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MATHEMATICAL SERVICE DISCOVERY: ARCHITECTURE, IMPLEMENTATION AND
PERFORMANCE

SIMONE A. LUDWIG∗, OMER F. RANA† , WILLIAM NAYLOR‡ , AND JULIAN PADGET§

Abstract. Service discovery and matchmaking in a distributed environment has been an active research issue since at least
the mid 1990s. Previous work on matchmaking has typically presented the problem and service descriptions as free or structured
(marked-up) text, so that keyword searches, tree-matching or simple constraint solving are sufficient to identify matches. In this
paper, we discuss the problem of matchmaking for mathematical services, where the semantics play a critical role in determining
the applicability or otherwise of a service. A matchmaking architecture supporting the use of match plug-ins is first described,
followed by the types of plug-ins that can be supported. The matched services are ranked based on the score obtained from each
plug-in, with the user being able to decide which plug-in is most significant in the context of their particular application. We
consider the effect of pre- and post-conditions of mathematical service descriptions on matching, and how and why to reduce
queries into DNF and CNF before matching. Application examples demonstrate in detail how the matching process works for
all four algorithms. Additionally, an evaluation of the ontological mode is provided, regarding performance of loading ontologies,
query response time and the overall scalability is conducted. The performance results are used to demonstrate scalability issues in
supporting ontology-based discovery within a Web Services environment.
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1. Introduction. The amount of machine-oriented data on the Web is increasing rapidly as semantic Web
technologies achieve greater up-take. Humans typically use Google to search for suitable services, but they can
filter out the irrelevant and spot the useful. Therefore, while UDDI (the Web Services registry) with keyword
searching essentially offers something similar, it is a long way from being very helpful. Often, it is difficult to
formulate a query in a precise way, therefore resulting in the results of search engines not being suitable for
automated services—as many of the matches returned by the search may not be directly relevant to the query.
A human user is therefore necessary to evaluate the outcome of a search, and make manual selection between
the set of results that have been returned. Conversely, when using automated registry services, the options for
specifying a query are limited, therefore resulting in a service that has limited usability.

To address this concern, much research has taken place on intelligent brokerage, such as Infosleuth [2],
LARKS [3], and IBROW [4]. It is perhaps telling that much of the literature appears to focus on architectures
for brokerage, which are as such domain-independent, rather than concrete or domain-specific techniques for
identifying matches between a task or problem description and a capability or service description. Approaches
to matching in the literature fall into two broad categories:

• syntactic matching, such as textual comparison or the presence of keywords in free text. In these
approaches, the terms used in the query are matched with those in the service description. Either
the existence (or not) of terms is used to undertake a comparison, or any attributes or data values
associated with these terms are also compared.

• semantic matching, which typically seems to mean finding elements in structured (marked-up) data and
perhaps additionally the satisfaction of constraints specifying ranges of values or relationships between
one element and another.

For many problems this is both appropriate and adequate, indeed it is not clear what more one could do, but in
the particular domain of mathematical services the actual mathematical semantics are critical to determining
the suitability (or otherwise) of the capability for the task. The requirements are neatly captured in [5] by the
following condition:

Tin ≥ Cin ∧ Tout ≤ Cout ∧ Tpre ⇒ Cpre ∧ Cpost ⇒ Tpost (1.1)

where T refers to the task, C to the capability, in are inputs, out are outputs, pre are pre-conditions and post
are post-conditions. What the condition expresses is that the signature constrains the task inputs to be at
least as great as the capability inputs (i. e. enough information), that the inverse relationship holds for the
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outputs and there is a pairwise implication between the respective pre- and post-conditions. This however leaves
unaddressed the matter of establishing the validity of that implication.

In the MONET [6, 8] and GENSS [9] projects the objective is mathematical problem solving through service
discovery and composition by means of intelligent brokerage. Mathematical capability descriptions turn out to
be both a blessing and a curse: precise service description are possible thanks to the use of the OpenMath [10]
mathematical semantic mark-up, but service matching can rapidly turn into intractable (symbolic) mathematical
calculations unless care is taken.

As Grid computing adopts the Service Oriented Architecture for service usage and deployment, a match-
maker can be seen as another infrastructure service—deployed as part of a discovery infrastructure. Many of the
capabilities of a “matchmaker” are similar to those of a “broker”, as adopted in many existing Grid computing
applications. However, a key distinction we make is that a broker does not provide any support for scheduling
or executing a service once it has been discovered. The focus here is on numerical services, as they are generally
much better understood, and therefore may also serve as useful benchmarks for evaluating a system. Further-
more, multiple instances of mathematical services (implemented by a variety of different vendors) can be found,
thereby providing the capability to choose between similar services made available over different deployment
platforms.

This paper discusses our experience with developing such a domain-specific matchmaking approach for
mathematical services. We suggest the use of a different matchmaking mechanisms to answering the implication
question posed above. The set of ontologies provided by the MONET project have been used to specify a query.
This query is subsequently used to undertake a search against the services that have been registered in a registry.
Performance issues are also discussed. In the next section we discuss the description of mathematical services,
in section 3 we describe the web services-based matchmaking architecture and detail the roles of the components
within it, in section 4 we provide application examples outlining integer factorisation. Performance results are
presented in section 5, and in section 6 we summarise and conclude this paper.

