
J Grid Computing (2011) 9:279–301
DOI 10.1007/s10723-011-9180-5

Swarm Intelligence Approaches for Grid Load Balancing

Simone A. Ludwig · Azin Moallem

Received: 3 August 2010 / Accepted: 2 February 2011 / Published online: 22 February 2011
© Springer Science+Business Media B.V. 2011

Abstract With the rapid growth of data and
computational needs, distributed systems and
computational Grids are gaining more and more
attention. The huge amount of computations a
Grid can fulfill in a specific amount of time can-
not be performed by the best supercomputers.
However, Grid performance can still be improved
by making sure all the resources available in the
Grid are utilized optimally using a good load
balancing algorithm. This research proposes two
new distributed swarm intelligence inspired load
balancing algorithms. One algorithm is based on
ant colony optimization and the other algorithm
is based on particle swarm optimization. A sim-
ulation of the proposed approaches using a Grid
simulation toolkit (GridSim) is conducted. The
performance of the algorithms are evaluated us-
ing performance criteria such as makespan and
load balancing level. A comparison of our pro-
posed approaches with a classical approach called
State Broadcast Algorithm and two random ap-
proaches is provided. Experimental results show
the proposed algorithms perform very well in a
Grid environment. Especially the application of
particle swarm optimization, can yield better per-
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formance results in many scenarios than the ant
colony approach.

Keywords Ant colony optimization ·
Particle swarm optimization

1 Introduction

The computational speed of individual computers
has increased by about one million times in the
past fifty years. However, they are still not fast
enough for more and ever more scientific prob-
lems. For example, in a few physics applications,
data is produced in large quantities. The analysis
of this data would need much more computational
power than presently available when run on su-
percomputers. Therefore, in the mid 1990s Ian
Foster and Carl Kesselman proposed a distrib-
uted computing infrastructure for advanced sci-
ence and engineering, which they called the Grid.
The vision behind the Grid is to supply computing
and data resources over the Internet seamlessly,
transparently and dynamically when needed, such
as the power Grid supplies electricity to end users.

The resource management system is the central
component of a Grid system. Its basic responsi-
bilities are to accept requests from users, match
user requests to available resources for which
the user has permission to use and schedule the
matched resources [12]. To be able to fully benefit



280 S.A. Ludwig, A. Moallem

from such Grid systems, resource management
and scheduling are key Grid services, where issues
of task allocation and load balancing represent
a common challenge for most Grids [27]. In a
computational Grid, at a given time, the task is to
allocate the user defined jobs efficiently both by
meeting the deadlines and making use of all the
available resources [10].

Grid systems are classified into two categories:
compute and data Grids. In compute Grids the
main resource that is being managed by the re-
source management system is compute cycles (i.e.
processors), while in data Grids the focus is to
manage data distributed over geographical loca-
tions. The architecture and the services provided
by the resource management system are affected
by the type of Grid system it is deployed in. Re-
sources which are to be managed could be hard-
ware (computation cycle, network bandwidth and
data stores) or software resources (applications)
[12].

In traditional computing systems, resource
management is a well-studied problem. Resource
managers such as batch schedulers, workflow
engines, and operating systems exist for many
computing environments. These resource man-
agement systems are designed to work under the
assumption that they have complete control of a
resource and thus can implement the mechanisms
and policies needed for the effective use of that
resource. Unfortunately, this assumption does not
apply to the Grid. When dealing with the Grid
we must develop methods for managing Grid re-
sources across separately administered domains,
with the resource heterogeneity, loss of absolute
control, and inevitable differences in policy that is
the result of heterogeneity. The underlying Grid
resource set is typically heterogeneous [9].

The term “load balancing” refers to the tech-
nique that tries to distribute work load between
several computers, network links, CPUs, hard
drives, or other resources, in order to get opti-
mal resource utilization, throughput, or response.
The load balancing mechanism aims to equally
spread the load on each computing node, maxi-
mizing their utilization and minimizing the total
task execution time. In order to achieve these
goals, the load balancing mechanism should be
“fair” in distributing the load across the com-

puting nodes; by being “fair” we mean that the
difference between the “heaviest-loaded” node
and the “lightest-loaded” node should be mini-
mized [20].

