

Semantic Approach to Service Discovery in a

Grid Environment

Simone A. Ludwig
Department of Computer Science, Cardiff University, Cardiff CF24 3AA, UK

S.M.S. Reyhani
Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK

Abstract

The fundamental problem that the Grid research and development community is seeking to solve is how to coordinate
distributed resources amongst a dynamic set of individuals and organisations in order to solve a common collaborative goal. The
problem arises through the heterogeneity, distribution and sharing of the resources in different virtual organisations.
Interoperability is a main issue for applications to function with the Grid. This paper proposes a matchmaking framework for
service discovery in Grid environments based on three selection stages which are context, semantic and registry selection. It
provides a better service discovery process by using semantic descriptions stored in ontologies which specify both the Grid
services and the application knowledge. The framework permits Grid applications to specify the criteria a service request is
matched with and enables interoperability for the matchmaking process. A proof of concept is done with a prototype
implementation, and an enhancement of the matchmaking process is achieved with a similarity metric which allows quantifying
the quality of a match. A qualitative and quantitative evaluation of the prototype system is given with an analysis and
performance measurements to quantify the scalability of the prototype.

Keywords: Interoperability; Ontology; Service Discovery; Grid

1. Introduction

In mid 1990s Ian Foster and Carl Kesselman proposed a
distributed computing infrastructure for advanced science
and engineering which they called “The Grid”. The vision
behind the Grid is to supply computing and data resources
over the Internet seamlessly, transparently and dynamically
when needed, such as the power grid supplies electricity to
end users. The Grid originated from trying to solve the
information and computational challenges of science [1].

Resource discovery and as a result also service discovery
is an important issue for the Grid in answering the questions
of how a service requester finds the resources/services
needed to solve its particular problem and how a service
provider makes potential service requesters aware of the
computing resources it can offer. Service discovery is a key
concept in a distributed Grid environment. It defines a
process for locating service providers and retrieving service
descriptions. The problem of service discovery in a Grid
environment arises through the heterogeneity, distribution
and sharing of the resources in different Virtual
Organisations (VOs). The two different approaches
implemented in the early stages of the Grid software
(GLOBUS toolkit, GT [2]) were:

• Monitoring and Discovery Service (MDS)
• Grid Information Service (GIS)

Although these approaches deal only with resource

discovery, service discovery can be seen as an extension of
resource discovery.

The MDS [3] was initially designed as a centralised way
to obtain Grid service information via an LDAP
(Lightweight Directory Access Protocol) server. Later
designs in MDS-2 have moved to a decentralised approach
where Grid information is stored and indexed by index
servers that communicate via a registration protocol [4].
Users can then query directory servers. The assignment of
content to servers and the overlay topology of those servers
is done in an ad-hoc fashion.

GIS is a service that allows storing information about the
state of the Grid infrastructure [5]. One approach for
describing the data is to use a hierarchical model. This is
the approach which is currently in place as GISs have been
built on top of directory services. The question arises
whether these systems and the hierarchical model will
provide sufficient performance and expressiveness. An
alternative solution is to use a relational data model, which
arguably is more difficult to implement and scale, but
allows for more expressiveness with a relational query
language.

Due to the lack of expressive and efficient matchmaking
in Grid environments Condor [6] was used. Condor which
is used for high-throughput computing is a matchmaking
framework which was developed with classified
advertisement (ClassAd) for solving resource allocation

problems in a distributed environment with decentralised
ownership of resources [7]. This framework provides a bi-
lateral match where both resource providers and consumers
specify their matching constraints, e.g. policy and
requirements. A symmetric requirement is then evaluated
for each request-resource pair to determine whether there is
a match or not.

The Open Grid Services Infrastructure (OGSI) [8] defines
a set of conventions and extensions on the use of Web
Service Definition Language and XML Schema to enable
stateful Web services. It introduces the idea of stateful Web
services and defines approaches for creating, naming, and
managing the lifetime of instances of services; for declaring
and inspecting service state data; for asynchronous
notification of service state change; for representing and
managing collections of service instances; and for common
handling of service invocation faults. Recently, the WS-
Resource framework (WSRF) [9] was proposed as a
refactoring and evolution of OGSI aimed at exploiting new
Web services standards, specifically WS-Addressing, and at
evolving OGSI based on early implementation and
application experiences. WSRF retains essentially all of the
functional capabilities present in OGSI, while changing
some of the syntax (for example, to exploit WS-Addressing)
and also adopting a different terminology in its presentation.

Until recently, research on Grids has focused on
designing and building Grid middleware that addresses the
core problem of Grids which are resource management and
services in a distributed environment. Such services include
security and data management. Argonne National
Laboratory (ANL) has developed an open-source Grid
middleware called GLOBUS [2] which has become the de
facto Grid middleware for research and possibly production
purposes. From the evolution of the Grid software it can be
seen that it went from a middleware approach, where many
different tools were combined in a toolbox, to a service-
based approach which focuses on application-level issues.
The approach proposed in this paper follows this direction
by taking this service-based view and presents a framework
which is developed on the application level. The approach
applies semantics to Grid services and to the applications in
order to achieve interoperability within Grid environments.
The interactions such as service requests with services from
the applications and the Grid are matched semantically. As
there are many different Grid implementations and
applications, which want to make use of the Grid, available,
therefore there is a need for semantics to make them
interoperable with each other. In order to connect
applications such as the High Energy Physics (HEP)
experiments to the Grid two interoperability layers are
necessary. One interoperability layer is attached to the
application layer and the other to the collective layer. The
first interoperability layer serves as a dictionary, allowing
the different HEP applications to specify their service needs
in their “own” application context. The second
interoperability layer allows the definition of semantic

service description in order to allow a more flexible and
dynamic service discovery process [10].

This paper is organised as follows. In section 2 related
efforts are summarised and the differences to the proposed
approach are discussed. Section 3 gives an introduction to
the background of semantics and ontologies. The
framework of the semantic service discovery approach for
Grid environments with a detailed description of the
components is shown in section 4. Section 5 presents a
portal prototype implementation and explains the tools
used. In section 6 an enhancement of the matchmaking
process by means of a similarity metric is done. Section 7
presents an evaluation of the system by an introduction of a
similiarity metric and finally, section 8 concludes this
paper.