2. Description of Mathematical Services. The OpenMath [10] has been introduced as a means to
describe properties of mathematical objects (for exchange between computer programs). OpenMath is a mark
up language for representing the semantics (as opposed to the presentation) of mathematical objects in an
unambiguous way. It may be expressed using an XML syntax. OpenMath expressions are composed of a
small number of primitives. The definition of these may be found in [10], for instance: OMA (OpenMath
Application), OMI (OpenMath Integer), OMS (OpenMath Symbol) and OMV (OpenMath Variable). Symbols
are used to represent objects defined in the Content Dictionaries (to be discussed). Applications specify that
the first child is a function or operator to be applied to the following children. As an example, the expression
x + 1 might look like:1

<om:OMA>

<om:OMS cd="arith1" name="plus"/>

<om:OMV name="x"/>

<om:OMI> 1 </om:OMI>

</om:OMA>

where the symbol plus is defined in the Content Dictionary (CD) arith1. Content Dictionaries are definition
repositories in the form of files defining a collection of related symbols and their meanings, together with
various Commented Mathematical Properties (for human consumption) and Formal Mathematical Properties

(for machine consumption). The symbols may be uniquely referenced by the CD name and symbol name via
the attributes cd and name respectively, as in the above example. Another way of thinking of a CD is as a
small, specialised ontology.

MathML comes in two forms:
• for presentation (rendering in browsers) and
• for content (semantics),

and both are W3C recommendations. The specification ([11] section 5.1) and [12] identify ambiguities in pre-
sentation MathML. Content MathML is designed to handle the semantics of a limited subset of mathematics
up to K-12 level, mathematics beyond this may be encoded by using OpenMath and the semantics tag, al-
ternatively parallel markup may be utilised [11]. There are various ways in which OpenMath can help in
matchmaking:

1Throughout the paper, the prefix om is used to denote the namespace: http://www.openmath.org/OpenMath
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• OpenMath can be used to encode the mathematical part of a problem to be solved in a query, for
example a differential equation or an integral.

• OpenMath may be used to encode the input parameters to be sent to a service and the values returned
by the service.

• The function of a service (together with the signature of the input parameters, and output objects) may
be described in OpenMath, these may then be encoded using specialist tags to form a mathematical
service description; described in Mathematical Service Description Language (MSDL) [13].

MSDL is an extension of WSDL that was developed as part of the MONET project [6], incorporating more
information about a service, in particular pre- and post-conditions, taxonomic references etc.

3. Mathematical Matchmaking. Matchmaking allows potential producers of information to advertise
their capability, and subsequently consumers of information to send messages describing their information
needs. These descriptions, represented in rich, machine-interpretable description languages, are unified by the
matchmaker to identify potential matches [7]. A Web Services-based matchmaking architecture is presented,
describing the role played by different components within the architecture. Also described are the schemas and
ontologies that may be used as part of the producer advertisement or consumer requirement.

3.1. Schemas and Ontologies. The XML document schemas we are using in GENSS are, at the moment,
those developed for the MONET project. There are three main schemas:

• Mathematical Service Description Language (MSDL)
• Mathematical Problem Description Language (MPDL) and
• Mathematical Query Description Language (MQDL)

whose purposes are apparent in the second word in each case. The obvious question, even criticism, is why
develop this range of languages when there is DAML-S [14] and OWL-S [15]? The answer is purely practical:
at the time of the MONET project (April 2002 to March 2004) OWL and OWL-S were still subject to change
and there were hardly any tools available, while DAML and DAML-S were clearly about to be made obsolete
by OWL/OWL-S and the tool situation was hardly any better. Thus a pragmatic decision was made to take
the principles needed to enable the MONET deliverables from DAML/OWL and embed them in some simple
restricted languages over which the project had full control. Thus we see the adoption of pre- and post-condition
driven descriptions of capabilities and tasks, following the ideas set out in DAML/OWL and being explored in
various semantic brokerage projects such as InfoSleuth [2], RETSINA [3] and IBROW [16], while embedding
WSDL in MSDL to provide the necessary information about how to invoke the service. It is our intention
to explore how we can move from MSDL towards OWL/OWL-S during the lifetime of the current GENSS
project, since this will greatly aid interoperability and enable the utilisation of the increasing range of tools (for
OWL/OWL-S) that have become available.

History is also the explanation for the ontology language we use. OpenMath [10] provided an early use of
XML for providing an application-specific description—before the availability of RDF. Nevertheless, OpenMath
stands as probably the most developed ontology of mathematics, because in contrast to MATHML-C [11] it is
extensible through the mechanism of content dictionaries which were developed to handle the absence of mod-
ularisation facilities or namespaces in the original XML. The OpenMath 2 standard [18] replaces DTDs with
schemas, provides compatibility with RDF tools, utilises XML namespaces and generally aims to bring Open-
Math in line with developments in ontology representation over the last five years, whilst keeping where feasible,
backwards compatibility with OpenMath 1.1. Thus we make use of OpenMath as the primary representation
language for mathematical content in our work.

3.2. Related Matchmaking Approaches. A variety of matchmaking systems have been reported in
literature, we review some related systems below.