Load balancing has always been an issue since
the emergence of distributed systems. In a dis-
tributed system there might be scenarios in which
a task waits for a service at the queue of one
resource, while at the same time another resource
which is capable of serving the task is idle. The
purpose of a load balancing algorithm is to pre-
vent these scenarios as much as possible [16].

For parallel applications, load balancing at-
tempts to distribute the computational load across
multiple processors or machines as evenly as
possible with the objective to improve per-
formance. Generally, a load balancing scheme
consists of three phases: information collection,
decision making and data migration. During the
information collection phase, the load balancer
gathers the information of the distribution of
workload and the state of computing environment
and detects whether there is a load imbalance. The
decision making phase focuses on calculating an
optimal data distribution, while the data migration
phase transfers the excess amount of workload
from one overloaded processor to another under-
loaded processor [15].

Load balancing algorithms can be classified
into sub categories from various perspectives.
They can be divided into static, dynamic or adap-
tive algorithms. In static algorithms, the decisions
related to balancing the load are made at compile
time. This means, these decisions are made when
resource requirements are estimated [30]. On the
other hand, a load balancer with dynamic load bal-
ancing allocates/re-allocates resources at runtime
and uses the system-state information to make its
decisions. Adaptive load balancing algorithms are
a special class of dynamic algorithms. They adapt
their activities by dynamically changing their para-
meters, or even their policies, to suit the changing
system state [24]. Derbal [32] proposes a scalable
distributed Entropy-based scheduling approach
that utilizes a Markov chain model to capture
the dynamics of the service capacity state of Grid
services. Another example is proposed in [34] with
the introduction of the Generational Scheduling
with Task Replication algorithm. This algorithm
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adapts to changes in performance by rescheduling
tasks.

Furthermore, methods used in load balancing
can be divided into three classes, i.e., centralized,
distributed (decentralized) and hierarchical [12].
In a centralized approach, all jobs are submitted
to a single scheduler. This single scheduler is re-
sponsible for scheduling the jobs on the available
resources. Since all the scheduling information
is available at once, the scheduling decisions are
optimal but this approach is not very scalable in a
Grid system [12]. As the size of the Grid increases,
keeping all the information about the state of
all the resources is a bottleneck. Therefore, scal-
ability is an issue in centralized approaches, in
addition to the single point of failure problem.

In a decentralized model there is no central
scheduler and scheduling is done by the resource
requesters and owners independently. This ap-
proach is scalable, distributed in nature, and
suits Grid systems well. But individual schedulers
should cooperate with each other in scheduling
decisions and the schedule generated may not
be the optimal schedule. This category of load
balancing is perfect for peer-to-peer architectures
and dynamic environments. Based on whether
or not schedulers cooperate with each other, de-
centralized approaches can be further classified
as cooperative or non-cooperative [12]. A general
and extensible scheduling architecture that ad-
dresses isssues such as resource utilitzation, re-
sponse time, global and local allocation policies,
and scalability are addressed in [33].

In a hierarchical model, the schedulers are or-
ganized in a hierarchy. High level resource en-
tities are scheduled at higher levels and lower
level smaller sub-entities are scheduled at lower
levels of the scheduler hierarchy. This model is a
combination of the above two models [12].

Each of these classes has its advantages and
disadvantages according to a number of factors,
e.g., the size of a system, dynamic behavior, etc.
[31]. However, all centralized approaches have the
following common disadvantages:

1. A central scheduler (load balancer) needs cur-
rent knowledge about the entire state of the
system at each point in time. This makes it

scale poorly with the growth in the size of
the system.

2. Failure of the scheduler results in failure of
the whole system, while in a distributed ap-
proach only some of the work is lost.

3. Distributed schedulers are much more dy-
namic and flexible to changes than centralized
approaches, because they do not need the
state of the system at each step in order to
perform their job.

