
 

 

Introduction of Semantic Matchmaking to 
Grid Computing 

 
 

Simone A. Ludwig1 and S.M.S. Reyhani2 
1School of Computer Science, Cardiff University, Cardiff CF24 3AA, UK, Simone.Ludwig@cs.cardiff.ac.uk 

2Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK, smsreyhani@ieee.org 
 

Abstract 

The fundamental problem the Grid research and development community is seeking to solve is how to coordinate distributed 
resources amongst a dynamic set of individuals and organizations in order to solve a common collaborative goal. The problem of 
service discovery in a Grid environment arises through the heterogeneity, distribution and sharing of the resources in different 
virtual organizations. This paper proposes a service discovery framework which is based on semantics. It gives an example of the 
Grid Job Submission Service written in DAML-S in order to show how service ontologies are implemented. This semantic 
approach allows a more flexible and dynamic matching mechanism based on semantic descriptions stored in ontologies. 
 
Keywords: Ontology; Matching Mechanism; Grid Service Discovery 
 
 

1. Introduction 

The computational speed of individual computers has 
increased by about one million times in the past fifty years. 
However, they are still not fast enough for more and ever 
more scientific problems. For example, in a few physics 
applications, data is produced by the fastest contemporary 
supercomputer. The analysis of this data would need much 
more computational power than presently available. 

In the mid 1990s Ian Foster and Carl Kesselman 
proposed a distributed computing infrastructure for 
advanced science and engineering, which they called “The 
Grid”. The vision behind the Grid is to supply computing 
and data resources over the Internet seamlessly, 
transparently and dynamically when needed, such as the 
power grid supplies electricity to end users. The Grid 
originated from trying to solve the information and 
computational challenges of science [1]. 

Locating a service or a device on demand is a 
challenging task. A variety of service discovery systems 
exist that enable an application to discover a service. Most 
of these systems support an attribute-based discovery as 
well as a simple name lookup, also called matching, to 
locate a service. Usually only a set of primitive attribute 
types, such as string and integer, are used to characterize a 
service. The service discovery process is therefore 
primarily done by type matching, based on string or integer 
comparison. The existing service discovery systems lack 
the ability of inexact matching. In Grid environments 
where so many different implementations of services are 
available, that might vary in name and functionality, a 
more powerful matching process is desirable. The need for 
semantic matching becomes increasingly important as more 
and more services are developed. 

HEP experiments such as ALICE [2], ATLAS [3], CMS 

[4] and LHCb [5] require huge distributed computational 
infrastructures to satisfy their data processing and analysis 
needs. These HEP experiments want to access the Grid in 
order to process their petabytes of data necessary for their 
experimental evaluations. The HEP experiments are 
different independent applications which want to make use 
of the Grid. Therefore, there is a need for semantic service 
discovery in a Grid environment. 

Semantic Matching focuses on the problem of locating 
services on the basis of the capabilities that they provide. 
The solution to this problem requires a language to express 
the capabilities of services, and the specification of a 
matching algorithm between service advertisements and 
service requests, one that recognizes when a request 
matches an advertisement. The term ontology is useful in 
the Grid services context, where it describes the need for 
the provider of a service and the user of that service to 
share a common understanding of what capabilities the 
service offers and how they can be put to use [6]. This is 
described in more detail in the next section. 

This paper is organized as follows. Section 2 gives an 
introduction to the term ontology and its development. In 
section 3, the service discovery framework including the 
matching mechanism is presented. Furthermore, part of the 
implementation of the ontology for the Grid Job 
Submission Service written in DAML-S is described. 
Section 4 presents an account of work related to this 
subject. Finally, section 5 concludes this paper with a 
summary of the proposed approach containing a 
comparison with the related work. 

 

2. Background to Ontology 

When two or more parties seek a common understanding 
of something, they must work together to ensure that there 



 

is a high degree of correlation and similarity between the 
details of their respective descriptions and definitions of 
what they are trying to agree on [7]. This implies that 
shared understanding requires shared definitions. As an 
example, the day-to-day human interactions are made 
possible by the fact that our society's members share 
common understanding and common values. This sharing 
of common understanding is categorized as the science of 
ontology, which involves the study of the general concepts 
and abstractions that make up the fundamental aspects of 
our world. Over the years, the term "ontology" has grown 
beyond its original philosophical use and its definition has 
been blurred slightly when applied to some areas of 
computing. The term is used in Artificial Intelligence, for 
example, to describe the fundamental components used to 
model the worlds that robots understand. Robots can 
understand only what can be represented as allowed by 
their ontologies. 

Because we pay little attention to the ontology problem 
in our day-to-day human interactions, we usually take for 
granted our shared understanding and shared values that 
allow us to interact with relative ease. We tend not to 
consider it with respect to computing problems such as 
computing services. 

