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Knowledge engineering is a discipline concerned with constructing and maintaining knowledge bases to
store knowledge of various domains and using the knowledge by automated reasoning techniques to
solve problems in domains that ordinarily require human logical reasoning. Therefore, the two key issues
in knowledge engineering are how to construct and maintain knowledge bases, and how to reason out
new knowledge from known knowledge effectively and efficiently. The objective of this paper is the com-
parison and evaluation of a Deductive Database system (ConceptBase) with a Semantic Web reasoning
engine (Racer). For each system a knowledge base is implemented in such a way that a fair comparison
can be achieved. Issues such as documentation, feasibility, expressiveness, complexity, distribution, per-
formance and scalability are investigated in order to explore the advantages and shortcomings of each
system.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge engineering is a discipline concerned with con-
structing and maintaining knowledge bases to store knowledge
of the real world in various domains and using the knowledge by
automated reasoning techniques to solve problems in domains
that ordinarily require human logical reasoning. Therefore, the
two key issues in knowledge engineering are how to construct
and maintain knowledge bases, and how to reason out new knowl-
edge from known knowledge effectively and efficiently.

Automated reasoning is concerned with the building of comput-
ing systems that automate this process. Although the overall goal is
to automate different forms of reasoning, the term has largely been
identified with valid deductive reasoning as conducted in mathe-
matics and formal logic. In this respect, automated reasoning can
be seen as mechanical theorem proving. Building an automated rea-
soning program means providing an algorithmic description to a
formal calculus so that it can be implemented on a computer to
prove theorems of the calculus in an efficient manner. Important as-
pects of this exercise involve defining the classes of problems the
program will be required to solve, deciding what language will be
used by the program to represent the given information as well as
new information inferred by the program, and specifying the mech-
anism that the program will use to conduct deductive inferences.

Knowledge-based systems (KBS) use human knowledge to solve
problems which normally requires human intelligence. These sys-
tems have been used in industry, finance and government for many
years. Approaches have varied from simple rule-based systems to
ll rights reserved.
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more complex models using fuzzy logic and artificial neural net-
works and incorporating probability theory, pattern recognition
and multi-variate analysis techniques. The KBS shell is a software
environment containing a knowledge acquisition system, the
knowledge base itself, inference engine, explanation subsystem
and user interface. The core components are the knowledge base
(human knowledge represented by e.g. IF-THEN rules) and the
inference engine (forward or backward chaining).

MYCIN [1] is an example of a rule-based expert system which
was designed for the diagnosis of infectious blood diseases. It pro-
vides a doctor with therapeutic advice in a convenient, user-
friendly manner. MYCIN has a number of characteristics common
to expert systems, including MYCIN can perform at a level equiva-
lent to human experts in the field and considerably better than ju-
nior doctors; MYCIN’s knowledge consists of about 450
independent rules of IF-THEN form derived from human knowl-
edge in a narrow domain through extensive interviewing of ex-
perts; the knowledge incorporated in the form of rules is clearly
separated from the reasoning mechanism. MYCIN has been devel-
oped without using a modeling framework, opposed to a few
frameworks which were developed to help during the knowledge
engineering process such as CLIPS (C Language Integrated Produc-
tion System) [2] or JESS (Java Expert Systems Shell) [3].

CLIPS is a productive development and delivery expert system
tool which provides a complete environment for the construction
of rule and/or object based expert systems. JESS is a rule engine
and scripting environment written in Java. With JESS, one can build
software that has the capacity to ‘‘reason” using knowledge supplied
in the form of declarative rules. JESS is small, light, and one of the
fastest rule engines available. JESS uses an enhanced version of the
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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Rete algorithm [4] to process rules and is a very efficient mechanism
for solving the difficult many-to-many matching problem.

KBS have been developed as modeling frameworks for the
knowledge engineering approach. CommonKADS [5] is known for
having a structure of the Expertise Model and Model-based and
Incremental Knowledge Engineering (MIKE) [6], and relies on
formal and executable specification of the expertise model as the
result of the knowledge acquisition phase. CommonKADS supports
most aspects of a KBS development project, such as project man-
agement organizational analysis (including problem/opportunity
identification), knowledge acquisition (including initial project
scoping), knowledge analysis and modeling, capture of user
requirements, analysis of system integration issues, and knowl-
edge system design. MIKE integrates semiformal and formal spec-
ification techniques together with prototyping into a coherent
framework. All activities in the building process of a knowledge-
based system are embedded in a cyclic process model.