There has been a great effort in recent years in
developing distributed load balancing algorithms,
while trying to minimize all the communication
needs resulting from the distributed nature. In this
research, we have focused on designing distrib-
uted load balancing algorithms with the inspira-
tion taken from swarm intelligence.

Swarm intelligence approaches are increasingly
being used to solve optimization problems. They
have proven themselves to be good candidates
in these areas. The notion of complex collective
behavior emerging from the behavior of many rel-
atively simple units, and the interactions between
them, is fundamental to the field of swarm intel-
ligence. The understanding of such systems offers
new ideas in creating artificial systems which are
controlled by such emergent collective behav-
ior; in particular, the exploitation of this concept
might lead to completely new approaches for the
management of distributed systems, such as load
balancing in Grids [23].

As swarm intelligence techniques have proved
to be useful in optimization problems they are
good candidates for load balancing, where the aim
is to minimize the load difference between the
heaviest and lightest node. The benefit of these
techniques stems from their capability in search-
ing large search spaces very efficiently, which
arise in many combinatorial optimization prob-
lems [26]. Load balancing is known to be NP-
complete when aiming to solve the problem using
a single processor, therefore the use of heuristics
is definitely necessary in order to cope in practice
with this difficulty [10].

This research proposes, implements and com-
pares two new approaches for distributed load
balancing inspired by Ant-Colony and Parti-
cle Swarm Optimization [17]. There are several
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objectives a good load balancer should address
such as fairness, robustness and distribution; a de-
tailed description of each is provided in Section 3.
These requirements are addressed with the design
of our algorithms. In the Ant-Colony approach
each job submitted to the Grid invokes an ant
and the ant searches through the network to find
the best node to deliver the job to. Ants leave
information related to the nodes they have seen as
pheromone in each node which helps other ants to
find lighter resources more easily. In the particle
swarm approach, each node in the network is
considered to be a particle and tries to optimize
its load locally by sending or receiving jobs to and
from its neighbors. This process being done locally
for each node, results in a move toward the global
optima in the overall network.

The remainder of this paper is organized as fol-
lows: Section 2 is dedicated to related work. Load
balancing algorithms that are decentralized are
summarized. The requirements for the design of
the distributed load balancing algorithms and the
benefits are discussed in Section 3. It is followed
by the proposed approaches which are described
in detail. Section 4 focuses on the setup of the sim-
ulation and the experimental results. Performance
criteria and environmental settings are introduced
in this section, and a thorough comparison of the
performance of the algorithms with other classical
approaches is provided. Finally, Sections 5 and 6
are dedicated to conclusion and future work.

2 Related Work

This section will provide an account of related
work only of decentralized approaches. Research
in the area of distributed load balancing is diverse,
and many researchers have used Ant colony for
routing and load balancing.

2.1 Classical Approaches

There are several classical approaches in the area
of load balancing which have been around since
the emergence of networks. In sender-initiated
algorithms, load distributing activity is initiated
by an overloaded node (sender) trying to send
a task to an underloaded node (receiver) [24].

In receiver-initiated algorithms, load distributing
activity is initiated from an underloaded node
(receiver), which tries to get a task from an over-
loaded node (sender) [24]. A stable symmetrically
initiated adaptive algorithm uses the information
gathered during polling (instead of discarding it,
as the previous algorithms do) to classify the
nodes in the system as sender/overloaded, re-
ceiver/underloaded, or OK (nodes having man-
ageable load). The information about the state of
the nodes is maintained at each node by a data
structure composed of a senders list, a receivers
list, and an OK list. These lists are maintained
using an efficient scheme and list-manipulative
actions, such as moving a node from one list to
another, or determining to which list a node be-
longs. These actions impose a small and constant
overhead, irrespective of the number of nodes in
the system. Consequently, this algorithm scales
well to large distributed systems [24].