2. Related Efforts

During the past few years lots of effort and research have
been placed in the field of resource matching which are
described in the following paragraphs. The different
approaches are based on resource matching, resource
mapping and selection, and developing infrastructural
middleware.

myGrid [11] is a multi-organisational project aiming to
develop the necessary infrastructural middleware (e.g.
provenance, service discovery, workflow enactment,
change notification and personalisation) that operates over
an existing Web services & Grid infrastructure to support
scientists in making use of complex distributed resources.
The myGrid project is to provide access to its
bioinformatics archives and analysis tools through Web
service technologies using open specifications.

Deelman et al. [12] address the problem of automatically
generating job workflows for the Grid. They have
developed two workflow generators. The first one maps an
abstract workflow defined in terms of application-level
components to the set of available Grid resources. The
second generator takes a wider perspective and not only
performs the abstract to concrete mapping but also enables
the constriction of the abstract workflow based on the
available components. The system operates in the
application domain and chooses application components
based on the application metadata attributes.

The GRIP (Grid Interoperability Project) [13] addresses
the problem of resource description in the context of a
resource broker being developed, which is able to broker
for resources described by several Grid middleware
systems, GT2, GT3 and Unicore. The approach is based on
a semantic solution to resource description. The semantics
of the request for resources at an application level needs to
be preserved in order to allow appropriate resources to be
selected by intermediate agents such as brokers and
schedulers. The matchmaking is based on a semantic
translation of the different resource description schemas.

Tangmurarunkit et al. [14] have designed and prototyped

an ontology-based resource selector that exploits ontologies,
background knowledge, and rules for solving resource
matching in the Grid to overcome the restrictions and
constraints of resource descriptions in the Grid. Traditional
resource matching, as done by the Condor Matchmaker [6]
or Portable Batch System [15], matchmaking is based on
symmetric, attribute-based matching. In order to make the
matchmaking more flexible and also to consider the
structure of VOs the framework consists of ontology-based
matchmakers, resource providers and resource consumers or
requesters. Resource providers periodically advertise their
resources and capabilities to one or more matchmakers
using advertisement messages. The user can then activate
the matchmaker by submitting a query asking for resources
that satisfy the request specification. The query is then
processed by the TRIPLE/XSB deductive database system
[16] using matchmaking rules, in combination with
background knowledge and ontologies to find the best
match for the request.

All these related projects are trying to overcome the
interoperability problem which Grid systems face. However,
all of them, except of the myGrid project and the abstract
workflow mapping project, are concerned with applying
semantics to resources in order to have a more powerful
matchmaking technique. The myGrid project focuses on the
application-level by providing a platform with existing Web
services and Grid infrastructure to support scientists in
making use of complex distributed resources, whereas the
project of Deelman et al. is concerned of mapping complex
workflows onto Grid environments. Although the Grid
community has produced a number of middleware systems –
Globus, Legion [17] and NetSolve [18], to name a few –
many areas of the Grid concept remain to be investigated.

The approach proposed in this paper is also concerned
with application-level issues and requirements. The main
requirements which have driven the development were high
degree of flexibility and expressiveness, support for
subsumption and datatypes and a flexible and modular
structure implemented with latest Web technologies. The
main difference to the approaches proposed by others is the
concept of a three step discovery process consisting of
application context selection, services selection and registry
selection. It allows to capture the application and Grid
services semantics separately and it supports application
developers and Grid services developers to register
application and services semantics separately. For the
discovery process, this separation allows a classification of
the application semantics in order to find service
descriptions in the Grid services ontology.

3. Background to Semantics and Ontologies

Ontologies contain categories, lexicons contain word
senses, terminologies contain terms, directories contain
addresses, catalogs contain part numbers, and databases
contain numbers, character strings and BLOBs (Binary

Large OBjects). All these lists, hierarchies and networks
are tightly interconnected collections of signs. But the
primary connections are not in the bits and bytes that
encode the signs, but in the minds of the people who
interpret them. The goal of various metadata proposals is to
make those mental connections explicit by tagging the data
with more signs. Those metalevel signs themselves have
further interconnections, which can be tagged with
metametalevel signs. But meaningless data cannot acquire
meaning by being tagged with meaningless metadata. The
ultimate source of meaning is the physical world that uses
signs to represent entities in the world and their intentions
concerning them [19].

The so-called Rich Text Format (RTF) is semantically
the most impoverished representation for text ever devised.
Formatting is an aspect of signs that makes them look
pretty, but it fails to address the more fundamental question
of what they mean. To address meaning, the markup
languages in the SGML (Standard Generalized Markup
Language) [20] family were designed with a clean
separation between formatting and meaning. When
properly used, SGML and its successor XML (Extensible
Markup Language) [21] use tags in the text to represent
semantics and put the formatting in more easily manageable
style sheets. That separation is important, but the semantic
tags themselves must have clearly defined semantics.
However, most XML manuals do not provide guidelines for
representing semantics.

Ontologies are increasingly seen as a key technology for
enabling semantics-driven knowledge processing.
Communities establish ontologies, or shared conceptual
models, to provide a framework for sharing a precise
meaning of symbols exchanged during communication. A
prerequisite for widespread use of ontologies is a joint
standard for their description and exchange.

RDF(S) (Resource Description Framework Schema) [22]
is an ontology/knowledge representation language which
contains classes and properties (binary relations), range and
domain constraints (on properties) and subclass and
subproperty (subsumption) relations. RDF(S) is a relatively
primitive language, however, more expressive power would
clearly be necessary and desirable to describe resources in
sufficient detail. Moreover, such descriptions should be
amenable to automated reasoning if they are to be used
effectively by automated processes [23].

These considerations led to the development of the
Ontology Inference Layer (OIL) [24] and later to the design
of DAML+OIL [25]. DAML+OIL is a more recent
proposal for an ontology representation language that has
emerged from work under DARPA's Agent Markup
Language (DAML) initiative along with input from leading
members of the OIL consortium. DAML+OIL is based on
the original OIL language, but differs in a number of ways.
DAML+OIL provide a greater interoperability on the
semantic level. In this way, DAML+OIL extends the
RDF(S) basic primitives for providing a more expressive

ontology modeling language and some simple terms for
creating inferences. In particular, DAML+OIL has moved
away from the original frame-like ideas of OIL and it is an
alternative syntax for a description logic.