The SHADE (SHAred Dependency Engineering) matchmaker [19] operates over logic-based and structured
text languages. The aim is to dynamically connect information sources. The matchmaking process is based
on KQML (Knowledge Query and Manipulation Language) communication [20]. Content languages of SHADE
are a subset of KIF (Knowledge Interchange Format) [21] as well as a structured logic representation called
MAX (Meta-reasoning Architecture for “X”). Matchmaking is carried out solely by matching the content of
advertisements and requests. There is no knowledge base and no inference performed. The SHADE matchmaker
is implemented entirely as a forward-chaining rule-based program using MAX. This allows adding features such
as new rules dynamically.
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COINS (COmmon INterest Seeker) [19] is a matchmaker which operates over free text. The motivation for
the COINS is the need for matchmaking over large volumes of unstructured text on the Web or other Wide
Area Networks and the impracticality of using traditional matchmakers in such an application domain. Initially
the free text matchmaker was implemented as the central part of the COINS system but it turned out that it
was also useful as a general purpose facility. As in SHADE the access language is KQML. The System for the
Mechanical Analysis and Retrieval of Text (SMART) [22] information retrieval system is used to process free
text. The text is converted into a document vector using SMART’s stemming and “noise” word removal. Then
the document vectors are compared using an inverse document frequency algorithm.

LARKS (Language for Advertisement and Request for Knowledge Sharing) [3] was developed to enable in-
teroperability between heterogeneous software agents and had a strong influence on the DAML-S specification.
The system uses ontologies defined by a concept language ITL (Information Terminology Language). The tech-
nique used to calculate the similarity of ontological concepts involves the construction of a weighted associative
network, where the weights indicate the belief in relationships. While it is argued that the weights can be set
automatically by default, it is clear that the construction of realistically weighted relationships requires human
involvement, which becomes a hard task when thousands of agents are available.

InfoSleuth [2] is a system for discovery and retrieval of information in open and dynamically changing envi-
ronments. The brokering function provides reasoning over the advertised syntax and the semantics. InfoSleuth
aims to support cooperation among several software agents for information discovery, where agents have roles
as core, resource or ontology agents. A central service is the broker agent which is equipped with a matchmaker
which matches agents that require services with agents that can provide those services. To apply this procedure
an advertising agent has to register with the broker agent. The broker inserts the agent’s description into its
broker repository. The broker can then execute queries by requesting agents. These queries are formulated by
agents who need other agents to fulfil their tasks.

The GRAPPA [23] (Generic Request Architecture) system allows multiple types of matchmaking mecha-
nisms to be employed within a system. It is based on receiving arbitrary matchmaking offers and requests,
where each offer and request consist of multiple criteria. Matching is achieved by applying distance functions
which compute the similarities between the individual dimensions of an offer and a request. Using particular
aggregate functions, the similarities are condensed to a single value and reported to the user.

The MathBroker (and MathBroker II) project(s) at RISC-Linz have some elements in common with those
described here, including providing semantic descriptions of mathematical services. They too use MSDL, how-
ever it seems that most of the matchmaking is achieved through traversing taxonomies, while actual reasoning
about the pre- and post-conditions is still an open problem.

Most of the projects above have focused on providing a generic matchmaker, capable of being adapted for
a particular application. However, the motivation for many such projects has primarily been e-commerce (as
a means to match buyers with sellers, for instance). Some projects are also focused on the use of a particular
multi-agent interaction language (such as KQML), to enable communication between the matchmaker and
other agents. Our approach, however, is centered on the implementation of a matchmaker that is specific to
mathematical relations. Similar to GRAPPA, our matchmaker can support multiple comparison techniques.

3.3. Matchmaking Requirements. To achieve matchmaking:

• we want sufficient input information in the task to satisfy the capability, while the outputs of the
matched service should contain at least as much information as the task is seeking, and

• the task pre-conditions should be more than satisfied by the capability pre-conditions, while the post-
conditions of the capability should be more than satisfied by the post-conditions of the task.

These constraints reflect work in component-based software engineering and are, in fact, derived from [24].
They are also more restrictive than is necessary for our setting, by which we mean that some inputs re-
quired by a capability can readily be inferred from the task, such as the lower limit on a numerical in-
tegration or the dependent variable in a symbolic integration. Conversely, a numerical integration routine
might only work from 0 to the upper limit, while the lower limit of the problem is non-zero. A capabil-
ity that matches the task can be synthesised from the composition of two invocations of the capability with
the fixed lower limit of 0. Clearly the nature of the second solution is quite different from the first, but
both serve to illustrate the complexity of this domain. It is precisely this richness too that dictates the na-
ture of the matchmaking architecture, because as these two simple examples show, very different reasoning
capabilities are required to resolve the first and the second. Furthermore, we believe that given the na-
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Fig. 3.1. Matchmaking Architecture

ture of the problem, it is only very rarely that a task description will match exactly a capability descrip-
tion and so a range of reasoning mechanisms must be applied to identify candidate matches. This results
in:

Requirement 1: A plug-in architecture supporting the incorporation of an arbitrary number
of matchers.

The second problem is a consequence of the above: there will potentially be several candidate matches and
some means of indicating their suitability is desirable, rather than picking the first or choosing randomly. Thus:

Requirement 2: A ranking mechanism is required that takes into account pure technical
(as discussed above in terms of signatures and pre- and post-condition) and quantitative and
qualitative aspects—and even user preferences.

3.4. Matchmaking Architecture. Our matchmaking architecture is outlined in Figure 3.1 and comprises
the following parts:

• Client interface: which may be employed by the user to specify their service request. The client interface
may be a Web browser, or may be a special purpose interface that has been embedded within an existing
application.

• Matchmaker: which contains a reasoning engine and the matching module. The reasoning engine relies
on the existence of one or more domain specific ontologies.