Two different approaches concerned with automated reasoning,
namely Deductive Databases and the state-of-the-art Semantic
Web technology are being explored in this paper. An introduction
of the two systems follows.

The paradigm of Deductive Databases evolved during the 1980s,
based on the ideas developed in relational databases and logic pro-
gramming. Deductive Databases have been developed with the aim
of increasing the expressive power of relational query languages.
The technology of Deductive Databases extends the relational
database technology based on the ideas developed in logic pro-
gramming. Thus, Deductive Databases inherit the ideas and prop-
erties of both their predecessors: relational databases and logic
programming.

In Deductive Databases, data is described by logical formulas,
usually in a restricted subset of first-order logic. These formulas
are intended to specify part of the external world relevant to the
application at hand, called the application world. Thus, a Deductive
Database is a logical representation of the application world.
Therefore, the semantics of Deductive Databases are based on
mathematical logic. A user queries a Deductive Database by sub-
mitting a goal. Goals are also logical formulas. A correct answer
to a goal provides values for the variables of the goal that make this
query logically follow from the database. Hence, the semantics of
query answering in Deductive Databases is based on the notion
of logical consequences developed in mathematical logic. Besides
formulas specifying the database and queries, a Deductive Data-
base can also contain integrity constraints: logical conditions
which the database must satisfy at any given moment. The seman-
tics of integrity constraints is also based on mathematical logic [7].

The Semantic Web vision is to make the Web machine-readable,
allowing computers to integrate information and services from di-
verse sources to achieve the goals of end users. It becomes possible
to reason about the content when Web pages and services are aug-
mented with descriptions of their content. The potential impact is
huge, representing a reinvention of the world’s computing infra-
structure on at least the scale of the original Web. Semantic Web
technology could be used in many ways to transform the function-
ality of the Web by enriching metadata for Web content to improve
search and management; enriching descriptions of Web services to
improve discovery and composition; providing common access
wrappers for information systems to make integration of heteroge-
neous systems easier; and exchanging semantically rich informa-
tion between software agents.

Ontology languages [8] were created to augment data with
metadata. The most recent ontology for the Web is called OWL
(Web Ontology Language). OWL builds on a rich technical tradition
of both formal research and practical implementation. The techni-
cal basis for much of OWL is the part of the formal knowledge
representations field known as Description Logic (DL). DL is the
Please cite this article in press as: S.A. Ludwig, Comparison of a Deductive Da
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main formal underpinning of such diverse kinds of knowledge rep-
resentation formalisms as semantic nets, frame-based systems,
and others.

The Semantic Web envisions the idea of having Web resources
augmented with semantics, so that machines, e.g. via software
agents, can interact with each other in order to solve a common goal.
The process has to be fully automated, integration of heterogeneous
systems has to be made much easier, and reuse of data across vari-
ous applications has to be made possible to ensure the successful
delivery of the vision. The aim for the prosperity of the Semantic
Web is to develop open standards and tools in order to make it as
successful as the Web. These standards, and the tools developed to
embody them, must be easy to use and fault tolerant to allow every-
one to contribute and to bring the Semantic Web vision to reality.

The objective of this paper is the evaluation of a Deductive
Database system with a Semantic Web reasoning engine. For each
system a knowledge base is implemented in such a way that a
comparable evaluation can be achieved. Issues such as documenta-
tion, feasibility, expressiveness, complexity, distribution, perfor-
mance and scalability are investigated in order to explore the
advantages and shortcomings of each system.

The paper is outlined as follows. Section 2 describes both sys-
tems, ConceptBase and Racer. In Section 3, the comparison criteria
are explored and summarized. Furthermore, this section also
presents the performance analysis of both systems exploring the
direct comparison of queries, load time, and scalability of classes
and instances. The findings and conclusions are given in Section 4.
2. Description of both systems

ConceptBase was chosen as the Deductive Database system to
compare with the Semantic Web reasoning engine Racer. The
two systems are described in more details in the following
subsections.

2.1. ConceptBase

ConceptBase has been used in a number of applications at
various universities in Europe. The ConceptBase system, developed
since 1987, seeks to combine deductive rules with a semantic data
model based on Telos [9] (described further below). The system
also provides support for integrity constraints [10]. ConceptBase
is free software available for download, and the user interface is
Java based. Furthermore, ConceptBase uses the client–server archi-
tecture, and has a fairly extensive application programming inter-
face (API) for writing clients in Java, C or C++.