The question arises how semantics help the service
discovery process. Service discovery in Grid environments
to date are only based on particular keyword queries from
the user. This, in majority of the cases leads to low recall
and low precision of the retrieved services. The reason
might be that the query keywords are semantically similar
but syntactically different from the terms in service
descriptions. Another reason is that the query keywords
might be syntactically equivalent but semantically different
from the terms in the service description. Another problem
with keyword-based service discovery approaches is that
they cannot completely capture the semantics of a user’s
query because they do not consider the relations between
the keywords. One possible solution for this problem is to
use retrieval based on semantics.

4. Semantic Service Discovery Framework

This section describes the semantic service discovery
framework for a Grid environment. It gives a description of
the components of the framework and shows how the
matchmaking process is done.

4.1 Framework Requirements

The fundamental problem the Grid research and
development community is seeking to solve is how to
coordinate distributed resources amongst a dynamic set of
individuals and organisations in order to solve a common
collaborative goal. The degree of distribution of an
application that can run within such an organisation can
vary on a scale that runs from a centralised application that
uses network resources, but where control and data resides
at one location to an application made up of a number of
autonomous components that collaborate to meet some
overall application goal. Due to many different
implementations of Grid software distributed all over the
world there is a need to make these implementations
interoperable. This leads to the following requirements of
the matchmaking framework. The first five requirements are
derived from the necessity of using semantics for the service
discovery process and the last two requirements are derived
from the need to implement a service discovery framework
for Grid environments.

1. High Degree of Flexibility and Expressiveness
Different advertisers would want to describe their
Grid services with different degrees of complexity
and completeness. The description tool or language
must be adaptable to these needs. An advertisement
may be very descriptive in some points, but leave
others less specified. Therefore, the ability to express
semi-structured data is required.

2. Support for Subsumption
Matching should not be restricted to simple service
name comparison. A type system with subsumption
relationships is required, so more complex matches
can be provided based on these relationships.

3. Support for Data Types
Attributes such as quantities should be part of the
service descriptions. The best way to express and
compare this information is by means of data types.

4. Matching Process should be Efficient
The matching process should be efficient which
means that it should not burden the requester with
excessive delays that would prevent its
effectiveness.

5. Appropriate Syntax for the Grid
The matchmaker must be compatible with Grid/Web
technologies and the information must be in a format
appropriate for a Grid environment.

6. Flexible and Modular Structure
The framework should be flexible enough to allow
Grid applications to describe their context semantics
and Grid services to describe their service semantics
in a modular manner.

7. Lookup of Matched Services
The framework should provide a mechanism to
allow the lookup and invocation of matched
services.

Starting from these requirements a framework has been
developed which is based on semantic service descriptions
and it fulfils the requirements as follows. An important
element of semantic matchmaking is a shared ontology.
Shared ontologies are needed to ensure that terms have
clear and consistent semantics. Otherwise, a match may be
found or missed based on an incorrect interpretation of the
request. The framework supports flexible semantic
matchmaking between advertisements and requests based
on the ontologies defined. Minimising false positives and
false negatives is achieved with three selection stages in
combination with well-defined ontologies. The selection
stages are:

• Context selection, where the request is matched
within the appropriate application context.

• Semantic selection, where the request is matched
semantically.

• Registry selection, where a lookup is performed.
The design of having application and Grid service

ontologies separate allows a modular design. Furthermore,
it encapsulates the application knowledge from the Grid
service knowledge. This allows other applications to
specify their application semantics separate from the Grid
service semantics. The Grid service ontology is specified
by Grid developers and the application ontology is
developed by the application users. The matchmaking
engine should encourage providers and requesters to be
precise with their descriptions. To achieve this, the service
provider follows an XML-based description, which is the
ontology language DAML+OIL. To advertise and register
its services the service requester generates a description in

the specified DAML+OIL format. Defining the ontologies
and the selection stages precisely allows the matchmaking
process to be efficient. Semantic matchmaking is based on
DAML+OIL ontologies. The advertisements and requests
refer to DAML+OIL concepts and the associated semantics.
By using DAML+OIL, the matchmaking process can
perform implications on the subsumption hierarchy leading
to the recognition of semantic matches despite their
syntactical differences between advertisements and requests.
The use of DAML+OIL also supports accuracy, which
means that no matching is recognised when the relation
between the advertisement and the request does not derive
from the DAML+OIL ontologies used by the registry,
where the lookup of the service is performed.

4.2 Matchmaker Description

The semantic matchmaking framework in Figure 1
consists of service requesters (Grid applications), service
providers (Grid services) and a service discovery
matchmaker. The matchmaking process is designed with
respect to the criteria listed in section 4.1. The processing of
a received service request by the matchmaking engine is
explained as follows [26]. Depending on the matching
modules and the defined application and services
ontologies, a semantic match is performed. Every pair of
request and advertisement has to go through several
different matching modules of the matchmaking process.
The final match with the service registry is performed in the
registry module. Information is provided to the service
requester by sending contact details and related capability
descriptions of the relevant service provider.

Figure 1: Semantic Service Discovery Matchmaker - Registration

Figure 1 shows the interactions of a service registration

process. First, the service providers need to register their
services for the matchmaking process. The service provider

registers its service semantics in the Grid service ontology
(1) and the necessary contact details in the service registry
(2). Service semantics comprises of a service name, a
service description, service attributes (input/output) and
metadata information. Furthermore, the service requester
specifies the context semantics of the application in the
application ontology (3).

The interactions of a service request are shown in Figure
2. The Grid application sends out a request to the service
discovery matchmaker (1).

Figure 2: Semantic Service Discovery Matchmaker – Matchmaking

The request has to go through the context matching

module first. Here, the request is matched within the
appropriate context of the application ontology. This means
that depending on the service request, which came from
one of the applications, the appropriate context ontology is
chosen and the first match is performed. Additional
parameters are attached to the request and forwarded to the
semantic matching module (2). In this module the semantic
match is performed. Semantic matchmaking allows the
service request to be matched using the semantics
(metadata) of services. Having all necessary semantic data,
a service lookup is done using a service registry (3). This
lookup information is sent back to the Grid application (4)
to be used for the Grid service call (5).

4.3 Matchmaking Process

Chosen for the application ontologies of the prototype
were the HEP experiments ALICE [27], ATLAS [28],
CMS [29] and LHCb [30]. They require huge distributed
computational infrastructures to satisfy their data
processing and analysis needs and want to access the Grid
in order to process their petabytes of data necessary for
their experimental evaluations. Interoperability is a main
issue for these experiment applications to function with the

Matchmaking
Engine

 Service Requester

Grid
Application

Grid
Service

Ontology

Service Provider

Grid
Service

Service Discovery Matchmaker

1.