• Matching algorithm Web Services: where the logic of the matching mechanism is defined. These Web
Services primarily provide the plug-in capability that has been identified in Requirement 1 above.
Currently, there is no mechanism to combine multiple match algorithms. Each algorithm therefore
must be used independently.

• Mathematical ontologies: such as OpenMath CDs, GAMS etc. These ontologies need to be used
alongside the matchmaker and the reasoner.

• Registry service: where the mathematical service descriptions are stored. A registry in this context
contains the set of “advertisement” (or metadata) that define numerical algorithms that have been
made available for use. In our architecture, we assume that these algorithms have been implemented
as Web Services. The registry does not contain any executables, only references to executables that are
maintained elsewhere.

• Mathematical Web Services: available on third party sites, accessible over the Web. These are the real
executables associated with descriptions that are maintained in the registry.
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The interactions of a search request are as follows:

• a user contacts the matchmaker, then
• the matchmaker loads the matching algorithms specified by the user; in the case of an ontological

match, further steps are necessary;
• the matchmaker contacts the reasoner which in turn loads the corresponding ontology;
• having additional match values results in the registry being queried, to see whether it contains services

which match the request and finally
• service details are returned to the user via the matchmaker. These details generally include an end

point reference for the service that is being maintained on a remote file system.

The parameters stored in the registry (a database) are service name, URL/end point reference, taxonomy/on-
tology, input, output, pre- and post-conditions. Using contact details of the service from the registry, the user
can then call the Web Service and interact with it. Each component of the architecture is now described in
more detail.

3.4.1. Matching Algorithms. Currently four matching algorithms have been implemented within the
matchmaker:

• structural match;
• syntax and ontological match;
• algebraic equivalence match;
• value substitution match.

These matchers are complementary and constitute the polyalgorithmic approach mentioned in the abstract.
The structural match only compares the OpenMath symbol element structures (e.g. OMA, OMS, OMV etc.). The
syntax and ontological match algorithm goes a step further and compares the OpenMath symbol elements and
the content dictionary values of OMS elements. If a syntax match is found, which means that the values of the
content dictionary are identical, then no ontology match is necessary. If an ontology match is required, the
query structure is matched using the content dictionary hierarchy. The algebraic equivalence match and value
substitution match do actual mathematical reasoning using the OpenMath structure.

The structural match works as follows: the pre- and post-conditions are extracted and an SQL query is
constructed to find the same OpenMath structure of the pre- or post-conditions of the service descriptions in
the database.

The ontological match is performed similarly, however, the OpenMath elements are compared with
an ontology [25] representing the OpenMath elements. The matchmaking mechanism allows a more efficient
matchmaking process by using mathematical ontologies such as the one for sets shown in Figure 3.2. OWL-
JessKB [26] was used to implement the ontological match. It is intended to facilitate reading Ontology Web
Language (OWL) files, interpreting the information as per OWL and RDF languages, and allowing the user to
query on that information. To give an example the user query contains the OpenMath element:

<om:OMS cd=’setname1’ name=’Z’/>

and the service description contains the OpenMath element:

<om:OMS cd=’setname1’ name=’P’/>

which refer to the set of integers and the set of positive prime numbers respectively.

The query finds the entities Z and P and determines the similarity value depending on the distance between
the two entities (inclusive, on one side) which in this case is SV = 1

n
= 0.5, where n is the number of nodes

in the ontology that separate Z from P. As can be seen from figure 3.2 this is 2—the figure also identifies that
concept P is subsumed by concept Z. Our use of distance in this context therefore differs from how it is used in
general when evaluating similarity between concepts within an ontology. A detailed description of the match
making algorithm can be found in [1].

For both the ontological and structural match, it is necessary that the pre- and post- conditions are in some
standard form. For instance, consider the algebraic expression x2 − y2, this could be represented in OpenMath
as:

<om:OMOBJ><om:OMA>

<om:OMS cd="arith1" name="minus"/>

<om:OMA>

<om:OMS cd="arith1" name="power"/>

<om:OMV name="x"/>
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Fig. 3.2. Set Ontology Fragment

<om:OMI>2</om:OMI>

</om:OMA>

<om:OMA>

<om:OMS cd="arith1" name="power"/>

<om:OMV name="y"/>

<om:OMI>2</om:OMI>

</om:OMA></om:OMA>

</om:OMOBJ>

however, x2 − y2 = (x + y)(x − y), leading to the ontologically and structurally different markup:
<om:OMOBJ><om:OMA>

<om:OMS cd="arith1" name="times"/>

<om:OMA>

<om:OMS cd="arith1" name="plus"/>

<om:OMV name="x"/>

<om:OMV name="y"/>

</om:OMA>

<om:OMA>

<om:OMS cd="arith1" name="minus"/>

<om:OMV name="x"/>

<om:OMV name="y"/>

</om:OMA></om:OMA>

</om:OMOBJ>

Both are “right”, it just depends on what information is wanted, so there can in general be no canonical form.
So in order to address the above observation, we must look deeper into the mathematical structure of the
expressions which make up the post-conditions. Most of the conditions examined may be expressed in the form:
Q(L(R)) where:

• Q is a quantifier block, e.g. ∀x∃y s.t. · · ·
• L is a block of logical connectives, e.g. ∧,∨,⇒, · · ·
• R is a block of relations, e.g. =,≤,≥, 6=, · · ·