Particularly, for Grid environments where service 
discovery is a significant issue, the need to share a common 
ontology becomes very important. 

 

2.1. History of Ontology Development 

A prerequisite for widespread use of ontologies is a joint 
standard for their description and exchange. RDF(S) 
(Resource Description Framework Schema) itself is an 
ontology/knowledge representation language which 
contains classes and properties (binary relations), range and 
domain constraints (on properties) and subclass and 
subproperty (subsumption) relations. RDF(S) is a relatively 
primitive language, however, more expressive power 
would clearly be necessary and desirable to describe 
resources in sufficient detail. Moreover, such descriptions 
should be amenable to automated reasoning if they are to 
be used effectively by automated processes [8]. 

These considerations led to the development of the 
Ontology Inference Layer (OIL) [9] and later to the design 
of DAML+OIL [10]. DAML+OIL is a more recent 
proposal for an ontology representation language that has 
emerged from work under DARPA's Agent Markup 
Language (DAML) initiative along with input from leading 
members of the OIL consortium. DAML+OIL is based on 
the original OIL language, but differs in a number of ways. 
DAML+OIL provide a greater interoperability on the 
semantic level. In this way, DAML+OIL extends the 
RDF(S) basic primitives for providing a more expressive 
ontology modeling language and some simple terms for 
creating inferences. In particular, DAML+OIL has moved 

away from the original frame-like ideas of OIL. It is an 
alternative syntax for a Description Logic (DL). 

As part of the DARPA Agent Markup Language 
program, an ontology of services, called DAML-S [11] has 
been developed, which provides a set of basic concepts and 
relations for declaring and describing services, by utilizing 
the ontology structuring mechanisms provided by DAML. 

 

 
Figure 1:  Upper Ontology for Services 

 
The DAML-S service is characterized in three types 

which are service profile, service model and service 
grounding [12]. This is shown in Figure 1. The service 
profile describes what the service does. It provides the type 
of information needed by a service requester to determine 
whether the service has the desired capabilities. The service 
model, also named process model, describes how the 
service works, i.e. how it is composed and what happens 
when the service is executed. A service grounding specifies 
the details of how a service can be accessed. The profile 
provides the information needed for the discovery of a 
service. The service model and grounding describe how 
service requesters and providers can access and 
interoperate with each other. 

 
Description Properties  

serviceName  The name of the service.  
intendedPurpose  A high-level description of what 

constitutes (typical) successful. 
textDescription  A brief, human readable description of 

the service, summarizing what the 
service offers or what capabilities are 
being requested. 

role  An abstract link to actors involved in the 
service execution. 

requestedBy  A sub-property of role referring to the 
service requester. 

providedBy  A sub-property of role referring to the 
service provider. 

Table 1:  Description Properties of the Service Profile 
 
Service profiles consist of three types of information: 

1. A human readable description of the service. 
2. A specification of the functionalities that are 

provided by the service. 

Resource Service 

Service Profile 

Service Model 

Service Grounding 

description 

functionalities 

functional attributes 

provides 

presents describedBy 

supports 

How to access it 

What it does 

How it works 



 

3. A list of functional attributes that provide 
additional information and requirements about 
the service that assist when reasoning about 
several services with similar capabilities. 

 
Functional Attributes 

geographicRadius Geographic scope of the service, 
either at the global scale (e.g. e-
commerce) or at a regional scale 
(e.g. pizza delivery).  

degreeOfQuality Quality qualifications, such as 
providing the cheapest or fastest 
possible service.  

serviceParameter An expandable list of properties that 
characterize the execution of a 
service, such as 
averageResponseTime or 
invocationCost.  

communicationThru High-level summary of how a 
service may communicate, e.g. what 
communication language is used 
(e.g., KQML, SOAP).  

serviceType Broad classification of the service 
that might be described by an 
ontology of service types, such as 
B2B, B2C etc.  

serviceCategory Categories defined within some 
service category ontology. Such 
categories may include products, 
information services etc.  

qualityGuarantees Guarantees that the service promises 
to deliver, e.g. guaranteeing to 
provide a response within 3 minutes, 
etc.  

qualityRating Industry-based ratings, such as the 
“Dun and Bradstreet Rating” for 
businesses.  

Table 2:  Functional Attributes of the Service Profile 
 
Service functionalities are represented as a 

transformation from the inputs required to the outputs 
produced. For example, a news reporting service would 
advertise itself as a service that, given a date, will return 
the news reported on that date. Functional attributes 
specify additional information about the service, such as 
what guarantees response time or what accuracy it provides 
or the cost of the service. Table 1 and 2 list the properties 
defined by the service profile as described above. 