2.

3.

Context
Matching
Module

Service Registry

Semantic
Matching
Module

Registry
Matching
Module

Application
Ontology

5.

 Service Requester

Grid
Application

Service Provider

Grid
Service

Service Discovery Matchmaker

1.

3.

Service Registry
Registry

Matching
Module

4. Matchmaking
Engine

Grid
Service

Ontology

Context
Matching
Module

Semantic
Matching
Module

Application
Ontology

2.

Grid. The application ontologies were derived from a
document about common use cases for the four HEP
applications [31]. The services were extracted from the
document and structured into 4 categories which are basic
services, data management services, job management
services and VO management services. The Grid service
ontology was built by defining the related Grid services
which are available in the GLOBUS toolkit.

<daml_oil:Class rdf:ID="CMSJobSubmission">
 <rdfs:comment>Submission of CMS Job.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#CMSJobManagement"/>
</daml_oil:Class>

<daml_oil:DatatypeProperty rdf:ID="CMSEnvironment">
 <daml_oil:domain rdf:resource="#CMSJobSubmission "/>
 <daml_oil:range
rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/
>
</daml_oil:DatatypeProperty>

<daml_oil:DatatypeProperty rdf:ID="CMSFileList">
 <daml_oil:domain rdf:resource="#CMSJobSubmission"/>
 <daml_oil:range
rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/
>
</daml_oil:DatatypeProperty>

<daml_oil:DatatypeProperty rdf:ID="CMSDataSet">
 <daml_oil:domain rdf:resource="#CMSJobSubmission"/>
 <daml_oil:range
rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"/
>
</daml_oil:DatatypeProperty>

rdf:Description rdf:ID="CMSInputFiles">
 <daml_oil:domain rdf:resource="http://
www.cs.cardiff.ac.uk/user/Simone.Ludwig/#CMSFileList"/>
</rdf:Description>

<rdf:Description rdf:ID="CMSConditions">
 <daml_oil:domain rdf:resource="http://
www.cs.cardiff.ac.uk/user/Simone.Ludwig/#CMSFileList"/>
</rdf:Description>

<daml_oil:DatatypeProperty rdf:ID="CMSFileList">
 <daml_oil:domain rdf:resource="#FileList"/>
</daml_oil:DatatypeProperty>

<daml_oil:Class rdf:ID="FileList">
 <rdfs:subClassOf rdf:resource="#CMSJobSubmission"/>
</daml_oil:Class>

...

<daml_oil:Class rdf:ID="ATLASJobSubmission">
 <rdfs:comment>Submission of CMS Job.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ATLASJobManagement"/>
</daml_oil:Class>
...
<daml_oil:Ontology rdf:ID="">
 <daml_oil:versionInfo></daml_oil:versionInfo>
 <rdfs:comment>This ontology identifies common use cases
for LHC applications to use Grid services.
</rdfs:comment>
</daml_oil:Ontology>

Figure 3: DAML+OIL Code Fragment of Grid Application Ontology

The three matching modules, which are the heart of the

matchmaker are described more in detail below. The context
matching module allows to match the service request by
means of context semantics defined in the application
ontologies. The application software of the different HEP
applications specifies the service request within their own
application context. In this module a mapping from an
application service request to a context-based service

request is performed. Figure 3 shows a code fragment of
the HEP application ontology. It contains the concept of the
application domain specified by classes, datatypes and
properties. The matching engine comprises a DAML
parser, an inference engine and a defined set of rules in
order to reason about the ontologies.

<daml_oil:Class rdf:ID="JobManagementServices">
 <rdfs:comment>Job submission and
management.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://
www.cs.cardiff.ac.uk/user/Simone.Ludwig/GridServicesOntol
ogy.daml#Ontology"/>
</daml_oil:Class>

<daml_oil:Class rdf:ID="JobSubmit">
 <rdfs:comment>Send job to Grid computing
resources.</rdfs:comment>
 <rdfs:subClassOf
rdf:resource="#JobManagementServices"/>
</daml_oil:Class>

<daml_oil:Class rdf:ID=" JobSubmitLocal">
 <rdfs:comment>Job submission on local
machine.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#JobSubmit"/>
</daml_oil:Class>

<daml_oil:Class rdf:ID=" JobSubmitRemote">
 <rdfs:comment>Job submission on remote
machines.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#JobSubmit"/>
</daml_oil:Class>

<daml_oil:Class rdf:ID="JobAnalysis">
 <rdfs:comment>Analyse data to produce scientific
results for publication.</rdfs:comment>
 <rdfs:subClassOf
rdf:resource="#JobManagementServices"/>
</daml_oil:Class>

<daml_oil:Class rdf:ID="JobMonitoring">
 <rdfs:comment>Monitor a single job.</rdfs:comment>
 <rdfs:subClassOf
rdf:resource="#JobManagementServices"/>
</daml_oil:Class>

<daml_oil:DatatypeProperty rdf:ID="FileList">
 <daml_oil:domain rdf:resource="#JobSubmit"/>
 <daml_oil:range
rdf:resource="http://www.w3.org/2000/10/XMLSchema#string"
/>
</daml_oil:DatatypeProperty>

...

<daml_oil:Ontology rdf:ID="">
 <daml_oil:versionInfo></daml_oil:versionInfo>
 <rdfs:comment>This ontology identifies common use cases
for LHC applications to use Grid services.
</rdfs:comment>
</daml_oil:Ontology>

Figure 4: DAML+OIL Code Fragment of Grid Services Ontology

The semantic matching module is responsible for

matching the request semantically. This is performed as
follows. The Grid services ontology is parsed by a DAML
parser. The DAML parser is capable of parsing
DAML+OIL code. The attributes and classes of
DAML+OIL describe the concept of the ontology. It
characterises the service for advertisement, discovery and
matchmaking. The service request is being matched
semantically by parsing the ontology. The DAML+OIL
code facilitates effective parsing of service capabilities
through its use of generic RDF(S) symbols compared to

DAML+OIL specific symbols. With a defined set of rules,
an inference engine reasons about the value parameters
parsed from the ontology. The output parameters of the
inference process are forwarded to the registry matching
module where the actual match is performed.

The inference engine is capable of reasoning with
DAML+OIL ontologies. By abstracting the behavior it
expects from any inference engine, the semantic matching
module is able to interact with this engine.

