognosis of TTR works better than the one of DFS. After all, for =0 the 

underestimation of DFS and the overestimation of TTR are given the same weight in 

the fitness function, thus one might expect to get a similar performance. For =1, on 

the other hand, underestimation contributes to the fitness value for all 198 data points, 

but overestimation only for the 47 recur cases.  

 

 

Fig. 3. Expected error of recur values for overestimation and underestimation. 

 



Figure 3 shows the overestimation and underestimation of the recur values. As 

mentioned before,  determines the relation between the overestimation and the 

underestimation of TTR. It can be clearly seen that the programs are not able to focus 

very well on preventing overestimation when  is higher, since they have to control 

underestimation of recurs as well as to minimize the fitness value. This leads to a 

higher emphasis on controlling underestimation on the whole dataset, explaining the 

slight decrease of the expected error on non-recurs with increasing . Note that 

preventing underestimation of TTR seems to work better than preventing 

overestimation. For high values of , the average underestimation is only 3.1 months, 

while the best result for the overestimation is 7.4 months, achieved with =0.01. 

In Figure 4, the fitness value for Equation (1) including the  term and without the 

 term is shown. As can be seen, the larger the  value gets, the larger the difference 

between the two curves gets, indicating the increase in importance of the third term. 

As this term becomes more important for the fitness, the programs focus more on the 

third term than on the remaining two. Therefore, we can see a higher fitness value 

without the delta term.  

 

 

Fig. 4. Investigation of  term in fitness function. 

Taking Figure 2 and 3 into account, the higher fitness value can be explained by 

the increased expected error for the recur cases. In contrast to measuring the 

performance on all data points, the fitness measure places an equal weight on the two 

classes. This is why the fitness value is influenced more significantly by a higher error 

on recurs than the overall performance, which puts an equal weight on each data 

point, thus the error on the non-recurs (151 cases) is more important than the error on 

the 47 recur cases. 

The best values achieved with the genetic programming method compared to the 

linear programming technique for , shows that genetic programming achieves a 

higher accuracy on all prognostic formulations, as shown in Table 1; the improvement 

is above 33 %. 

 



Table 1.  Comparison of Linear Programming (LP) with Genetic Programming (GP) Results. 

 All points Non-recur Recur 

LP 18.3 months 19.9 months 13.0 months 

GP 11.7 months 13.3 months 8.3 months 

Improvement 36.1 % 33.2 % 36.2 % 

4   Conclusion 

Breast cancer victims’ chances for long-term survival are improved by early 

detection of the disease. Early detection in turn is enhanced by an accurate diagnosis. 

The choice of appropriate treatments immediately following surgery is largely 

influenced by prognosis, which provides the expected long-term behaviour of the 

disease. Therefore, an automatic method to aid physicians in their diagnosis and 

prognosis is of essence. 

Previous work regarding the prognosis of breast cancer used a linear programming 

approach, which arrived at an expected error of 13.0 to 18.3 months, which at that 

time, attained a better prognosis correctness than other available techniques. 

The proposed approach used genetic programming to enhance the prognosis 

accuracy even further. The fine-tuning of feature selection, selection of the function 

set, maximal initial depth and crossover depth, crossover and mutation, population 

size and the number of generations achieved an expected error between 11.7 and 12.4 

months, which accounts for an above 36 % higher prognosis accuracy. The main 

contributor for the higher accuracy was the selection of functions that increased the 

accuracy. Given that the feature selection of both techniques resulted in a different 

feature set implies that feature selection is specific to the learning technique. In 

particular, the possibility of genetic programming to include non-linear functions and 

if-statements seems to make the difference. The performance for a function set 

without if-statements is only slightly better than the results achieved by Street et al., 

which resulted in an expected error of 15.63. 

Future work involves running the genetic programming approach with a larger 

population size, as further improvement can be achieved. In addition, the number of 

generations also increases the accuracy, however, again at the cost of the execution 

time. As a larger population size and a larger number of generations imply a longer 

execution time, the parallelization of the genetic programming could achieve a better 

performance. 
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