The Random approach is a simple scheduling
algorithm in which the jobs being sent to the
Grid are assigned randomly to different resources.
Although, obviously this approach does not make
a very good load balancing algorithm but it has
some benefits. It poses no decision making over-
head on the system and it gives a good benchmark
in order to compare and see how our proposed
algorithms improve the performance of load bal-
ancing compared to a single random assignment.

The other approach we use to evaluate the per-
formance of our proposed algorithms is the State
Broadcast Algorithm (SBA). This algorithm is
common in networking, and is based on broadcast
messages which are exchanged between resources.
Whenever the state of a node changes, due to the
arrival or departure of a task, the node broadcasts
a status message that describes its new state. This
information policy enables each node to hold its
own updated copy of the System State Vector
(SSV) and guarantees that all the copies are iden-
tical. When a job is sent to a resource at the time of
scheduling, the resource searches through its own
state vector to find the best resource available to
deliver the job to at that particular time. SBA is
a good benchmark to evaluate the performance of
our algorithms as it resembles central approaches
in which the status of the whole Grid is known at
the time of scheduling, although being technically
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a distributed approach. SBA performs like central
approaches, which by nature always outperform
distributed ones [31], however, it has its disadvan-
tages as mentioned earlier.

2.2 Ant Colony Optimization Approaches

Ant colony optimization has been widely used in
both routing and load balancing [14]. Ant Colony
Optimization (ACO) is considered a subset of
social insect system approaches. The main idea
underlying this approach is the indirect communi-
cation ability of ants depositing pheromone trails,
which are then used by other ants.

One of the research work which is very similar
to the ant colony algorithm we propose in this
paper is the Messor system [18]. Montresor et al.
have used an ant colony approach to develop a
framework called Anthill, which provides an en-
vironment for designing and implementing peer-
to-peer systems. They have developed Messor as
a distributed load balancing application based on
Anthill and have performed simulations to show
how well Messor works. In the algorithm, the
authors propose ants that can be in one of the two
states: Search-Max or Search-Min. In the Search-
Max state the ants try to find an overloaded node
in the network and in the Search-Min state they
search for underloaded nodes. Finally, the ants
switch jobs between overloaded and underloaded
nodes and hence achieve the balancing of the
load. However, the authors have not addressed
the problem of topology changes in the network
and do not provide evidence to show how good
their approach is in comparison to other distrib-
uted load balancing approaches.

In [4], a very similar approach to Messor is pro-
vided. In this work agent-based self-organization
is proposed to perform complementary load bal-
ancing for batch jobs with no explicit execution
deadlines. In particular, an ant-like self-organizing
mechanism is introduced and is shown to be able
to yield good results in achieving overall Grid
load balancing through a collection of very simple
local interactions. Ant-like agents move through
the network to find the most overloaded and un-
derloaded nodes, but the difference to previous
research is they only search 2m + 1 steps before
making a decision and then they balance the

load. Different performance optimization strate-
gies are carried out, however, they do not compare
their results with other distributed load balancing
strategies.

Salehi and Deldari [19], have done simi-
lar research to [18] and [4] with some small
modifications. They present an ecosystem of in-
telligent, autonomous and cooperative ants. The
ants in this environment can reproduce offsprings
when they realize that the system is unbalanced.
They may also commit suicide when the equilib-
rium in the environment is reached. The ants wan-
der m steps instead of 2m + 1 and they balance
k overloaded nodes and k underloaded nodes in-
stead of one at a time. A new concept called Ant
level load balancing is presented for improving the
performance of the mechanism. When the ants
meet each other at the same node they exchange
the information they carry with them, and con-
tinue on their way.

Sim et al. [14, 25], present a Multiple Ant
Colony Optimization (MACO) for load balancing
circuit-switched networks. In MACO, more than
one colony of ants are used to search for optimal
paths and each colony of ants deposits a different
type of pheromone represented by a different
colour. MACO optimizes the performance of a
congested network by routing calls via several
alternative paths to prevent possible congestion
along an optimal path.