ConceptBase is a deductive object-oriented database manage-
ment program intended for conceptual modeling. It uses O-Telos
which is a version of the logical knowledge representation
language Telos, which includes deductive and object-oriented
features. O-Telos is based on Datalog, which is a subset of Prolog.
ConceptBase allows for logical, graphical and frame views of dat-
abases. The ConceptBase graph editor allows one to visualize the
relationships in the database, as well as adding and modifying
the classes, individuals, and relationships. Queries are represented
as classes that have membership constraints. Within the database,
all classes, instances, attributes, rules and constraints are repre-
sented as objects that may be updated at any time. However, there
is not an option to cascade changes, thus it is easy to add informa-
tion at any time, but it can be difficult to remove information.

2.2. Semantic Web technology: Protégé and Racer

The Semantic Web technology used to create an ontology to
represent the application domain was Protégé [11], a Java-based,
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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free ontology editor developed by Stanford Medical Informatics at
the Stanford University School of Medicine. It provides a knowl-
edge base that allows the user to create formal rules for a knowl-
edge representation system to reason through. After developing a
taxonomy and creating rules, the ontology can be exported in the
Web Ontology Language (OWL) format, which is similar to XML
in syntax and includes the descriptions of the classes and individ-
uals along with their explicit relationships. Protégé also provides a
Java API that allows OWL files to be imported and represented as
Java classes. The API has the capability to connect to a knowledge
representation system, such as Racer (Renamed ABox and Concept
Expression Reasoner) [12], allowing implicit relationships to be
found.

Racer is a commercial software developed by Racer Systems and
was used for this research investigation. This software is capable of
reasoning through Description Logic TBoxes (subsumption, satisfi-
ability, classification) and ABoxes (retrieval, tree-conjunctive query
answering using a XQuery-like syntax), such as the ones that are
created using Protégé and exported in the OWL format.
2.3. Comparison of different logics

Both logics, O-Telos which is the logic used in ConceptBase and
OWL used in Racer, are based to some extent on RDF (Resource
Description Framework). RDF(S) is an extension of RDF and repre-
sents a simple yet powerful model of semantic networks. In RDF(S)
every statement is expressed as a binary predicate on ground argu-
ments, with nodes in the graph denoting arbitrary resources and
literals which are used as subjects and objects of statements,
whereas arcs denote specific relationships between two of these
nodes [13].

O-Telos is derived from the knowledge representation language
Telos. While Telos was geared more to its roots in artificial intelli-
gence, O-Telos is more geared to database theory, in particular
deductive databases. O-Telos is an object-oriented meta-modeling
language that provides facilities for unrestricted meta modeling
levels. ConceptBase implements a powerful query and reasoning
(rules and constraints) mechanism based on Datalog.

OWL provides reasoning capabilities for the Web by supporting
XML, RDF and RDF(S) and providing additional vocabulary along
with a formal semantics. OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL and OWL Full. OWL DL (Descrip-
tion Logics) supports users who want the maximum expressive-
ness while retaining computational completeness and
decidability. OWL DL is used for the evaluation.

The main difference between O-Telos and OWL, is that O-Telos
is based on quadruples where the additional components identifies
the statement, while OWL has to use special link types to reify tri-
ple statements, i.e. to make statements about statements, O-Telos
statements are simply referred to by their identifier. Furthermore,
O-Telos uses Datalog, including negation and recursion as the
underlying logic. For this logic, certain problems are undecidable,
e.g. whether two query classes are disjoint, equivalent, or one is
a subset of the other, cannot be decided in general for Datalog.
Therefore, queries existent in OWL such as isDisjointTo are not
available in O-Telos due to the usage of Datalog.
3. Comparison

The ontology used for the evaluation is an extension of the piz-
za ontology supplied with Protégé [14]. The ontology contains
classes describing pizzas and ingredients, as well as sandwiches
and salads. The dishes (pizzas, sandwiches, salads) were defined
in terms of the ingredients they contain. All subclasses in the
ontology were given instances, and in some cases higher level clas-
Please cite this article in press as: S.A. Ludwig, Comparison of a Deductive Da
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ses had instances, thus there are nearly as many instances as clas-
ses. Some dishes were defined to describe specific foods, such as a
BLT (Bacon Lettuce Tomato) sandwich; other dishes such as vege-
tarianPizza were defined to be any pizza without meat or fish. The
classes describing specific foods were given necessary conditions,
for example, this pizza must have mozzarella as a topping. The
other classes, such as vegetarianPizza, were given necessary and
sufficient conditions, meaning that any pizza that had no meat
or fish would be considered a vegetarianPizza. Thus, the classes
that met the necessary and sufficient conditions would be sub-
sumed, creating an inferred hierarchy of classes. Fig. 1 shows a
screenshot of part of the food ontology created using the Protégé
editor.