Processing the Quantifier Block. In most cases, the quantifier block will just be a range restriction. In other
cases it may be possible to use quantifier elimination to replace the quantifier block by an augmented logical
block. Quantifier elimination is a problem for which code exists in many computer algebra systems; e.g. RedLog

in Reduce.
Processing the Logical Block. Once the quantifier elimination has been performed on the query descriptions

and the service descriptions, the resulting logical blocks must be converted into normal forms. The logical block
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of both the service and query descriptions are converted to disjunctive normal form (DNF—that is a form which
only contains a disjunction of conjunctions of terms and term negations). We need to now calculate a value
which determines how well equation (1.1) is satisfied. That is to say, the pre-conditions of the service must
be satisfied by the pre-conditions of the query and the post-conditions of the query must be satisfied by the
post-conditions of the service. In all the following , we consider pre- and post- conditions in DNF, so x ∈ Cpre

means x is a conjunct in the DNF for the service pre-condition. Superfluous service pre-conditions (query
post-conditions) do not effect whether the function may be performed. It is necessary, however, that there
are no extra query pre-conditions (service post-conditions) as this might allow the client to provide conditions
incompatible with the service pre-condition (service post-condition). This may be formalised in the following:

∀x1 ∈ Tpre ∃y1 ∈ Cpre s.t. x1 ⇒ y1 (3.1)

and

∀x2 ∈ Cpost ∃y2 ∈ Tpost s.t. x2 ⇒ y2 (3.2)

One way of proceeding is to treat the pre- and post- conditions separately in order to get two similarity
values Spre and Spost. If it so happens that the pre- and post- conditions are equally important, then the average
of these values will provide a good measure for the similarity value, however this will not always be the case,
and other feasible measures are to weight Spre and Spost linearly with the number of matching disjuncts in the
pre-condition match as opposed to the post-condition match. This can be justified by observing that there are
a linear number of different ways for the conditions to match.

We shall denote the DNF for Cpre (or Tpost) by R = R1∨· · ·∨Rn and for Cpost (or Tpre) by S = S1∨· · ·∨Sñ.
To calculate a value ∈ [0.0, 1.0] indicating how well equations 3.1, 3.2 are satisfied, we shall use the formula:

similarity(R, S) =
∑

i=1..ñ

M1(R, Si)
1

ñ
(3.3)

where M1 is a function which indicates how well the expression Si ⇒ R holds. This is equivalent to stating how
well Si matches with one of the conjuncts making up R. A good formula to calculate this is:

M1(R, Si) = max
j=1··n

{M2(Rj , Si)} (3.4)

where M2 is a similarity function for conjuncts. We may calculate a value for M(Ri, Sj) as:

M2(Rj , Si) =
∑

k=1··δ

m(Rj , Si,k)
1

δ
(3.5)

where δ is the number of terms in Si, Si,k are terms in Si and:

m(Rj , Si,k) returns 1.0 if Si,k matches a term in Rj ,
0.0 otherwise.

(3.6)

Processing the Relations Block. In order to perform the term matches necessary to calculate 3.6 we shall
consider two possible methods. It is useful to note that a term is of the general form: TL ≻ TR where ≻ is
some relation i. e. a predicate on two arguments. In the case that TL and TR are real values, we may proceed as
follows: we have two terms we wish to compare QL ≻ QR and SL ≻ SR, we first isolate an output variable r, this
will give us terms r ≻ Q and r ≻ S. There are two approaches which we now try in order to prove equivalence
of r ≻ Q and r ≻ S:

• Algebraic equivalence: With this approach we try to show that the expression Q − S = 0 using
algebraic means. There are many cases were this approach will work, however it has been proved [27]
that in general this problem is undecidable. Another approach involves substitution of r determined
from the condition r ≻ S into r ≻ Q, and subsequently proving their equivalence.

• Value substitution: With this approach we try to show that Q − S = 0 by substituting random
values for each variable in the expression, then evaluating and checking to see if the valuation we get
is zero. This is evidence that Q − S = 0, but is not conclusive, since we may have been unlucky in the
case that the random values coincide with a zero of the expression.
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3.4.2. Service Registry. The mathematical service descriptions are stored in a database comprising the
following tables: service name, taxonomy, input, output, pre- and post-conditions, and omsymbol. For the
matching of pre- and post-conditions, the tables omsymbol, precond and postcond are used. The other tables
give additional details about a service once the matching is done, in order for the user to select the appropriate
service from the returned list.

3.4.3. Matchmaker. For all services in the database, first the pre-conditions are read and for each the
matching algorithm selected is applied—which returns a similarity value. For all similarity values of pre-
conditions a match value is calculated and stored. The same procedure is then used for the post-conditions.
For each service the match values for all pre- and post-conditions are calculated and stored together with
the service details. The methods are those detailed in section 3.4.1 resulting in a match score in the inter-
val [0, 1].

4. Application Example. For the case study we only consider the four matching modes. The Factorisor
service we shall look at is a service which finds all prime factors of an Integer. The Factorisor has the following
post-condition:

<om:OMOBJ>

<om:OMA>

<om:OMS cd =’relation1’ name =’eq’/>

<om:OMV name =’n’/>

<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>

<om:OMS cd =’arith1’ name =’times’/>

<om:OMV name =’lst_fcts’/>

</om:OMA>

</om:OMA>

</om:OMOBJ>

where n is the number we wish to factorise and lst_fcts is the output list of factors.

As the structural and ontological modes compare the OpenMath structure of queries and services, and the
algebraic equivalence and substitution modes perform mathematical reasoning, the case study needs to reflect
this by providing two different types of queries.