Another related and similar research to the
ant colony approach we propose in this paper is
done by Al-Dahoud et al. [2]. In their research,
each node sends a coloured colony through the
network; this approach helps in preventing ants
of the same nest from following the same route,
and hence, enforcing them to be distributed all
over the nodes in the network. However, the
authors’ experimental results are confined to a
small number of nodes and all the jobs have the
same properties.

Martin Heusee et al. [11], have used multi-
agent systems which have some similarity to ants
to solve the problem of routing and load balancing
in dynamic communication networks. They have
proposed two kinds of routing agents depending
on when the distance vector update occurs. The
update can be performed while agents are finding
their way to their destination (forward routing)
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or when they backtrack their way back to their
source (backward routing).

Other similar research which benefits from the
Ant colony’s approach mostly focus on load bal-
ancing in routing problems [22] and [14]. In [14],
the research provides a survey of four different
routing algorithms: ABC, Ant-Net, ASGA. ABC
is an Ant-Based Control system. A network with
a typical distribution of calls between nodes is
simulated, and nodes with an excess of traffic
can become congested and can cause calls to
be lost. Using the ant colony concept, the ants
move randomly between nodes, selecting a path
at each intermediate node based on the distribu-
tion of simulated pheromones at each node. As
they move, they deposit simulated pheromones
as a function of their distance from their source
node, and the congestion encountered on their
way [22]. In AntNet, they have applied ideas of
the ant colony paradigm to solve the routing prob-
lem in datagram networks. Ants collect informa-
tion about the congestion status of the followed
paths and leave this information locally in the
nodes. On the way back from the destination to
the source, the local visiting table of each visited
nodes are modified accordingly [5]. ASGA inte-
grates ant colony systems with genetic algorithms.
Each agent in the ASGA system encodes two
parameters - the sensitivity to link and sensitiv-
ity to pheromone parameters. Each agent in the
population has to solve the problem using an ant
system and each agent has a fitness according to
the solution found [29].

2.3 Summary

Existing decentralized approaches, which are
mostly based on Ant colonies, are not accom-
panied with various performance measures to
state how they perform in different scenarios and
situations. Still, decentralized approaches in the
Grid infrastructure are fewer in number than
approaches designed for networks and peer-to-
peer systems. In this research, we introduce two
new load balancing algorithms, one based on Ant
colony optimization and the other based on par-
ticle swarm optimization. The Ant Colony ap-
proach is similar to some approaches we reviewed
in this section, while the particle swarm approach

is a completely new design. We will investigate,
amongst other measures, in particular their per-
formance in different scenarios to gain a good
understanding of their responsiveness.

3 Approaches

3.1 Requirements

In designing each load balancing algorithm several
important characteristics should be kept in mind.
A list of these requirements is provided here:

– Optimum resource utilization. A load balanc-
ing algorithm should optimize the utilization
of resources by optimizing time or cost related
to these resources. Since the Grid environ-
ment provides a dynamic search space, this
optimality is inevitably a partial optimality of
the performance.

– Fairness. A load balancing algorithm is said to
be fair, meaning that the difference between
the heaviest loaded node and lightest loaded
node in the network is minimized, keeping in
mind that the search space is dynamic. The
load is defined by the number of jobs assigned
to each resource relative to its computational
power.

– Flexibility. It means that as the topology of the
network or the Grid changes, the algorithm
should be flexible enough to adhere to the
changes in the network.

– Robustness. Robustness refers to the fact that
when failures in the system occur the algo-
rithm should have a way to deal with the
failure and be able to cope with the situation,
i.e. not to break down because of a failure. On
the contrary, the algorithm should be able to
deal with the problem.

– Distribution. Distribution for managing re-
sources and running the load balancing algo-
rithm has the benefit of leaving out the single
point of failure which centralized approaches
are affected by.

– Simplicity. By simplicity we try to point out
both the size of single software units which
are being transferred among resources in the
Grid, and also the overhead that these units



Swarm Intelligence Approaches for Grid Load Balancing 285

bring to resources in order to make load bal-
ancing decisions. The size of software units are
important as they take up bandwidth when
they want to transfer themselves between re-
sources. Since their units are being executed
in Grid nodes, there is a preference to keep
necessary computations as simple as possible.