ConceptBase on the other hand, required a slightly different
modeling technique. As it is not possible to create an inferred class
hierarchy, queryClasses were used in order to have similar reason-
ing capabilities as Racer. Query classes have constraints describing
which individuals may be members of the query class. Thus, with
the vegetarian pizza example, members of the vegetarian pizza
query class were defined to be any individual that did not have
meat, or fish, as an ingredient.

As knowledge bases consist of classes and instances, the inves-
tigation focuses on class and instance reasoning. In order to mea-
sure how good both systems scale, we have expanded the
ontologies in two directions; (1) scaling of classes and (2) scaling
of instances. Tables 1 and 2 show the properties of the different
ontology sizes used for this investigation. Table 1 contains 10 dif-
ferent ontology sizes, whereby the number of classes is increasing
with the size without containing any instances. For the scaling of
instances, the class structure of the size 1 ontology (Table 1) is
fixed to 263 classes for all different instance sizes.

3.1. Documentation

The documentation accompanying ConceptBase consists of a
tutorial, and a user manual. In addition, there is both a FAQ and
a forum online, and an API, with its own documentation available
upon request. The ConceptBase tutorial is quite short, and there is a
large leap between the tutorial and the other provided documenta-
tion. The tutorial gives the reader a good start with ConceptBase,
but often leaves tasks up to the reader to solve. The tutorial does
not have enough depth, whereas the user manual has ample depth
but only few examples are given. The FAQ is useful, providing an-
swers to common questions about getting ConceptBase running
properly. The forum contains a How-To section, a related docu-
ments section, and section for third party software extensions.
The javadocs are useful, however, they only describe what the
parameters and return values for methods are, and give little infor-
mation about what the methods mean, or how they work. In addi-
tion to the javadocs, there is similar documentation describing the
C and C++ APIs.

The documentation accompanying Protégé is expansive and the
community is quite active. For new users the Protégé FAQ provides
a quick way to get answers in order to start creating ontologies
using the software. The FAQ section provides information about
installation, general UI concerns, knowledge representation, data-
base support, plug-ins and licensing. There are also separate FAQ
sections for the Protégé-Frames editor and the Protégé-OWL editor.
Accompanying the documentation are tutorials that provide an
excellent way to learn how to develop ontologies, set up client/ser-
ver capabilities, collaborative ontology development and graphing
ontologies. There are comprehensive courses offered for Protégé
and Protégé-OWL as well as consulting. Furthermore, there are
four separate mailing lists (protégé-users, protégé-discussion,
protégé-owl, and protégé-beta) that offer help from the commu-
nity members.
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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Table 1
Ontology description of scaling classes.

Ontology
size

Number of
classes

File size (kB)
Racer

File size (kB)
ConceptBase

1 263 279 27
2 495 565 54
3 727 869 82
4 959 1189 109
5 1191 1536 137
6 1423 1897 163
7 1655 2280 191
8 1887 2683 219
9 2119 3105 246

10 2351 3553 273

Table 2
Ontology description of scaling instances (number of classes fixed to 263).

Ontology
size

Number of
instances

File size (kB)
Racer

File size (kB)
ConceptBase

1 217 305 46
2 434 321 65
3 651 348 84
4 868 375 104
5 1085 402 123
6 1302 433 142
7 1519 454 162
8 1736 480 181
9 1953 507 200

10 2170 542 220

Fig. 1. Food ontology shown in Protégé (same ontology implemented also in ConceptBase).
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3.2. Feasibility and expressiveness

The Protégé application has a query tab which allows the user
to write queries that return individuals that match certain con-
straints, however there is no documentation of this feature, and
the user created queries are not stored in the OWL file. Therefore,
the user defined queries cannot be accessed from the Protégé Java
API.

ConceptBase operates under a closed world assumption. This
assumption states that all relevant information is contained within
the database; there are no missing pieces of information. Thus,
ConceptBase allows a ‘‘cheese pizza” (pizza with cheese on it) to
be a vegetarian pizza. However, in Protégé, one must specifically
state that a pizza has cheese AND ONLY cheese, for it to be a veg-
etarian pizza. This difference stems from Protégé’s open world
assumption. This assumption implies that anything is possible, un-
less specifically denied in the ontology. Therefore, unless specifi-
cally limited, a pizza could have any number of toppings and still
be a cheese pizza, by virtue of having cheese as a topping. Thus,
in Protégé one must state that a cheese pizza has cheese, and only
has cheese.