The matching component compares a current rule to
given patterns. This set of rules can be divided into two
categories. One concerns the reasoning of instances of
classes and the other relates to terminological reasoning in
order to determine relationships between the classes
themselves.

One of the most basic elements of the RDF and DAML
languages are the rdfs:subClassOf and
daml:subClassOf statements. These properties are used to
specify a subclass relationship between two classes. One of
the intuitive notions of this relation is that any instance of a
subclass is an instance of the parent class. Utilising the full
power of semantic service discovery requires inference on
the relationships between classes which is called
terminological reasoning. Through DAML’s underlying
description logic semantics, objects and classes can be
automatically compared, contrasted and reasoned based on
the input ontologies.

Java Expert Systems Shell (JESS) was chosen as a rule-
based language [32]. If datatypes (in Jess syntax specified as
PropertyValue) of a defined class should be found then the
defquery in Figure 5 is invoked. The input parameter for
the defined class is declared as variable x in the query. With
queries such as the one shown below, reasoning classes and
attributes of the ontology is achieved in order to provide the
matching values for the registry selection.

(defquery query-for-types
 "Find all types for a given object."
 (declare (variables ?x))
 (PropertyValue
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 ?x
 ?y
)

Figure 5: JESS rule for finding all properties of a defined class

A simple example to show the reasoning behind the

applications and Grid services ontologies is given below.
The user provides the input parameters such as
CMSInputFiles and CMSConditions. The service request
is sent to the context matching module where these
parameters are being matched to the class called
CMSFileList. This is shown in the application ontology in
Figure 3. This class in turn belongs to the resource
FileList. Having this additional property for the semantic
matching module, the request is being matched and results
in resource type JobSubmit shown in Figure 4.

Subsumption is then used to find the two services which
are: JobSubmitLocal and JobSubmitRemote. These
services can then be matched via registry module with the
actual appropriate Job submission services for local and
remote submission.

5. Implementation of Prototype

The Semantic Grid Service Discovery Portal is a portal
for service discovery using an ontology-based
matchmaking engine. The tool provides six menus which
are login, load ontologies, view ontology, search defined
service, list all services and logout. The most common steps
will be login, loading of ontologies, searching for a defined
service and logout. The three matching modules, especially
the semantic service discovery lies behind the search for a
defined service (Figure 6). The user is asked to provide up
to four search words describing the service s/he wants to
search for. The search request goes through the three
matching modules. The application specific service request
is made first, which is matched with the appropriate context
semantics specified in the application ontologies. Then, the
semantic matchmaking is performed by parsing and
reasoning the Grid services ontology. At last, the match
with the provided registry is done and the matched
service(s) is/are displayed in a table. The matchmaking
engine performs the semantic match of the requested
service with the provided services. This allows a powerful
and flexible matchmaking process and provides close
matches.

Figure 6: Semantic Grid Service Discovery Portal

As previously shown, for the application and Grid

services ontologies DAML+OIL was chosen as it provides
a representative notion of semantics for describing services.
DAML+OIL allows subsumption reasoning on concept
taxonomies. Furthermore, DAML+OIL permits the
definition of relations between concepts. For the inference
engine rules were defined using the JESS language. This
API (Application Programming Interface) is intended to
facilitate interpretation of information of DAML+OIL files,

and allowing users to query on that information. It leverages
the existing RDF API to read in the DAML+OIL file as a
collection of RDF triples.

This prototype system is based on web services
technology standards. The implementation of the web
services was done in Java using WSDL (Web Service
Description Language), XML (Extensible Markup
Language) and SOAP (Simple Object Access Protocol).
SOAP and WSDL are designed to provide descriptions of
message transport mechanisms in order to describe the
interface used by each service.

A service registry, UDDI (Universal Description,
Discovery and Integration) [33] was used. UDDI is another
emerging XML-based standard to provide a registry of
businesses by their physical attributes such as name, address
and the services provided. In addition, UDDI descriptions
are augmented by a set of attributes that are called TModels.
They describe additional features such as the classification
of services within taxonomies e.g. NAICS (North American
Industry Classification System) or UNSPSC (United
Nations Standard Products and Services Code). The UDDI
registry is used for the final selection stage which is the
registry selection. The actual service is matched with the
service request depending on the ontologies loaded.

6. Enhancement of Prototype by Similarity Metric

A drawback related with performing flexible matches is
that the matchmaking engine is open to exploitation from
advertisements and requests that are too generic in the
attempt to maximise the likelihood of matching. For
instance, a service may advertise itself as a provider of
everything, rather than to be precise with what it does.
Similarly, the requester may ask for any service, rather than
specifying exactly what it expects. The matchmaking engine
can reduce the efficiency of these exploitations by ranking
advertisements based on the degree of a match supplied with
the request. This is done by an automatic process in order to
give an indication of the quality of a match with a similarity
metric. This similarity metric allows specifying the degree
of flexibility of a match and it also facilitates a ranking of
service matches. The similarity algorithm is introduced by
implementing a weighting/ranking of service matches,
which is an indication for the quality of a match.

An ontology Oi = {c1, …, cn} contains a set of classes.
Each class cj has an associated set of properties Pk = {p1, …,
pm}. Each property has a range indicating a restriction on
the values the property can take. An ontology relates more
specific concepts to more general ones (from which generic
information can be inherited). Such links have been
variously named “is a”, “subset of”, “member of”,
“subconcept of”, “superconcept” etc. Such links are used to
organise concepts into a hierarchy or some other partial
ordering called “taxonomy”. The taxonomy is used for
storing information at appropriate levels of generality and
automatically making it available to more specific concepts

by means of a mechanism of inheritance. The global
similarity function),(21 ccS (1) is a weighted sum of the
similarity values [34].

),(),(),(),(21332122211121 ccSccSccSccS ωωω ++= (1)
The similarity function),(21 ssSM (2) for the

matchmaker is derived from equation (1) whereby aω , dω ,
and mω are weights of the similarity values for attributes,
descriptions and metadata descriptions and 1s and 2s are
the service description and the service request respectively.
The final weights aω , dω and mω are functions of the
probability of a type of feature with respect to the
probability of the other two types of features (3a-c). The
similarity of a service for the Semantic Grid Matchmaker
contains service attributes, a service description and
metadata information. For each keyword if matched with a
semantic description of the service (attributes, service
description or metadata information), the similarity of a
service request with the service provided is calculated by
using weights. The weights for the attributes, service
description and metadata information can be chosen
depending on the quality of expression for each part of the
service. This means that e.g. service attributes are given a
higher weight value than the service description as
attributes are more likely to express the nature of a service
to be matched with than the service description. The
similarity values of all matched service descriptions are
then aggregated to a similarity value which represents the
overall similarity between a service request and a service.