For the structural and ontological mode let us assume that the user specifies the following query:

<om:OMOBJ>

<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>

<om:OMS cd =’arith1’ name =’plus’/>

<om:OMV name =’lst_fcts’/>

</om:OMA>

</om:OMOBJ>

For the structural match, the query would be split into the following OM collection: OMA, OMS, OMS, OMV and /OMA

in order to search the database with this given pattern. The match score of the post-condition results in a value
of 0.27778 using the equations described earlier.

The syntax and ontology match works slightly different as it also considers the values of the OM symbols.
In our example we have three OM symbol structures. There are two instances of OMS and one of OMV. First the
query and the service description are compared syntactically. If there is no match, then the ontology match is
called for the OMS structure. The value of the content dictionary (CD) and the value of the name are compared
using the ontology of that particular CD. In this case the result is a match score of 0.22222. If the OM structure
of the service description is exactly the same as the query then the structural match score is the same as for
the syntax and ontology match.

The post-condition for the Factorisor service represents:

n =

l∏

i=1

lst fctsi where l = |lst fcts| (4.1)



44 Simone A. Ludwig et. al

Considering the algebraic equivalence and the value substitution, a user asking for a service with post-condition:2

∀i|1 ≤ i ≤ |lst fcts| ⇒ n mod lst fctsi = 0 ∧ (4.2)

m /∈ {lst fcts1, · · · , lst fctsl} ⇒ n mod |m| 6= 0

should get a match to this Factorisor service.
To carry out the algebraic equivalence match we use a proof checker to show that:

• equation (4.1) ⇒ equation (4.2): This is clear since the value of n (the RHS of equation 4.1) may be
substituted into equation (4.2) and the resulting equality will be true for each value in lst fcts.

• equation (4.2) ⇒ equation (4.1): The first term in the conjunct holds by the definition of mod, whilst
the second term says that there are no other numbers which divide n.

To compute the value substitution match we must gather evidence for the equivalense of expressions 4.1 and
4.2 by taking a number of random values and substituting these into the pre- and post-conditions, since we are
checking the truth of relations, these will be trivially satisfied (or not). This will however only give us evidence
for the equivalence of the conditions, as we may have chosen values for which the expressions just happened
to be true. So this technique can only give a probability of correctness. In order to know the probability of
correctness after a certain number of independent tests, it is necessary to know the size of the zero sets for the
expressions which make up the pre- and post-conditions. Another limitation of this technique, is that (in its
simplest form) it can only be applied to real valued expressions. We shall consider how the technique may be
applied to the above problem:

• We first need to decide on the length of the list for our random example. A good basis would be to
take |lst fcts| = ⌈log2(n)⌉, this represents a bound on the number of factors in the input number.

• We then collect that number of random numbers, each of size bounded by
√
n.

• Then we calculate their product, from equation (4.1), this gives a new value for n.
• We may now check equation (4.2). We see that it is true for every value in lst fcts.

If we try this for a few random selections, we obtain evidence for the equivalence of equations (4.1) and (4.2).

5. Measurements. Of the four matching algorithms specified in section 3.4.1, our performance measure-
ments are primarily focused on the “ontological match”. This is because this mechanism provides the most
computationally intensive match requirement. Structural match can already be undertaken with a variety of
XML-based tools—that make use of XPath query, for instance. Similarly, algebraic equivalence also relies on
the use of an ontological match to rewrite a mathematical expression prior to undertaking a match.

A set of measurements are described that: (1) evaluate the time it takes to load the MONET ontologies—
briefly described in section 5.1, (2) the associated query response times and (3) the overall scalability of the
ontological mode. Scalability analysis involved increasing the number of services hosted in the registry to
100,000.

5.1. The MONET Ontologies. The ontology importation graph in Figure 5.1 essentially outlines the
relationships between the various ontologies3 (the Ontology Web Language (OWL) is used to describe each
ontology) that were originally developed in the MONET project [31] for the purpose of demonstrating the basic
end-to-end functionality from problem statement, through service discovery and invocation, to the delivery of re-
sults. It should be emphasized that with two notable exceptions—OpenMath and GAMS—these are not general-
purpose ontologies but were engineered to meet a specific short-term need. Nevertheless, significant care went
into their relative organization with a view to future developments. From the application’s perspective, there is
just the one ontology called MONET and that imports all the others, which is where we find the real content:

• GAMS (Guide to Available Mathematical Software): is described as “A cross-index and virtual
repository of mathematical and statistical software components of use in computational science and
engineering”4 and provides a human browseable taxonomy of mostly numerical software, for example
the extract given in Figure 5.2 is that used to classify numerical quadrature routines. As this extract
makes clear, GAMS is represented as textual data and is intended for human consumption. Thus for
program use an OWL analogue was generated making each node in the taxonomy into an OWL class,
as shown in Figure 5.3.

2In this example, all factors are assumed prime (this could be given as another post-condition).
3http://users.cs.cf.ac.uk/Simone.Ludwig/ontologies/monet/monet.owl
4http://gams.nist.gov/
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Fig. 5.1. Relationship between MONET Ontologies

• Symbolic: The GAMS taxonomy has a single category (“O”) for symbolic computation that contains
just four links to general-purpose computer algebra packages and one link to the ACM TOMS collected
algorithms. Because a major focus of MONET was the combined application of numerical and symbolic
techniques, this branch has undergone some extension to enable the description and advertisement of a
range of symbolic mathematical services, such as group theory operations, indefinite integration, power
series and algebraic geometry.