3.2 Proposed Approaches

In this research, we are suggesting a new approach
for applying Ant colony optimization to the prob-
lem of load balancing. In the previous approaches,
ants act independently from jobs being submitted
while in our approach there is a close binding
between jobs and load balancing ants. On the
other hand, particle swarm has not been used for
distributed load balancing in the Grid before and
we are proposing a new way to design our load
balancing algorithms.

3.2.1 Ant Colony Load Balancing: AntZ

In this section, a new load balancing algorithm
which is developed based on the concepts of ant
colony optimization is described. This algorithm
(AntZ) is developed by merging the idea of how
ants cluster objects with their ability to leave
trails on their paths so that it can be a guide for
other ants passing their way. We are using the
inspiration of how ants are able to cluster objects
using an inverse version to spread the jobs in the
Grid. In particular, we are making use of the main
algorithm proposed by Montresor et. al [18], as
well as the adoption of the number of steps be-
fore decision making as proposed by Cao [27]. In
addition, we add the decay rate from the classical
ant approach, as well as we introduce a mutation
rate which is specifically added to the problem of
load balancing.

A pseudo-code of the AntZ approach is pro-
vided in Algorithm 3.1. AntZ is a distributed
algorithm and each ant can be considered as an
agent working independently. The pseudo-code
addresses the main functions that an ant performs
during its life cycle. Collectively, all the ants show
the desired behaviour by following these steps.

As shown in the pseudo-code, when a job is
submitted to a local node in the Grid an ant is

initialized and starts working. In each iteration,
the ant collects the load information of the node it
is visiting (getNodeLoadInformation()) and adds
it to its history. The ant also updates the load
information table of the visited nodes (localLoad-
Table.update()). This load information table of a
node contains information of its own load, but
also load information of other nodes, which were
added to the table when ants visited the node.

When moving to the next node the ant has two
choices. One choice is to move to a random node
with a probability of mutation rate (mutRate). The
other choice is to use the load table information
in the node to choose where to go. The mutation
rate decreases with a DecayRate factor as time
passes, thus, the ant will be more dependent to
load information than to random choice. This iter-
ative process is repeated until the finishing criteria
is met which is a predefined number of steps.
Finally, the ant delivers its job to the node and
finishes its task.

When an ant visits a node, it updates the node’s
load information table with the information of
other nodes, but at the same time collects the
information already provided by the table of that
node, if information exists. The load information
table acts as a pheromone trail an ant leaves while
it is moving, in order to guide other ants to choose
better paths rather than wandering randomly in
the network. Entries of each local table are the
nodes that ants have visited on their way to deliver
their jobs together with their load information.

Reading the information in the load table in
each node and choosing a direction, which is
represented as the chooseNextStep() procedure in
Algorithm 3.1, the ant uses a simple policy. It
chooses the lightest loaded node in the table. The
corresponding pseudo-code is provided in Algo-
rithm 3.2. As shown in the algorithm, each entry
of the load information table is being evaluated
and compared to whether the current load of
the visited node is smaller than any other node
provided in the load information table. The ant
then chooses the node with the smallest load,
and in case of a tie, the ant chooses one with an
equal probability.

Since the number of jobs submitted to the
network increases, the ants can take up a huge
amount of bandwidth of the network, thus moving
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ants should be as simple and small-sized as possi-
ble. To account for this, instead of carrying the job
while the ant is searching for a “light” node, it can
simply carry the source node information to which
the job was delivered to, including a unique job id
of the source node. Thus, whenever an ant reaches
its destination the job can be downloaded from the
source as necessary.