),(),(),(),(21212121 ssSssSssSssS mmddaaM ωωω ++= (2)

mda

a
a PPP

P
++

=ω (3a)

mda

d
d PPP

P
++

=ω (3b)

mda

m
m PPP

P
++

=ω (3c)

whereby a : attributes, d : description and m : metadata.
An advertisement matches a request, when the

advertisement describes a service that is sufficiently similar
to the service requested [35]. The problem of this definition
is to specify what “sufficiently similar” means. Basically, it
means that an advertisement and a request are “sufficiently
similar” when they describe exactly the same service. But
this definition is too restrictive, because providers and
requesters have no prior agreement on how a service is
represented and additionally, they have very different
objectives. A restrictive criterion on matching is therefore
bound to fail to recognise similarities between
advertisements and requests. It is necessary to allow the
matchmaking engine to perform flexible matches, those that
recognise the degree of similarity between advertisements
and requests in order to provide a softer definition of
“sufficiently similar”. Service requesters should be allowed
to decide the degree of flexibility that they grant to the
system. If they allow little flexibility, they reduce the

likelihood of finding services that match their requirements,
which means, they minimise the false positives while
increasing the false negatives. On the other hand, by
increasing the flexibility of a match, they achieve the
opposite effect, that is, they reduce the false negatives at the
expense of an increase of false positives. This needs to be
carefully considered and balanced with the algorithm
proposed.

// Collection contains a collection of vectors containing
// matched strings
Collection collectionOfMatches;
...
// Set similarity zero
int similarity = 0;
Iterator iterator = collectionOfMatches.iterator();
while (iterator.hasNext()) {
 Vector matchedStrings = iterator.next();
 for (int i=0; i<matchedStrings.size(); i++) {
 if (matchedStrings.elementAt(i) == serviceName) {
 // Exact match
 similarity = 1;
 break; //Exit for
 }
 else {
 if (matchedStrings.elementAt(i) ==
 serviceAttribute) {
 similarity = similarity +
 weightAttribute*(1/numberOfAttributes);
 }
 if (matchedStrings.elementAt(i) ==
 serviceDescription) {
 similarity = similarity +
 weightDescription*(1/numberOfDescriptions);
 }
 if (matchedStrings.elementAt(i) ==
 serviceMetaDataDescription) {
 similarity = similarity +
 weightMetaData*(1/numberOfMetaDataDescriptions);
 }
 }
 }
}
return similarity;

Figure 7: Implemented Similarity Algorithm

In general, the algorithm has to evaluate the similarity of

its arguments based on their degree of integration. The
algorithm needs to be implemented according the derived
equations (2-3). All search parameters provided by the user
can be a service name, a service attribute, a service
description or a metadata description. If one parameter is
matched e.g. with a service attribute it still will be used for
the search of other services. Furthermore, the algorithm
needs to consider how many service attributes a service
provides in total.

Figure 7 shows a fragment of the similarity algorithm
implementation. First a collection of matched values
according to a service needs to be created. Each matching
attribute belonging to one service is put in a vector and all
vectors containing matched values are put into a collection.
Then the calculation of the similarity value begins with the
while loop, where each vector containing matched values is
being calculated. For each vector there is one similarity
value calculated at the end, so that for each matched service
this value can be displayed. The matched services get then
listed in the portal (Figure 8) according to the similarity
value which shows the ranking of the services.

Figure 8: Similarity Values for Matched Services

In order to demonstrate how the similarity algorithm

works seven services were chosen to query from the Grid
service ontology. The search query consists of the search
words DS, FileList, job, submission and
jobsubmission.

Figure 9: Semantic Search Example – Similarity Metric

In Figure 9 these search words are written in bold to

highlight the matched parameters of each service. The
figure shows the services which are part of the semantic

Service: JobSubmit
Attributes: DS
 Environment
 ExecutionProgram
 FileList
 KeyValuePairs
 OutputFiles
Description: send
 job
 to
 Grid
 computing
 resources
Metadata: submission
 jobsubmission

jobexecution

Service: Analysis
Attributes: DS
 OutputDS
 Program
 SelectionCriteria
 UploadDS
Description: analyse
 data
 to
 produce
 scientific results
 for
 publication
Metadata: dataset

Service: DSTrans
Attributes: DS
 MetaDataDS
 OutputDS
 Program
Description: creation
 of
 new
 data set
 starting
 from
 input data
Metadata: create

Service: DSVerify
Attributes: DS
 DSReference
 MetaDataCatalogue
 ValidationProgram
Description: verify
 that
 a
 data set
 respects
 the
 data quality criteria
Metadata: verification
 meta data
 data
 reference

validation

Service: DSUpload
Attributes: AdditionalInformation
 FileList
 SE
Description: make
 a
 new
 data set
 available
 on
 the
 Grid
Metadata: upload

Service: VDSMat
Attributes: DS
 LDNVirtual
 Location
 MaterialisationParam
 PhysicalInstance
 RegisteredProgram
Description: materialisation
 of
 pre-declared
 virtual data set
Metadata: materials
 virtual
 data sets

instance

Service: JobOutAccess
Attributes: FileList
 JobID
 QueryParameter
Description: retrieve
 Output job
Metadata: jobaccess

match and get matched by the matchmaker. The attributes
and descriptions of the service are given in the boxes as
defined in the Grid service ontology. The portal in Figure 8
shows the calculated similarity values and lists the matched
services ranking from the best to the worst match.

As expected, JobSubmit was ranked with the highest
similarity value. The chosen weights are 5.0=aω , 1.0=dω
and 4.0=mω . These values can be defined depending on
the user’s preferences or they can be hardcoded within the
program. In addition, a threshold value needs to be defined
in order to remove false matches from the list of matched
services.

7. Evaluation of Prototype

The evaluation of the semantic matchmaking modules is
done using a qualitative and a quantitative analysis. The
qualitative analysis discusses the advantages and
disadvantages and suggests the potential for further
improvements. The quantitative analysis is to show that the
prototype implementation satisfies the performance
requirements as applied in real-world applications and most
importantly to show the quality improvement of the
matchmaking. Performance measurements were conducted
to investigate the overall performance of the prototype and
in particular the performance scalability of the semantic
matchmaking module regarding an increase of the
complexity of the ontology and an increase of the
complexity of the rules implemented [36].