 

3. Service Discovery Framework 

Computational Grids, emerging as an infrastructure for 
the next generation computing, enable the sharing, 
selection and aggregation of geographically distributed 
heterogeneous resources for solving large-scale problems 
in science, engineering and commerce. As the resources in 
the Grid are heterogeneous and geographically distributed 
with varying availability and variety of usage and cost 
policies for diverse users at different times, priorities as 
well as goals of both users and owners vary with time. The 
management of resources and services in such a large 
distributed environment is a complex task. Therefore, 

service discovery plays an important role in such 
environments. 

The following is a description of a proposed service 
discovery framework for Grid environments. The 
framework relies on an ontology description, that allows 
semantic matching and it is based on the concepts of the 
LARKS (Language for Advertisement and Request for 
Knowledge Sharing) matchmaker proposed by Sycara et al. 
[13]. The matching mechanism comprises of three 
matching stages. These are context, syntactic and semantic 
matching, whereas the service ontology provides the 
knowledge-base. 

The difference between the LARKS and the Grid service 
discovery framework is that the Grid service discovery 
relies on DAML-S and its ontologies for the matching, 
while LARKS only uses the set of filters that progressively 
restrict the number of advertisements which are candidates 
for a match. The Grid service discovery framework 
achieves semantic matching as it relies on the three 
matching stages and also allows the flexibility of close 
matches by providing an ontology knowledge-base. 

The description of the matching process in the service 
discovery matching framework is described below, and is 
followed by a description of the framework. 

 

3.1. Matching Mechanism 

An advertisement matches a request, when the 
advertisement describes a service that is sufficiently similar 
to the service requested [14]. The problem of this definition 
is to specify what “sufficiently similar” means. Basically, it 
means that an advertisement and a request are “sufficiently 
similar” when they describe exactly the same service. This 
definition is too restrictive, because providers and 
requesters have no prior agreement on how a service is 
represented and additionally, they have very different 
objectives. A restrictive criterion on matching is therefore 
bound to fail to recognize similarities between 
advertisements and requests. 

It is necessary to allow matching engines to perform 
flexible matches, those that recognize the degree of 
similarity between advertisements and requests in order to 
provide a softer definition of “sufficiently similar”. Service 
requesters should be allowed to decide the degree of 
flexibility that they grant to the system. If they allow little 
flexibility, they reduce the likelihood of finding services 
that match their requirements, which means, they minimize 
the false positives, while increasing the false negatives. On 
the other hand, by increasing the flexibility of a match, 
they achieve the opposite effect, that is, they reduce the 
false negatives at the expense of an increase of false 
positives. 

An additional problem related with performing flexible 
matches is that the matching engine is open to exploitation 
from advertisements and requests that are too generic in the 



 

attempt to maximize the likelihood of matching. For 
instance, a service may advertise itself as a provider of 
everything, rather than to be precise with what it does and 
similarly, the requester may ask for any service, rather than 
specifying exactly what it expects. The matching engine 
can reduce the efficiency of these exploitations by ranking 
advertisements based on the degree of a match supplied 
with the request. 

Considering all these criteria, the matching engine 
should satisfy the following [14]: 

a) The matching engine should support flexible 
semantic matching between advertisements and 
requests based on the ontology available to the 
service and the matching engine. 

b) Despite the flexibility of the match, the matching 
engine should minimize false positives and false 
negatives. Furthermore, the requesting service 
should have some control on the amount of 
matching flexibility it allows to the system. 

c) The matching engine should encourage providers 
and requesters to be precise with their descriptions 
at the cost of either not being matched or being 
matched inappropriately. 

d) The matching process should be efficient which 
means that it should not burden the requester with 
excessive delays that would prevent its 
effectiveness. 

The algorithm proposed aims to satisfy all four 
requirements. Semantic matching is based on DAML-S 
ontologies. The advertisements and requests refer to 
DAML-S concepts and the associated semantics. By using 
DAML-S, the matching process can perform implications 
on the subsumption hierarchy leading to the recognition of 
semantic matches despite their syntactical differences and 
difference in modeling abstractions between 
advertisements and requests. The use of DAML-S also 
supports accuracy, which means that no matching is 
recognized when the relation between the advertisement 
and the request does not derive from the DAML-S 
ontologies used by the registry. Furthermore, the semantics 
of DAML-S descriptions allow the definition of a ranking 
function which distinguishes multiple degrees of matching. 

 
3.2. Service Discovery Matchmaker 

Three components are necessary for the Grid service 
discovery matching. These are service provider, service 
requester and service discovery matchmaker. The sequence 
of interactions is as follows: 

1. The service provider registers its service 
description in the service registry database. 

2. The Grid application requests a Grid service 
and sends the request to the service discovery 
matchmaker. 

3. The matchmaker returns the matches to the 

service requester. 
4. The service requester decides then which 

service to use depending on the client’s need 
and contacts the service directly. 