The algorithm has some parameters which can
be set according to the specific scheduling require-
ments (i.e. size of the network, job specifications,
etc.). The effect of these parameters and their
values on the performance of the algorithms are
investigated. One of the parameters is MaxSteps
which defines how many steps an ant should be
moving around until it delivers the assigned job
to a node in the Grid. If the ant wanders too
many steps before delivering the job, it causes
an increase in the execution time of each job,
and hence, it decreases the performance. On the
other hand, if the ant gives up too quickly with-
out moving around then the pheromone (load
table information) which it leaves behind de-
creases, and this in turn decreases the perfor-
mance of the algorithm. In addition, the ant might
not have enough time to encounter a good and
light node. Thus, all these parameters should be
chosen carefully.

Another effective parameter which influences
the performance of the AntZ algorithm is Mu-
tRate. As the ants are moving and they are us-
ing the load table information to decide which
way to go, they sometimes randomly choose an
arbitrary node in the Grid to move toward to.
The probability of choosing their way randomly
is controlled by MutRate. MutRate decreases with
the decay rate, DecayRate, while the ant is alive
and is searching. This parameter, DecayRate, can
also have an effect on the performance of the
AntZ algorithm.

3.2.2 Particle Swarm Optimization: ParticleZ

Particle swarm optimization has roots in two
methodologies. Obvious is its relation to swarm
intelligence in general, and to bird flocking, fish
schooling, and swarming theory in particular. It
is also related to evolutionary computation, and
has ties to both genetic algorithms (GA) and
evolutionary programming. The system is initial-
ized with a population of random solutions and
searches for the optimum solution by updating
itself through generations. However, unlike GA,
particle swarm optimization (in its standard form)
has no evolutionary operators such as crossover
and mutation. In particle swarm optimization, the
potential solutions, called particles, fly through
the problem space by following the current opti-
mum particles [8]. Relationships, similarities and
differences between particle swarm optimization
and GA are briefly reviewed in [13].

In a particle swarm optimization system, mul-
tiple candidate solutions coexist and collaborate
simultaneously. Each solution candidate, called a
particle, flies in the problem search space (similar
to the search process for food of a bird swarm)
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looking for the optimal position to land. A par-
ticle, as time passes through its quest, adjusts its
position, according to its own experience, as well
as according to the experience of neighboring par-
ticles [6]. There are two main characteristics for
each particle in a particle swarm optimization al-
gorithm: its position which defines where the par-
ticle lies relative to other solutions in the search
space; and its velocity, which defines the direction
and how fast the particle should move to improve
its fitness. As in any evolutionary algorithm, the
fitness of a particle is a number representing how
close that particle is to the optimum point com-
pared to other particles in the search space.

One of the advantages of the particle swarm
optimization technique over other social behavior
inspired techniques is its implementation simplic-
ity. As there are very few parameters to adjust
in a particle swarm optimization approach, it is
simpler than other evolutionary techniques.

Two factors characterize the particle’s status in
the search space: its position and its velocity. The
m-dimensional position for the ith particle in the
kth iteration can be denoted as:

xi(k) = (xi1(k), xi2(k), ..., xim(k)).

Similarly, the velocity (i.e., distance change) is
also an m-dimensional vector, for the ith particle
in the kth iteration and can be described as:

vi(k) = (vi1(k), vi2(k), ..., vim(k)).

The particle updating mechanism for a particle
can be formulated as in (1) and (2):

vk+1
id = w ∗ vk

id + c1 ∗ r1 ∗ [pb − xk
id]

+c2 ∗ r2 ∗ [gb − xk
id] (1)

xk+1
id = xk

id + vk+1
id (2)

In which vk
id, called the velocity for particle i

in the kth iteration, represents the distance to be
travelled by this particle from its current position,
xk

id represents the particle position in the kth it-
eration, pb represents its best previous position
(i.e. its experience), and gb represents the best
position among all particles in the population. r1

and r2 are two random functions with a range [0,1],

having similar or different distributions. c1 and
c2 are positive constant parameters called accel-
eration coefficients (which control the maximum
step size of the particle). The inertia weight w, is
a user specified parameter that controls, together
with c1 and c2, the impact of previous historical
values of particle velocities on its current velocity.
A larger inertia weight pressures towards global
exploration (searching new area), while a smaller
inertia weight pressures towards fine-tuning the
current search area. Suitable selection of the in-
ertia weight and acceleration coefficients can pro-
vide a balance between the global and the local
search. The random values involved, prevent the
optimization from being caught in a local optima.
A detailed analysis on the effect of parameter
selection on the convergence of particle swarm
optimization is provided in [28].