Protégé allows for the modeling of both classes and instances.
Additionally, any number of meta-classes may be implemented.
An instance is an individual member of some class. Thus, any given
class can have subclasses, and instances. ConceptBase on the other
hand, allows for creation of subclasses and instances of classes, but
also subclasses and instances of instances. The notion of an in-
stance of an instance, or a subclass of an instance is difficult to
understand, and makes learning how to create simple databases
much more complex.
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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ConceptBase allows for the use and comparison of numerical
data, as well as string data types. Protégé on the other hand, does
not allow for this. For example, one can express that a person’s sal-
ary is $50,000 quite easily in ConceptBase, but this is not possible
using Protégé. Protégé does not support a numerical data type for
the range or domain of properties. Protégé only allows for the do-
main and range of a property to be classes within the ontology. In
ConceptBase, attributes specified within a class do not need to be
instantiated. For example, the class ‘‘person” could have the attri-
bute ‘‘name” which will be a string; one can create an instance of
person, and not define a name. Additionally, the name can be
added to the instance later. Finally, if a class has an attribute
‘‘name” there can be multiple instances of this attribute, thus peo-
ple can have multiple names, or in the case of our study, dishes can
have multiple ingredients.

Protégé properties are defined by their domain and range, as
well as whether they are functional, inverse functional, symmetric,
or transitive. Properties can then be applied to a class, indicating
that members of the class must satisfy the property.

ConceptBase does not allow properties to be defined outside of
a class. All properties are attributes of the class they describe.

3.3. Complexity and usability

The code generated by the Protégé GUI is difficult to read, as it is
an adaptation of XML. Also, the application was unstable with large
ontologies, it would often fail to save correctly, or hang. To ensure
that scaling was done correctly, the Protégé program was used
rather than using copy and paste to extend the ontology. Thus, cre-
ating the larger ontologies for scalability testing was an extremely
time consuming process.

The ConceptBase code was easy to read, and the program ran
smoothly. There was no generated code to deal with, only the code
which was written, so scaling up the databases was quite quick.
However, removing concepts from the database was difficult, be-
cause there is no ‘cascade’ option. Thus, if one wanted to remove
a base concept from the database one would need to remove all
the concepts that referenced the base concept first. Databases
using SQL solve this problem with the DROP CASCADE function.

Some queries would time out or take 10 times as long as other
queries, it seems that there is very little optimization for some que-
ries. The Protégé OWLViz tab allowed for visualizing the asserted
and inferred hierarchy of the ontology, however, there were no op-
tions to make changes to the ontology from the OWLViz tab. The
ConceptBase graph editor had functionality to view and change
the data in the database. Also, the ConceptBase graph editor allows
dragging and moving of classes or instances, whereas the Protégé
OWLViz tab did not allow the user to sort the classes manually.

ConceptBase is intended as a main memory database, and
therefore, the developers warn against using it for databases larger
than the computers main memory. Thus, ConceptBase is not well
suited as mass storage databases. Also, unlike larger commercial
database management systems, ConceptBase has minimal support
for recovery, and for multiple user usage.

ConceptBase allows for a fixed number of meta-classes, but cur-
rently, an unlimited number of meta-classes are allowed, thus
models can be subsumed into larger databases by adding another
meta-class level of abstraction, just as with Protégé.

3.4. Distribution

Semantic Web technology such as Protégé and Racer were built
with the aim of automating distributed service computing and
therefore are distributed by nature. ConceptBase is a client/server
installation which means that the knowledge base needs to reside
on the server machine. However, to enable distributed knowledge
Please cite this article in press as: S.A. Ludwig, Comparison of a Deductive Da
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bases, research has been done distributing the data for Deductive
Database systems.

Mohania and Sarda [15,16] presented a three level architecture
for a distributed Deductive Database system which extends the
power of distributed database systems to include deductive capa-
bilities. It allows both knowledge-based and data-based informa-
tion to be shared by the sites of a computer network in order to
process user queries.

Lim and Ng [17] proposed a rule and data allocation algorithm
for distributed Deductive Database systems. Rule and data alloca-
tion aims to take full advantage of concurrent execution of rules
which is an important design issue in distributed Deductive Data-
base systems. However, rule allocation algorithms, which maxi-
mize concurrent rule execution with minimal rule and data
replication and communication cost in distributed Deductive Data-
base systems, are lacking. The proposed algorithm considers rule
and data allocation as a single problem since the two are mutually
dependent. The algorithm determines the minimal replication of
rules and base relations that should reside at different sites in a
distributed database system.