7.1 Qualitative Analysis

In order to analyse the system, the advantages and
disadvantages of the matchmaker system are discussed.

Beginning with the advantages, the semantic
matchmaking approach allows a powerful and flexible
service discovery process as it uses semantic service
descriptions. Using semantics allows to reason on values
which is not only based on type reasoning, it furthermore
allows subsumption reasoning. This means that the service
discovery is very powerful as not only a service name match
is performed. Services which would have never been found
with the “syntactic” service discovery method can get
discovered. Furthermore, the prototype allows customisation
of the service discovery process as it provides a selection of
service matches to the user. The user can select which
service seems to be the appropriate one or if the expected
“right” match is not returned, the user can specify another
service request with different search parameters. The
semantic approach facilitates interoperability as the service
properties are defined and specified in associated
ontologies. The specification of services and their relations
are stored in an ontology which in turn represents the
domain knowledge. Unnecessary re-writing of code or
interface wrapping does not need to be done in order to
make systems interoperable. The development and

maintenance is much easier due to the modular structure.
Whenever a service needs to be added only an entry in the
ontology needs to be added and nothing else. The rules
defined in the reasoning engine do not need to be modified
and the service discovery process is not affected at all when
adding services.

The disadvantage of this semantic approach is that the
semantic service discovery is more time consuming due to
the additional context and semantic matching modules. This
is investigated and evaluated with performance
measurements in the following section.

7.2 Quantitative Analysis

The aim of the quantitative analysis is to investigate how
the prototype system scales by means of performance
measurements. Measured is also the performance of an
ontology increase and a rule increase.

The semantic service discovery prototype and the
additional performance measurement code were stored on a
laptop. For the scaling performance analysis only the
semantic matchmaking module was considered as the
context matchmaking module shows the similar
performance reduction. The measurements were done
querying all properties of the ontology used. The search
request was specified to find all objects in the ontology.
Table 1 presents the average measured time results for the
three matching modules. The context matching module is
roughly 10 times slower than the registry selection but 1.6
times faster than the semantic matching module. The
semantic matching module is 17 times slower than the
registry matching module. From this table it is revealed that
the time consuming part is the semantic and the context
matching modules due to the parsing of their ontologies and
the rules applied. The total time result of the matchmaking
process of the prototype is an average of 3953ms. This is
the time the user has to wait until a service request is
performed and the matched services list is returned.

Matching Module

Average Time in ms

Context 1475
Semantic 2338
Registry 140

Table 1: Comparison of Matching Modules

As expected, matching service requests semantically
leads to a decrease in performance. If only a service name
match was desired, only the registry matching module
would be necessary. This would result in a much faster
match of around 27 times, but in turn it would not perform
a semantic match.

7.2.1 Ontology Complexity

Performance measurements for the semantic
matchmaking process were conducted in order to see how

the time over the complexity of an ontology increases.
The following conditions were met. All nine ontologies

of different complexity levels were placed on the Internet,
so that real world measurements could be conducted. The
complexity of 1 of the ontology is defined as having 112
elements, thereof 47 classes and 65 data type properties.
Complexity 2 is the double amount of elements. Having
complexity 16 results in 1792 elements, where 752 are
classes and 1040 are data type properties.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8 10 12 14 16 18

Ontology Complexity

Pe
rf

or
m

an
ce

 in
 m

s

Figure 10: Performance versus Ontology Complexity

Figure 10 shows the performance measurements of the

semantic matchmaking module. The graph shows a linear
distribution. The regression line shows the average increase
of about 700ms per increase of complexity of the ontology.
There seems to be an offset of about 2000ms. This is due to
the instantiation and resetting of the reasoning engine and
the rules and queries applied.

7.2.2 Rule Complexity

The rule complexity measurements are conducted by
increasing the complexity of the rules, queries and facts.
Table 2 shows a summary of the defqueries, defrules
and deffacts used in the semantic service discovery
prototype.

defqueries defrules deffacts

Standard queries 17
Standard base rules 9 57
Basic constraints 2
Standard facts 8

Table 2: Queries, Rules and Facts

The standard queries include 17 queries, the standard
base rules comprise of 9 rules and 57 facts. The basic
constraint and standard facts contain of 2 defined rules and
8 facts respectively. Rule complexity 1 is defined having the
values as shown in Table 1. Complexity 2 is measured
taking the double amount of queries, rules and facts
specified. For rule complexity 16 there are 272 queries, 176
rules and 1040 facts which were applied.

Figure 11 shows a linear distribution. The regression line

reveals an average 160ms performance loss per increase of
rule complexity. The offset of the regression line is around
2080ms, which is roughly the same as shown in Figure 10
where 2000ms were measured.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18

Rule Complexity

Pe
rf

or
m

an
ce

 in
 m

s

Figure 11: Performance versus Rule Complexity

7.2.3 Precision and Recall

Precision is the fraction of advertised services which is
relevant. The highest number is returned when only
relevant services are retrieved. Recall is the fraction of
relevant services which has been retrieved. The highest
number is returned when all relevant services are retrieved.

Figure 12: Recall and Precision

Three queries were chosen, the first retrieving 8 services

whereby 5 services were relevant and 3 were not retrieved.
The second query retrieved 5 services whereby 4 were
relevant and 1 service was not retrieved. The third query
retrieved 4 services whereby 3 were relevant. Figure 12
shows the precision and recall rates. The precision values
apart from one exception are in the range of 0.67 to 1. This
indicates relatively high precision rates of the prototype.

8. Conclusion

The Semantic Grid Matchmaker achieves interoperability
for service discovery by using a semantic matchmaking
approach. The requirements which have driven the
development were high degree of flexibility and
expressiveness, support for subsumption and datatypes and
a flexible and modular structure. This approach enables a

more flexible and dynamic matchmaking mechanism based
on semantic descriptions stored in ontologies. The
separation of application and Grid service knowledge
provides a modular, flexible and extensible structure. It
allows the Grid service developer and the application
developers to specify their domain knowledge separately.