Grid services are services that are provided in a Grid 
environment. These services are, for example, 
authentication, authorization, job submission, distributed 
job scheduling, resource optimization, data management, 
wide-area data transfer, file replication, resource 
management and resource monitoring. Grid services can be 
defined as a bundle or a collection of “simple” services. 
These services are registered in the service registry 
database. 

The service requester consumes services offered by Grid 
service providers in the system. A request for any Grid 
service has to be sent to the matchmaker. In a Grid 
environment, service requesters are the applications which 
use the Grid services. These are e.g. the LHC-HEP 
experiments which want to access the Grid services in 
order to process their Petabytes of data necessary for their 
experimental evaluations. 

The service matchmaker mediates between service 
requesters and service providers for some mutually 
beneficial cooperation. Each provider must first register 
with a registry, also called matchmaker. Service provider 
advertises their capabilities (advertisements) by sending 
some appropriate messages describing the kind of service 
they offer. Every request a matchmaker receives will be 
matched with its actual set of advertisements. If the match 
is successful, the matchmaker returns a ranked set of 
appropriate service providers to the requester. 

In contrast to a broker, a matchmaker does not deal with 
the task of contacting the relevant providers, transmitting 
the service request to the service provider and 
communicating the results to the requester. This avoids 
data transmission bottlenecks, but it might increase the 
amount of interactions between service requesters and the 
matchmaker. 

The matchmaker processes a received request in the 
following three basic steps: 

a) Every pair of request and advertisement has to go 
through several different matching stages during 
the matching process where a kind of comparison 
of the request with all advertisements is 
performed. 

b) Decision of the service provider whose 
capabilities match best with the request depending 
on the specified algorithm and the defined service 
ontology. 

c) Providing information to the service requester by 
sending a contact address and related capability 
descriptions of the relevant service provider. 

The ontology of a matchmaker is not equal to the union 
of local domain ontologies of all service providers who are 
actually registered at the matchmaker. Thus, a matchmaker 



 

has only partial knowledge and might not be up-to-date 
with the actual time of processing incoming requests. This 
is due to the fact that, for efficiency reasons, changes in the 
local ontology of a service provider might not be 
propagated immediately to all matchmaker it is registered 
at. These are the implications of a centralized service 
discovery model for the Grid service discovery 
matchmaker. A better solution is a decentralized service 
discovery model following the distributed nature of the 
Grid. In distributed systems components may fail, 
messages may be lost or services expire, hence a 
management for the lifetime of services must be provided 
to allow a secure service discovery process [15]. 

The architecture fulfils the matching criteria listed in 
section 3.1 as follows. The Grid service discovery 
matchmaker supports flexible semantic matching between 
advertisements and requests based on the ontology 
available. Minimizing false positives and false negatives is 
achieved with three matching stages in combination with 
the well-defined ontology. The matching stages restrict the 
false positives and the ontology restricts the false 
negatives. The matching engine should encourage 
providers and requesters to be precise with their 
descriptions. To achieve this, the service provider follows 
an XML-based description to advertise its services and the 
service requester generates a query in a specified format. 
Defining the ontology and the matching stages precisely 
allows the matching process to be efficient. 

 

3.3. Component Description of the Matchmaker 

The matching process of the matchmaker is designed 
with respect to the criteria listed in the first section. The 
matching process is organized as a series of matching 
stages. This means that matching a given request into a set 
of advertisements consists of the following three matching 
stages: 

1) Context Matching - Selects those advertisements 
in the context database that can be compared with 
the request in the same or similar context. 

2) Syntactic Matching - This stage matches the 
request syntactically with any advertisement 
selected by the context matching. 

3) Semantic Matching - This final stage matches the 
request from the context matching using semantic 
descriptions of service properties. 

The context matching selects the appropriate context of 
an application domain. This stage is very important 
especially in a Grid environment where the different 
applications want to match Grid services and specify the 
service request in their own “application” language. 
Additional parameter are attached and forwarded to the 
following matching stage. The syntactic matching helps to 
find services which are well known and where the service 
requester either knows exactly the service name or where 

the service request is translated into the grid services 
context via the context matching. In order to find the 
service a request to a registry is made where the service 
details are returned from. The semantic matching stage 
performs a match based on an ontology where the concepts 
and semantics of the services are described. This 
knowledge is inferred by a reasoning engine and the 
matched values are returned to the service requester. The 
actual service details can be queried from the registry 
again. 