• OpenMath: This is not OpenMath5 that we have used for mathematical semantic markup, but rather
the interface to that ontology. Because OpenMath development started many years before OWL it does
not (yet) use many of the current ontology technologies and is simply an XML-based encoding format
for the representation of mathematical expressions and objects. Terms (referred to as “Constants”)
of the language have semantics attached to them and are called symbols (e.g., sin, integral, matrix,
etc.), and groups of related symbols are collected in content dictionaries (CDs). What the OpenMath
component of the MONET ontology defines is OWL classes for each of the symbols in the current
OpenMath CDs.

• Hardware: This is used to describe either machine types or individual machines. The idea is that a
user might request that a service run on a particular architecture (e.g. Sun Enterprise 10000), a general
class of machine (e.g. shared memory), or a machine with a certain number of processors. Here is a
fragment that describes a Sun shared memory machine:
<owl:Class rdf:ID="Enterprise10000">

<rdfs:subClassOf>

<owl:Class rdf:about="#SharedMemory"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#Sun"/>

</rdfs:subClassOf>

</owl:Class>

• Software: allows a user to express a preference for a service that makes use of a particular programming
language or software library, for example it represents a variety of programming languages (FORTRAN
77, FORTRAN 2000, C, etc.) and numerous packages (NAG library version 7 in C, Maple release 8,
etc.).

• Problems: may be described in terms of inputs and outputs, pre-conditions and post-conditions, and
make use of pre-defined XML schema [32]. Within this ontology, each problem is represented as a
class, which can have properties indicating bibliography entries and their generalizations. The most
interesting property is openmath head whose range is an object from the OpenMathSymbol class. This
represents a particular symbol which can be used to construct an instance of the problem in question.

5http://www.openmath.org
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H2. Quadrature (numerical evaluation of definite integrals)

H2a. One-dimensional integrals

H2a1. Finite interval (general integrand)

H2a1a. Integrand available via user-defined procedure

H2a1a1. Automatic (user need only specify required accuracy)

H2a1a2. Nonautomatic

Fig. 5.2. An extract from the on-line GAMS taxonomy

<owl:Class rdf:ID="GamsH2">

<rdfs:comment>GAMS classification, Differentiation, integration,

Quadrature (numerical evaluation of definite integrals)

</rdfs:comment>

<rdfs:label>Quadrature (numerical evaluation of definite integrals)</rdfs:label>

<rdfs:subClassOf rdf:resource="#GamsH"/>

</owl:Class>

\dots

<owl:Class rdf:ID="GamsH2a">

<rdfs:comment>GAMS classification, Differentiation, integration,

Quadrature (numerical evaluation of definite integrals),

One-dimensional integrals

</rdfs:comment>

<rdfs:label>One-dimensional integrals</rdfs:label>

<rdfs:subClassOf>

<owl:Class rdf:about="#GamsH2"/>

</rdfs:subClassOf>

</owl:Class>

Fig. 5.3. An extract from the OWL representation of GAMS

• Algorithms: there are two sub-classes in this ontology: (1) Algorithm: which describes well-known
algorithms for mathematical computations, and (2) Complexity: which provides classes necessary for
representing complexity information associated with an Algorithm.

• Directives: this ontology is a collection of classes which identify the task that is performed by the
service as described in [32]—for example to decide, solve or prove a particular mathematical expression.

• Theory: this ontology collects classes that represent available formalized theories in digital libraries of
mathematics.

• Bibliography: represents entries in well-known indices such as Zentralblatt MATH [33] and Math-
SciNet [34] and allows them to be associated with particular algorithms.

• Encoding: this ontology contains a (small) collection of classes which represent the formats used for
encoding mathematical objects.

• Monet: As stated at the beginning of this section, MONET imports all the ontologies described
above.

5.2. Methodology. The ontological mode of the matchmaker is based on OWLJessKB—a memory-based
reasoning tool that may be used over ontologies specified in OWL. To store service descriptions, a MySQL
database was used, residing on a different machine. OWLJessKB uses the Java Expert System Shell (JESS) [36]
as its underlying reasoner. The OWLJessKB implementation loads multiple ontologies (the location of each
is specified as a URL) into memory from a remote Web server. Reasoning in this instance involves exe-
cuting one or more JESS rules over the ontology. JESS makes use of the Rete algorithm [37], which is
intended to improve the speed of forward-chained rule systems (this is achieved by limiting the effort re-
quired to recompute the conflict set after a rule is fired). However, it has high memory requirements due
to the loading of the ontology into the Rete object. Once it is created and set, it is fast to call rules and
queries in order to infer the semantic relations of the ontology loaded. A key limiting factor in OWLJessKB
is the time to load the ontology into primary memory (RAM), and the total RAM size on the host plat-
form.
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The implementation used for the ontological mode is the OWLJessKB version owljesskb20040223.jar 6. The
test environment included an Intel Pentium III processor 996MHz, 512MB RAM, and Windows XP Professional,
running Java SDK 1.5.0 and Jess 6.1p8.
Measurements—Loading ontologies: These measurements include memory tests for OWLJessKB as heap
size value were set for the loading of different ontology sizes. Additional measurements were carried out to
evaluate the performance of loading the ontologies for the OWLJessKB implementation.
Measurements—Query response times: Four different query types were chosen. These were the following:
(1) Simple assertion: Find all instances of a class x;
(2) Simple assertion: Verify whether instance x exists;
(3) Assertion individual: Confirm if constraint y is satisfied via a single object;
(4) Assertion aggregate: Confirm if constraint y is satisfied for an entire group.
Measurements—Scalability: These measurements involved analyzing the performance of query response
times for populated registries, starting with 100 services stored and going up to 100,000 services. Hence,
scalability is evaluated as the change in query response behaviour as additional services were added to the
registry.