The prototype was built as a proof of concept of the
matchmaking framework proposed for Grid environments. It
was found that the problem of performing flexible matches
is that the matchmaking engine is open to exploitation from
advertisements and requests that are too generic. This means
that the matchmaking process needs to restrict the return of
matches. Only matches that are sufficiently similar to the
service request can be accepted. This was achieved with the
similarity algorithm implemented. It allows a ranking of
service matches and allows restricting matches which are
below a certain similarity value. However, there are still a
few problems with the algorithm proposed. The service
description also contains prepositions or articles such as to,
in, of, a etc., which need to be removed as they do not
express the functionality of the service and only distort the
similarity value. Furthermore, not every attribute or
description has the same expressiveness and should be
ranked with a different weight value accordingly. This
implies that human intervention for the ranking process
becomes necessary which is a drawback for the automation
of the matchmaking process.

Looking at the performance for the scalability of the
prototype, the performance decreases when the complexity
of the ontology rises and also when the complexity of the
rules rises. The linear increase of rules has a smaller impact
on the performance than the linear increase of complexity of
the ontology. The reason for that is that the parsing of the
ontology, the greater the complexity becomes, takes more
time than only increasing the number of rules applied. From
the set of measurements taken it can be seen that this
semantic matchmaking module does not scale very well.
However, semantic matchmaking is performed which allows
an increase of finding the appropriate service. How large the
performance loss is depends on the complexity of the
ontology and the rules defined. A faster reasoning process is
desirable and needs to be investigated.

References
[1] C. Goble, The Grid - From concept to reality in distributed computing,

Bioinformatics World Article, 2003.
http://www.bioinformaticsworld.info/feature3b.html.

[2] The GLOBUS Project.
http://www.globus.org/.

[3] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith
and S. Tuecke, “A Directory Service for Configuring High-
Performance Distributed Computations”. Proceedings of the 6th IEEE
International Symposium on High-Performance Distributed
Computing (HPDC-6), 1997.

[4] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid
Information Services for Distributed Resource Sharing”. Proceedings
of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10), 2001.

[5] G. von Laszewski, “Quickstart Guide: GIS”, 1999.
http://www-unix.mcs.anl.gov/~laszewsk/papers/ldap_in_globus/
mdsQuickStartGuide.pdf

[6] The Condor Project.
http://www.cs.wisc.edu/condor.

[7] M. Solomon, R. Raman, M. Livny, Matchmaking distributed resource
management for high throughput computing. In Proceedings of the
7th IEEE International Symposium on High Performance Distributed
Computing, Chicago, IL, July 1998.

[8] I. Foster et al., The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration, Global Grid Forum,
June 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[9] The WS-Resource Framework.
http://www.globus.org/wsrf/.

[10] S.A. Ludwig et al., "A Grid Service Discovery Matchmaker based on
Ontology Description", Proceedings of 2nd International
EuroWeb2002 Conference, Oxford, UK, December 2002.

[11] The myGrid Project.
http://www.mygrid.org.uk.

[12] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A.
Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda, Mapping Abstract
Complex Workflows onto Grid Environments, Journal of Grid
Computing, Vol. 1, No. 1, pp 9--23, 2003.

[13] Grid Interoperability Project.
http://www.grid-interoperability.org/.

[14] H. Tangmunarunkit, S. Decker, C. Kesselman, "Ontology-based
Resource Matching in the Grid - -The Grid meets the Semantic
Web", In the proceedings of the First Workshop on Semantics in
Peer-to-Peer and Grid Computing (SemPG03). In conjunction with
the Twelfth International World Wide Web Conference 2003.
Budapest, Hungary. May 2003.

[15] The Portable Batch System.
http://pbs.mrj.com.

[16] The XSB Research Group.
http://xsb.sourceforge.net.

[17] The Legion Project.
http://www.cs.virginia.edu/~legion/.

[18] NetSolve / GridSolve Project 2004.
http://icl.cs.utk.edu/netsolve/.

[19] J.F. Sowa, Ontology, Metadata, and Semiotics, Conceptual
Structures: Logical, Linguistic, and Computational Issues, Lecture
Notes in AI #1867, Springer-Verlag, Berlin, 2000.

[20] SGML - C. M. Sperberg-McQueen and Lou Burnard, Chicago,
Oxford, A Gentle Introduction to SGML
http://www-sul.stanford.edu/tools/tutorials/html2.0/gentle.html.

[21] XML – W3C, Extensible Markup Language (XML)
http://www.w3.org/XML/.

[22] RDF – W3C Resource Description Framework (RDF).
http://www.w3.org/RDF/.

[23] S. Bechhofer and C. Goble, Towards Annotation using DAML+OIL,
K-CAP 2001 Workshop on Knowledge Markup and Semantic
Annotation, Victoria B.C., 2001.

[24] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann and
M. Klein, OIL in a nutshell, In Proceedings of EKAW-2000, 2000.

[25] DAML, Darpa Agent Markup Language Program.
http://www.daml.org.

[26] S.A. Ludwig, Flexible Semantic Matchmaking Engine, Proceedings
of 2nd IASTED International Conference on Information and
Knowledge Sharing (IKS), AZ, USA, 2003.

[27] ALICE - A Large Ion Collider Experiment.
http://alice.web.cern.ch/Alice/.

[28] ATLAS - A Toroidal LHC ApparatuS.
http://atlasinfo.cern.ch/Atlas/Welcome.html.

[29] CMS - Compact Muon Solenoid.
http://cmsdoc.cern.ch/cms/outreach/html/index.shtml.

[30] LHCb - Large Hadron Collider.
http://lhcb-public.web.cern.ch/lhcb-public/default.htm.

[31] HEPCAL RTAG Report, Common Use Cases for a Common
Application Layer (HEPCAL), LHC Grid Computing Project, LHC-
SC2-20-2002.

[32] JESS, Java Expert Systems Shell.
http://herzberg.ca.sandia.gov/jess/docs/61/index.html

[33] UDDI Technical White Paper.
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf.

[34] M.A. Rodriguez and M.J. Egenhofer, “Determining semantic
similarity among entity classes from different ontologies”. IEEE
Transactions on Knowledge and Data Engineering, 5(2), 2003.

[35] M. Paolucci, T. Kawamura, T.R. Payne and K. Sycara, “Semantic
Matching of Web Services Capabilities”. Proceedings International
Semantic Web Conference, 2002.

[36] S.A. Ludwig, "Evaluation of a Semantic Grid Service Discovery
Prototype", Proceedings of 8th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2004), Orlando, USA, July 2004.