The service registry database contains all Grid services 
with the DAML-S service profile structure. The service 
ontology database contains the DAML-S service ontology 
that was described in section 2. The service registry 
database is linked to the service ontology. The main 
benefits of providing a local ontology are as follows. The 
user can specify in more detail what is being requested or 
advertised, and particularly the matchmaker is able to make 
automated inferences on these additional semantic 
descriptions. This improves the overall quality of the 
matching process. 

The semantic matching stage is responsible for matching 
the request semantically. This is performed as follows. The 
Grid services ontology is parsed by a DAML parser. The 
attributes and classes of DAML-S describe the concept of 
the ontology. It characterizes the service for advertisement, 
discovery and matching. The service request is being 
matched semantically by parsing the ontology. The 
DAML-S code facilitates effective parsing of service 
capabilities through its use of generic RDF(S) symbols 
compared to DAML-S specific symbols. With a defined set 
of rules, an inference engine reasons about the parameters 
parsed from the ontology. The result parameters of the 
inference process are forwarded to the registry where a 
lookup is performed. 

 

3.4. Implementation of the Ontology written in DAML-S 

The Grid Job Submission Service (JSS) was 
implemented as part of the Grid ontology written in 
DAML-S and is described in detail as follows. JSS is 
responsible for the actual job management operations 
(submission, cancellation and monitoring) once the 
Resource Broker (RB) has chosen a suitable Computing 
Element for running the job. The RB is a middleware that 
supplies distributed clients with job execution in a 
heterogeneous computing environment such as the Grid. 
Client applications are provided with a set of interfaces for 
sending requests and receiving responses to and from the 
RB. The RB is responsible for carrying out tasks to satisfy 
the client requests. These tasks include e.g. interacting with 
the Replica Catalog and performing the job submission via 
the JSS. 

The JSS comprises the following steps: 
1. Check certificate validity. 



 

2. Create JDL (Job Description Language) for the 
job. 

3. Submit the job using a net process or any more 
complex procedure. 

4. Monitor the load via network. 
5. Verify correct job execution and progress. 
6. Periodically check the log files such as 

stdout and stderr. 
7. Verify correct job termination and output. 
8. Update bookkeeping of processed data. 

The code fragments in the appendix describe the 
implementation of the service, profile and process ontology 
of the Grid JSS. Figure 2 shows the service model which 
describes the job submission service and refers to the 
service profile and the service process. The service profile, 
shown in Figure 3, defines the specification of the 
functionalities. These are provided by the service together 
with a list of functional attributes which offer additional 
information and requirements about the service. Figure 4 
shows the process model. It describes how the service 
works, i.e. how the service is composed and what happens 
when it is executed. There are atomic, simple and 
composite processes which can be modeled with DAML-S. 
The job submission is an atomic process identified by the 
&process attribute. 

 

4. Related Work 

During the past few years lots of effort and research 
have been placed in the field of knowledge representation 
and semantic matching mechanisms which are described in 
the following subsections. The different approaches are 
based on enhanced service discovery methods, description 
logics, the usage of ontology-based knowledge 
representation and Grid-based resource selection. 

 
4.1. Bluetooth Service Discovery Protocol 

The Bluetooth Service Discovery Protocol (BSDP) 
supports a sophisticated matching mechanism that uses 
semantic information associated with services and 
attributes to decide the success or failure of a query. The 
enhanced version of BSDP (presented by Saikanth Avanch 
et al. [16]) supports semantic matching and provides 
service registration. The first version used the RDF/RDF-S 
data model and the second and current version uses 
DAML. 

 
4.2. DReggie 

The project DReggie is an attempt to enhance the 
matching mechanisms in Jini and other service discovery 
systems. The key idea in DReggie is to enable these service 
discovery systems to perform matching based on semantic 
information associated with the services [17]. Semantic 
service matching introduces the possibilities of fuzziness 
and inexactness of the response to a service discovery 

request. In the DReggie system, a service discovery request 
contains the description of an "ideal" service - one whose 
capabilities match exactly with the requirements. Thus, 
matching now involves comparison of requirements 
specified with the capabilities of existing services. 
Depending on the requirements, a match may occur even if 
one or more capabilities do not match exactly. Service 
description in DReggie system is marked up in DAML. 
The semantic matching process, which uses these 
descriptions, is performed by a reasoning engine. At the 
heart of DReggie is an enhanced Jini Lookup Service (JLS) 
that enables smart discovery of Jini-enabled services. 
DReggie retains the matching mechanism currently 
employed by the Jini lookup and the discovery 
infrastructure. 