Even though research has been done regarding the distribution
of distributed Deductive Database systems, ConceptBase has been
implemented as a local installation only.

3.5. Performance and scalability

In order to perform a comparison analysis of ConceptBase and
Racer, a knowledge base was implemented in both systems. Que-
ries were chosen which return the same results to evaluate class
and instance queries. The measurement methodology and setup
are described below.

3.5.1. APIs and queries
The ConceptBase API provides methods to ‘‘tell” files to the Con-

ceptBase server, retrieve a named class or individual, find instances
of a class or query a class, retrieve attributes of classes or individ-
uals, retrieve superclasses and subclasses, find the class that an
individual belongs to, and get generalizations and specializations
from a class. Additionally, several Boolean operations are provided
for testing the relationships between classes, or instances, such as
isSuperclassOf or isExplicitInstanceOf. There appeared to be many
methods that returned the same, or very similar results in different
formats, such as newline delimited, or comma delimited. The
redundant queries in ConceptBase returned the same classes, but
in different formats, e.g., subclasses can be returned in Concept-
Base code syntax, or as a string with one class per line, or with
all classes on one line separated by commas, or as a hashset,
depending on what the user want to do with the subclasses. Attri-
butes in ConceptBase are tied directly to the class they represent,
so all information about attributes is gained through the appropri-
ate class, or instance. The useful methods for obtaining information
from the database can be found in the ICBclient and ITelosObjectSet
classes.

The Protégé API allows the user to find descendant classes, clas-
sify the taxonomy, compute the inferred hierarchy, compute the
inferred types of all individuals, retrieve ancestor classes, retrieve
equivalent classes, retrieve subclasses, find individuals belonging
to a class, determine the subsumption relationship between two
classes, return the superclass of a class, get sub properties, get in-
verse properties, return the inferred equivalent classes, get the in-
ferred subclasses, get the inferred superclasses, maximum and
minimum cardinalities of properties, determine if subclasses are
disjoint, determine if a class has a superclass, return the name of
an instance, return the namespace of the ontology, return a list
of the possible rdf Properties, and return rdf types. Properties in
Protégé are independent of classes and instances, and thus may
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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Table 3
Query times of four queries in Racer and ConceptBase.

Query times in ms

Racer ConceptBase

Ontology size 1 with instances Query 1 2239.63 44.51
Query 2 2293.48 41.01
Query 3 2083.87 20.51
Query 4 2323.39 41.29

Ontology size 10 with instances Query 1 3848.46 44.82
Query 2 3841.95 41.03
Query 3 4835.92 2312.83
Query 4 4220.36 41.55
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Fig. 3. Load time of Racer for scaling of classes and instances.
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be queried directly. The useful methods for gaining information
about the model were spread across several classes in the API,
namely, ProtegeOWLReasoner, RDFProperty, OWLProperty, OWL-
NamedClass and OWLIndividual. Among these classes, there seemed
to be several redundant methods. This is because OWLProperty
inherits from RDFProperty and therefore has all the same methods,
plus a few more. ProtegeOWLReasoner and OWLNamedClass have
some methods with the same results; the difference is that Protege-
OWLReasoner calls Racer, whereas OWLNamedClass uses the results
from the last time the reasoner was used.

The main type of reasoning of a knowledge base can be divided
into two categories, class and instance reasoning. In order to per-
form a fair analysis of these systems, equivalent queries existent
in both systems which perform the same type of reasoning were
chosen. Two class queries (1 and 2) and two instance queries (3
and 4) were selected:

Query 1 returns all subclasses belonging to a particular class:
getDescendentClasses (Racer); getAllSubclassesOf (ConceptBase).
Query 2 returns the superclasses of a particular class: getSuper-
Classes (Racer); getExplicitSuperClasses (ConceptBase).
Query 3 returns all individuals that are members of a particular
class: getIndividualsBelongingToClass (Racer); getAllInstancesOf
(ConceptBase).
Query 4 returns all classes that an individual or an instance
belongs to: getIndividualTypes (Racer); getClassificationOf
(ConceptBase).