5.3. Results.

5.3.1. Loading Ontology Performance. The previously described MONET ontologies (Figure 5.1) were
chosen for the performance measurements. The MONET ontologies consist of 2031 classes, 78 slots and 10 facets.
When increasing the ontology size, only the classes within the ontology were considered and expanded. Different
ontology sizes were used having the number of classes as shown in Table 5.1.

Table 5.1

Ontology Sizes

Ontology size No. of classes
1 2031

1.5 3046
2 4062

2.5 5077
3 6092

3.5 7107
4 8122

During preliminary measurement tests it was found that the OWLJessKB implementation needs the heap
size in the Java Virtual Machine to be modified to load all ontology sizes. The first set of measurements were
undertaken to investigate the necessary heap size required for the different ontologies. Figure 5.4 shows the
memory heap size for varying ontology sizes. It shows a linear distribution starting from 109MB for ontology
size 1 and ending at 847MB for ontology size 4. The regression line and the derived equation shown in the
figure allow to calculate the memory heap size needed for a particular ontology size.

The maximum heap size was set to 1 GB, which was found to be a sufficient value for the measurements
shown in Figure 5.4. The following set of measurements show the load time of the OWLJessKB implementation.
Ten test runs were conducted for each ontology size.

5.3.2. Query Performance. The next set of measurements were carried out having four queries (simple
assertion finding all instances of a class x, simple assertion asking whether instance x exists, assertion individual
and assertion aggregate) to test the response times of varying ontology sizes for both target systems. The
maximum heap size in the target system was set to 1 GB. For each query ten test runs were conducted and the
average values were taken.

Queries for the OWLJessKB implementation need to be specified in the JESS notation, which is the fol-
lowing:
(defquery query-sub-class ‘‘Find all sub-classes"

(triple

(predicate ‘‘http://www.w3.org/2000/01/rdf-schema#

6http://edge.cs.drexel.edu/assemblies/software/owljesskb/
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Fig. 5.4. Memory heap size

Fig. 5.5. Load time

subClassOf")

(subject ‘‘http://monet.nag.co.uk/owl#

service_algorithm")

(object ?y)))

A service stored in the registry is nagopt—fitting the GAMS taxonomy G1a1a [6] (a variant of unconstrained
optimisation) and using OpenMath as its I/O format. In this case the description also indicates that the service
uses NAG’s implementation of the safeguarded quadratic-interpolation algorithm.
<service name="nagopt">

<classification>

<gams_class>GamsG1a1a</gams_class>

<problem>constrained_minimisation</problem>

<input_format>OpenMath</input_format>

<output_format>OpenMath</output_format>

<directive>find</directive>

</classification>

<implementation>

<software>NAG_C_Library_7</software>

<platform>PentiumSystem</platform>
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Fig. 5.6. Query Performance

Fig. 5.7. Scalability of populated services

<algorithm>Safeguarded_Quadratic-Interpolation</algorithm>

</implementation>

</service>

In Figure 5.6 the response time of the four queries are shown. No increase in query response time for larger
ontology sizes can be seen, which means that the ontology size does not increase the query response time. The
average deviation (specifying measurement accuracy) is 1.8 ms. Please note that Q1, Q4 times identical after
ontology of size 2.

5.3.3. Scalability Performance. Measurements were taken populating the registry with an increasing
number of services. Ontology size 1 was taken for this set of measurements, with a maximum heap size of
1 GB. The registry was populated with 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and 100,000
services (therefore, Figure 5.7 use a logarithmic scale). In Figure 5.7 a linear distribution between query time
and number of services can be seen. However, the time measurements for 100, 200 and 500 services in Query 1,
2 and 4 are scattered around 10 ms and 20 ms, this is due to the measurement accuracy.

6. Conclusion and Further Work. We have presented an approach to matchmaking in the context of
mathematical semantics. The additional semantic information greatly assists in identifying suitable services in
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some cases, but also significantly complicates matters in others, due to their inherent richness. Consequently,
we have put forward an extensible matchmaker architecture supporting the dynamic loading of plug-in matchers
that may employ a variety of reasoning techniques, including theorem provers and computer algebra systems as
well as information retrieval from textual documentation of mathematical routines (this last is under develop-
ment at present). Although our set of application examples is as yet quite small, the results are promising and
we foresee the outputs of the project being of widespread utility in both the e-Science and Grid communities, as
well as more generally advancing semantic matchmaking technology. The performance measurements conducted
showed the scalability of the system with the drawback of a relatively long ontology load time. Although the
focus here is on matchmaking mathematical capabilities, the descriptive power, deriving from quantification
and logic combined with the extensibility of OpenMath creates the possibility for an extremely powerful general
purpose mechanism for the description of both tasks and capabilities. In part, this appears to overlap, but also
to complement the descriptive capabilities of OWL and, in much the same way as it was applied in MONET,
we expect to utilise OWL reasoners as plug-in matchers in the architecture we have set out.
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