 
4.3. Description Logics Matchmaker 

DLs are a family of knowledge representation 
formalism. They are based on the notion of concepts and 
roles, and are mainly characterized by constructors that 
allow complex concepts and roles to be built from atomic 
DLs [18][13]. The main benefit from these knowledge 
languages is that sound and complete algorithms for the 
subsumption and satisfiability problems often exist. A DL 
reasoner solves the problems of equivalence, satisfiability 
and subsumption. The matching service provides three 
basic functionalities which are advertising, querying and 
browsing. The algorithm is a translation in DL terms of the 
ideas exposed, previously mentioned. The DL matchmaker 
achieves service discovery based on knowledge 
representation formalism. 

 
4.4. Semantic Search - SHOE 

SHOE (Simple HTML Ontology Extensions) is an 
ontology-based knowledge representation language 
designed for the Web. The current version of the language 
is the result of an effort that started in 1996 and anticipated 
many of the features which were subsequently added to 
XML and RDF. SHOE uses knowledge oriented elements, 
and associates meaning with content by making each web 
page commit to one or more ontologies [19]. SHOE 
ontologies permit the discovery of implicit knowledge 
through the use of taxonomies and inference rules, 
allowing content providers to encode only the necessary 
information on their web pages, and to use the level of 
details that is appropriate to the context. 
 
4.5. LARKS 

LARKS [13] is used by middle or matchmaking agents 
to pair service-requesting agents with service-providing 
agents that meet the requesting agents' requirements. 
LARKS is expressive and capable of supporting inferences. 
It also incorporates application domain knowledge in agent 
advertisements and requests. Domain-specific knowledge 
is specified as local ontologies in the concept language ITL 



 

(Information Terminology Language). The LARKS 
matchmaking process employs techniques from 
information retrieval, artificial intelligence, and software 
engineering to compute the syntactical and semantic 
similarity among agent capability descriptions. The 
matching engine of the matchmaker agent contains five 
different filters for context matching, word frequency 
profile comparison, similarity matching, signature 
matching and constraint matching. The user configures 
these filters to achieve the desired tradeoff between 
performance and matching quality. 
 
4.6. Resource Selector 

Tangmurarunkit et al. [20] have designed and prototyped 
an ontology-based resource selector that exploits 
ontologies, background knowledge, and rules for solving 
resource matching in the Grid to overcome the restrictions 
and constraints of resource descriptions in the Grid. 
Traditional resource matching, as done by the Condor 
Matchmaker [21] or Portable Batch System [22], 
matchmaking is based on symmetric, attribute-based 
matching. In order to make the matchmaking more flexible 
and also to consider the structure of VOs the framework 
consists of ontology-based matchmakers, resource 
providers and resource consumers or requesters. Resource 
providers periodically advertise their resources and 
capabilities to one or more matchmakers using 
advertisement messages. The user can then activate the 
matchmaker by submitting a query asking for resources 
that satisfy the request specification. The query is then 
processed by the TRIPLE/XSB deductive database system 
[23] using matchmaking rules, in combination with 
background knowledge and ontologies to find the best 
match for the request. 
 

5. Conclusion 

In a Grid environment where so many different 
implementations are available the need for semantic 
matching based on a defined ontology becomes 
increasingly important in order to provide close and 

customized service request matches. This paper introduced 
a semantic service discovery framework for Grid 
environments. It showed the new matching mechanism 
based on ontology knowledge. The Grid ontology for the 
JSS (written in DAML-S code) was presented in order to 
show how ontologies are defined and implemented. The 
proposed matching framework allows a better service 
discovery and close matches in a flexible way based on the 
defined ontology. Therefore, Grid applications are able to 
specify the criteria a service request should be matched 
with. 

A link to other semantic and ontology representations 
such as the BSDP, DReggie, DLs, SHOE, LARKS and 
resource selector were accounted for. The related projects 
fall into the categories of enhanced service discovery 
methods, description logics, usage of ontology-based 
knowledge representation and Grid-based resource 
selection. 

The proposed semantic service discovery framework has 
two close relations. The first is on the semantic side with 
the LARKS matchmaker, where the main concept of 
semantic matching was taken from; and the second is the 
relation to the Grid with the resource selector, where 
semantic matching was also introduced to Grid computing, 
however not for services but for resources. The framework 
proposed enabled a first step towards a semantic service 
discovery approach in a Grid environment. The main 
requirements which have driven the development of the 
semantic framework were high degree of flexibility and 
expressiveness, support for subsumption and datatypes and 
a flexible and modular structure. Special focus was given 
to an efficient matching mechanism which is based on 
semantic descriptions. 

Providing semantics defined in a Grid services ontology 
allows a semantic service discovery matching process. 
Taking the semantic approach into account for service 
discovery shows that it allows a more flexible and 
interoperable way of finding the appropriate services. 