3.5.2. Methodology
Bash scripts were used to automate all measurement runs.

The process for each measurement was as follows: start Racer or
the ConceptBase server, run the Java query, and close Racer or Con-
ceptBase server to clear the cache. This process was repeated 30
times for each query. The Java query file used to perform a query
would start by loading the data model into Racer or the Concept-
Base server. Then, the Java method System.nanoTime was used
immediately before and after the query, and the difference was cal-
culated to estimate the performance of the query. Each time the
Java program was executed it would perform only one query, in or-
der to avoid caching issues across queries. System.nanoTime gives
results with a higher precision than System.currentTimeMillis, espe-
cially as several of the queries took less than 1 ms to execute.

3.5.3. Measurement set-up
The following measurement set-up was used for this

investigation.

� Hardware configuration:
� Lenovo M55 with 2.4 GHz Intel Core2 CPUs and 2 GB of RAM; no

hyperthreading.
� Software configuration:
� Mandriva Linux 2008.1;
� Java 1.6.0_03;
� Latest versions of ConceptBase 7.1, Protégé 3.4 and Racer 1.9.2.

3.5.4. Results
The evaluation was performed as follows. First, the queries exe-

cuted in both systems are compared. Then the load times for load-
ing the different ontologies into memory are measured.
Afterwards, the scalability of classes and instances are evaluated.

3.5.4.1. Query comparison. For the direct comparison, the individ-
ual- and class-type queries were measured using ontology size 1
with instances and the results are shown in Fig. 2. It shows that
all queries take longer in Racer than in ConceptBase.
Please cite this article in press as: S.A. Ludwig, Comparison of a Deductive Da
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For the given ontology size 1 the factor is 61, for ontology size
10 the factor reduces to 7 as the third query, returning instances
of a class, is also increasing with increasing ontology sizes. The ac-
tual query values for both sizes of ontologies are given in Table 3.

3.5.4.2. Load time of different ontology sizes. Before queries are ap-
plied in both Racer and ConceptBase, the knowledge base or ontol-
ogy needs to be loaded into memory first. Fig. 3 shows the load
time in seconds for increasing ontology sizes. Two distinctions
are made here for either scaling the classes or the individuals. Both
curves show a linear distribution with increasing ontology sizes,
however, the scaling of the classes has a greater impact on the per-
tabase with a Semantic Web reasoning engine, Knowl. Based Syst. (2010),
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formance than the scaling of the instances. The scaling of classes
has a gradient of 0.3, whereas the scaling of instances has a gradi-
ent of 0.07.

Fig. 4 shows the same measurements for ConceptBase with a
slightly different distribution. The scaling of instances seems to
be linear, however, the scaling of classes follows a quadratic distri-
bution. The query times for the scaling of classes are also larger
than for the scaling of instances as was also observed for Racer.

Comparing both systems it can be concluded that the load time
of ConceptBase is greater by a factor of 3.01 for the scaling of clas-
ses but is almost similar for the scaling of instances where the fac-
tor is 0.95.

3.5.4.3. Scaling of classes. Looking at how the performance scales
with increasing ontology sizes, Fig. 5 shows two queries run in Ra-
cer (the instance queries would not make sense when querying an
ontology without instances). It is observed, that queries getDecen-
dentClasses and getSuperclasses scale in a similar fashion with a
quadratic distribution. This is because the same operation is per-
formed, that is the classification of a new concept. Racer computes
more than is required in order to answer these particular class
queries.

ConceptBase on the other hand shows the measurements of the
similar queries with a linear distribution, shown in Fig. 6. Instead
of both queries scaling in the same fashion as in Racer, the query
time for subclasses is higher than for superclasses. It looks like
the performance is dependent on the number of return values.
getAllSubclassesOf returns 31–238 subclasses for ontology size 1
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and 10, respectively, while getSuperclassesOf returns only 1 super-
class for all ontology sizes.

Comparing the class queries executed in Racer and Concept-
Base, it shows that ConceptBase scales much better than Racer.
3.5.4.4. Scaling of instances. Fig. 7 shows the linear distribution of
query times for scaling of instances. It shows that the query times
for getIndividualBelongingToClass are higher than getIndividualTypes
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Table 4
Summary of comparison criteria of ConceptBase and Racer.

Criteria ConceptBase Protégé/Racer

Documentation Tutorial documents good regarding explicit how-to, but not enough
depth

Good tutorials and documentation for Protégé and Racer

User manual had sufficient depth but few examples

Feasibility and expressiveness Allows for creation of subclasses and instances of classes, but also
subclasses and instances of instances

Open world assumption; restriction must be explicitly
stated

Does not allow properties to be defined outside of a class No support for a numerical data type for the range or
domain of properties

Complexity and usability Difficult to remove base concepts; no DROP CASCADE function Graph editor (OWLViz) is only for viewing
Graph editor allows data manipulation Many extra plugins for different views
Restriction of main memory database (DB should not be larger than
main memory of computer)

Distribution Client/server application Distributed computing paradigm
KB needs to reside on server machine KB can reside anywhere

Performance and scalability Load time: linear for instance, quadratic for class scaling Load time: linear for class and instance scaling
Scaling of classes: linear distribution Scaling of classes: quadratic distribution
Scaling of instances: linear distribution Scaling of instances: linear distribution
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queries. getIndividualTypes looks at a specific individual and re-
turns all classes of which it is an instance of, whereas getI-
ndividualsBelongingToClass has to consider all individuals. The
implementation of the operations seem to be quite different and
therefore the result can be seen in the query times of both queries.

In Fig. 8 the instance queries performed in ConceptBase are
shown. The getAllInstancesOf query shows a quadratic distribution,
whereas the getClassificationOf query shows a linear gradient.
getAllInstancesOf takes longer as the return values range between
47 and 256 for ontology size 1–10, respectively, whereas getClassif-
icationOf returns always only one return value.

The direct comparison of the query times regarding the scaling
of instances of both systems shows that ConceptBase performs bet-
ter than Racer.
3.6. Discussion of findings

Table 4 shows a summary of the comparison criteria for both
ConceptBase and Protégé/Racer. Regarding the documentation,
Protégé provides better tutorials and documentation to help with
the usage of the software package. Looking at feasibility and
expressiveness – due to the open world assumption in Protégé,
restrictions have to be explicitly stated, whereas this is not neces-
sary in ConceptBase. Furthermore, Protégé does not allow for sup-
port of a numerical data type, which ConceptBase does.

Regarding the complexity and usability, both systems provide a
graph editor, which makes the implementation of the application
easier. One drawback of ConceptBase is that there is no option to
remove base concepts and their corresponding subconcepts.

Looking at the criteria of distribution, ConceptBase is imple-
mented as a client/server implementation. Therefore, the knowl-
edge base resides on the server side. The Semantic Web
technology including Protégé and Racer were built with the dis-
tributed computing paradigm in mind and thus, the knowledge
bases can reside on different machines.

The direct comparison of queries revealed that the queries in
ConceptBase run much faster than in Racer. The factors were 61
and 7 for ontology sizes 1 and 10, respectively, for ontologies with
instances. On the other hand however, the load time to load the
different ontologies was better in Racer by a factor of 3.01 for the
scaling of classes, but was almost similar for the scaling of in-
stances where the factor measured was 0.95. The load time for Ra-
cer is linear, whereas the load time for ConceptBase seems to have
a quadratic growth function. The scaling of classes revealed that
class queries take much longer in Racer than in ConceptBases, as
Please cite this article in press as: S.A. Ludwig, Comparison of a Deductive Da
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in Racer all consistencies are being checked before a class query
is being performed, measured by a factor of 470. The growth func-
tion for Racer for the class queries is quadratic, whereas the growth
function for ConceptBase is linear. The scaling of instance queries
showed a better performance for ConceptBase than for Racer by
a factor of 4.8. However, it seems that ConceptBase is more affected
by string processing of the return values of the queries. This means
that if a larger amount of result values are returned, the perfor-
mance decreases in ConceptBase, whereas Racer is not affected
by this.

4. Conclusion

This paper evaluated a Deductive Database system and a
Semantic Web reasoning engine: ConceptBase and Racer. For each
system a knowledge base was implemented in such a way that a
fair comparison could be performed.

The findings revealed that the reasoning capabilities in Racer
are richer, with many redundant queries, as due to the usage of
Datalog in ConceptBase certain problems are undecidable.

The performance and scalability analysis revealed that the load
time to load the different ontologies was shorter in Racer, espe-
cially for the scaling of classes; the load time to load the different
ontologies was smaller in Racer by a factor of 3.01 for the scaling of
classes, but was almost similar for the scaling of instances for
which the factor measured was 0.95. However, the queries in Con-
ceptBase run much faster than in Racer. The factors were 61 and 7
for ontology sizes 1 and 10, respectively, for ontologies with
instances.

Considering that ontologies are developed incrementally, add-
ing a relatively small increment to a large ontology has a great ef-
fect for loading this ontology into memory for ConceptBase,
whereas the class and instance queries in Racer will have a greater
performance reduction than ConceptBase.

As reasoning on the Web has seen a steady increase in the past
several years, this evaluation shows that Web reasoning has to
speed and scale up with technologies existing for many decades
such as deductive databases.
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