 

Appendix 
 

<rdf:RDF 
<daml:Ontology> 
<daml:versionInfo> 
$Id: JobSubmission-Service.daml, v0.1 01/11/2002 Simone Ludwig $ 
</daml:versionInfo> 
<rdfs:comment This ontology represents DAML-S service description for the example of a Grid job submission.> 
... 
</daml:Ontology> 
<service:Service rdf:ID="JobSubmissionAgent"> 
<!-- Reference to the Job Submission Profile --> 
<service:presents rdf:resource="&js_profile;#Profile_JobSubmissionAgent"/> 
<!-- Reference to the JobSubmission Process Model --> 
<service:describedBy rdf:resource="&js_process;#JobSubmission_Process"/> 
</service:Service> 
</rdf:RDF> 



 

Figure 2:  Code Fragment of JobSubmission-Service.daml 
 

<rdf:RDF 
  <daml:Ontology about=""> 
    <daml:versionInfo> 
      $Id: JobSubmission-Profile.daml, v0.1 01/11/2002 Simone Ludwig $ 
    </daml:versionInfo> 
    <rdfs:comment> 
      DAML-S Coalition: This profile description represents an example of a Grid job submission. 
    </rdfs:comment> 
    ... 
  </daml:Ontology> 
  <!-- #    Instance Definition of JobSubmission Example Advertisement   # --> 
  <service:ServiceProfile rdf:ID="Profile_JobSubmissionAgent"> 
    <!-- reference to the service specification --> 
    <service:isPresentedBy rdf:resource="&js_service;#JobSubmissionAgent"/> 
    <!-- reference to the process model specification --> 
    <profile:has_process rdf:resource="&js_process;#JobSubmission_Process"/> 
    <profile:serviceName>JobSubmissionAgent</profile:serviceName> 
    <profile:textDescription> 
        This service provides the job submission service for the Grid environment. 
    </profile:textDescription> 
    <profile:providedBy> 
      <profile:ServiceProvider rdf:ID="JobSubmission"> 
        <profile:name>EDGJobSubmission</profile:name> 
      </profile:ServiceProvider> 
    </profile:providedBy> 
    ... 
    <!-- Descriptions of the parameters --> 
      <profile:input> 
        <profile:ParameterDescription  rdf:ID="CreateJDL"> 
          <profile:parameterName> CreateJDL </profile:parameterName> 
          <profile:restrictedTo rdf:resource="&concepts;#JDL"/> 
          <profile:refersTo rdf:resource="&js_process;#createJobDescriptionLanguage_In"/> 
        </profile:ParameterDescription> 
      </profile:input> 
      ... 
      <profile:input> 
        <profile:ParameterDescription  rdf:ID="UpdateBookkeeping"> 
           <profile:parameterName> UpdateBookkeeping </profile:parameterName> 
           <profile:restrictedTo rdf:resource="&concepts;#Bookkeeping"/> 
           <profile:refersTo rdf:resource="&js_process;#updateBookkeeping_In"/> 
        </profile:ParameterDescription> 
      </profile:input> 
      <!-- The consequence of the jobsubmission is that the certificate is valid --> 
      <profile:effect> 
        <profile:ParameterDescription rdf:ID="ValidCertificate"> 
          <profile:parameterName> ValidCertificate </profile:parameterName> 
          <profile:restrictedTo rdf:resource="&concepts;#HaveValidCertificate"/> 
          <profile:refersTo rdf:resource="&js_process;#HaveValidCertificate"/> 
        </profile:ParameterDescription> 
      </profile:effect> 
  </service:ServiceProfile> 
</rdf:RDF> 

Figure 3:  Code Fragment of JobSubmission-Profile.daml 
 
 
 

<rdf:RDF 
  <daml:Ontology about=""> 
    <daml:versionInfo> 
      $Id: JobSubmission-Process.daml, v0.1 01/11/2002 Simone Ludwig $ 
    </daml:versionInfo> 
    <rdfs:comment> 
      DAML-S Coalition: JobSubmission Example - Process Model 
<!-- Instance Definition of Job Submission --> 
  <process:ProcessModel rdf:ID="JobSubmissionAgent_ProcessModel"> 
    <service:topLevelProcess rdf:resource="#JobSubmission_Process" /> 
    <service:isImplementedBy> 
      <service:Service rdf:resource="&js_service;#JobSubmissionAgent"/> 
    </service:isImplementedBy> 
  </process:ProcessModel> 
<!-- JobSubmission (ATOMIC) --> 
  <rdfs:Class rdf:ID="JobSubmissionSteps"> 
    <rdfs:subClassOf rdf:resource="&process;#AtomicProcess" /> 
  </rdfs:Class> 
   ... 
  <rdf:Property rdf:ID="createJDL_In"> 
    <rdfs:subPropertyOf rdf:resource="&process;#input"/> 
    <rdfs:domain rdf:resource="#JobSubmissionSteps"/> 



 

    <rdfs:range rdf:resource="&concepts;#Job"/> 
  </rdf:Property> 
   ... 
  <rdf:Property rdf:ID="verifyJob_In"> 
    <rdfs:subPropertyOf rdf:resource="&process;#input"/> 
    <rdfs:domain rdf:resource="#JobSubmissionSteps"/> 
    <rdfs:range rdf:resource="&concepts;#Job"/> 
  </rdf:Property> 
  <rdf:Property rdf:ID="updateBookkeeping_In"> 
    <rdfs:subPropertyOf rdf:resource="&process;#input"/> 
    <rdfs:domain rdf:resource="#JobSubmissionSteps"/> 
    <rdfs:range rdf:resource="&concepts;#Bookkeeping"/> 
  </rdf:Property> 
</rdf:RDF> 

Figure 4:  Code Fragment of JobSubmission-Process.daml 

 

References 
[1] C. Goble, “The Grid - From concept to reality in distributed 

computing”, Bioinformatics World Article, 2003.  
http://www.bioinformaticsworld.info/feature3b.html. 

[2] ALICE - A Large Ion Collider Experiment.  
http://alice.web.cern.ch/Alice/. 

[3] ATLAS - A Toroidal LHC ApparatuS.  
http://atlasinfo.cern.ch/Atlas/Welcome.html. 

[4] CMS - Compact Muon Solenoid.  
http://cmsdoc.cern.ch/cms/outreach/html/index.shtml. 

[5] LHCb - Large Hadron Collider.  
http://lhcb-public.web.cern.ch/lhcb-public/default.htm. 

[6] S.A. Ludwig et al., “A Grid Service Discovery Matchmaker based on 
Ontology Description, Proceedings of the International EuroWeb 
2002 Conference, Oxford, UK, 2002. 

[7] W3C Working Draft, “Requirements for a Web Ontology Language”. 
http://www.w3.org/TR/webont-req/. 

[8] S. Bechhofer and C. Goble, “Towards Annotation using 
DAML+OIL”. K-CAP 2001 Workshop on Knowledge Markup and 
Semantic Annotation, Victoria B.C., 2001. 

[9] D. Fensel et al., “OIL in a nutshell”. In Proceedings of EKAW-2000, 
LN AI, 2000. 

[10] DAML. Darpa Agent Markup Language Program.  
http://www.daml.org. 

[11] A. Ankolekar et al., “DAML-S: Semantic Markup for Web Services”, 
International Semantic Web Workshop (SWWS), 2001. 

[12] T.R. Payne et al., "Advertising and Matching DAML-S Service 
Descriptions”, Semantic Web Working Symposium (SWWS), 2001. 

[13] K. Sycara et al., “Dynamic Service Matchmaking Among Agents in 
Open Information Environments”, Journal ACM SIGMOD Record, 
1999. 

[14] M. Paolucci et al., “Semantic Matching of Web Services 
Capabilities”. Proceedings International Semantic Web Conference 
(ISWC 02), 2002. 

[15] S.A. Ludwig, “Comparison of centralized and decentralized Service 
Discovery in a Grid Environment”, Proceedings of 15th IASTED 
International Conference, Parallel and Distributed Computing and 
Systems (PDCS), USA, 2003. 

[16] S. Anvancha et al., “Semantic Service Discovery in Bluetooth”. 
Technical report, Computer Science and Electrical Engineering, 
University of Maryland, 2001. 

[17] D. Chakraborty et al., “DReggie: Semantic Service Discovery for M-
Commerce Applications”, Workshop on Reliable and Secure 
Applications in Mobile Environment, 20th Symposium on Reliable 
Distributed Systems, 2001. 

[18] J. Gonzalez-Castillo et al., “Description Logics for Matchmaking of 
Services”, HP Labs Technical Report, 2001. 

[19] J. Heflin and J. Hendler, “Semantic Interoperability on the Web”, 
Proceedings of Extreme Markup Languages 2000. Graphic 
Communications Association, 2000. 

[20] H. Tangmunarunkit, S. Decker, C. Kesselman, “Ontology-based 
Resource Matching in the Grid - -The Grid meets the Semantic 
Web”, Proceedings of the First Workshop on Semantics in Peer-to-
Peer and Grid Computing (SemPG03) in conjunction with the 
Twelfth International World Wide Web Conference 2003, Hungary, 
2003. 

[21] The Condor Project.  
http://www.cs.wisc.edu/condor. 

[22] The Portable Batch System.  
http://pbs.mrj.com. 

[23] The XSB Research Group.  
http://xsb.sourceforge.net. 

 
 