Using the idea of particle swarm optimization, a
new approach for balancing the load in the Grid is
proposed. In the ParticleZ algorithm, all the nodes
in the Grid are considered as a flock or group of
swarms and each node in the Grid is a particle in
this flock.

Following the analogy from the particle swarm
optimization perspective, the position of each
node in the flock can be determined by its load.
This definition helps as we search in the load
search space and try to minimize the load, thus
each node in this search space takes a posi-
tion according to its load. The velocity of each
particle and its position can be defined by the
load difference the node has, compared to its
other neighbor nodes. Since the particles are try-
ing to balance the load, they can move toward
each other by the changes they make to their
position (i.e. load), this change in each parti-
cle’s position can be achieved by exchanging jobs
between them. The larger their difference is, the
faster they will move toward each other, with a
larger velocity.

The different phases of the ParticleZ algorithm
consist of a job submission, a queuing, a node
communication and a job exchange phase. Taking
into account that all nodes are exchanging their
loads in parallel, and the dynamic nature of the
environment, the network reaches a local opti-
mum quickly. Thus, each node submits some jobs
to one of its neighbors, which has the minimum
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load among all. If all its neighbors are busier
than the node itself, no job is submitted from the
current node.

The pseudo-code describing this scenario can
be seen in Algorithm 3.3. This is the pseudo-code
of each individual particle (resource), which runs
the ParticleZ algorithm. As can be seen, if there
are any jobs in the queue waiting to be executed
the node tries to submit them to a lighter node in
its neighborhood, and hence achieves a fair load
distribution among resources.

In exchanging load from a heavier loaded node
to a lighter loaded node, attention must be paid
not to burden the lighter node, so that it ex-
ceeds the load of the second lightest node among
neighbours. If this happens, the distribution of the
load is not fair, but a load imbalance is created.
To tackle this problem, we define a threshold
variable, which defines how much load exchange
can happen between the nodes. It is calculated
by subtracting lightestLoad from secondLightest-
Load among neighbours and the load exchange
takes place as long as the velocity is greater than
the threshold value.

There are some issues related to the parti-
cle swarm optimization, which are necessary to
be addressed. In the algorithm we propose, a
particle only moves toward its best local neigh-
bour, while in the classical particle swarm opti-
mization algorithm particles keep track of their
best global solutions so far. The reason we have

not included the history of each particle is that
we are dealing with a dynamic environment in
which the problem being solved is changing all the
time as users are submitting new jobs randomly;
thus, the global best solution that the particle
has seen is most likely not valid anymore in this
dynamic environment.

Equation (3) for updating the velocity of
each particle, which was introduced in Section
3.2.2, takes the following form in our design
of ParticleZ:

vk+1
id = gb − xk

id (3)

As mentioned earlier, we are dealing with an
environment which is changing dynamically (i.e.
the search space is changing), thus the use of
the past experience of each particle is not useful;
therefore, we assign zero to c1 in order to omit
the effect of the past history of the particle. Also
again, because of the dynamicity of the problem,
the previous velocity should not effect our deci-
sion, therefore, we assign a value of zero to w as
well. On the other hand, we want to use neighbour
particles to identify and decide which one is better
to share the work load with, and therefore, we
have used a value of one for c2.

In (4), the formula for updating a particle’s
position is shown, which is the same as the one
we introduced in Section 3.2.2. As mentioned,
the position of a particle (xid) is its load value
and it changes while the resource submits jobs to
its neighbours.

xk+1
id = xk

id + vk+1
id (4)

4 Experimental Setup and Results

4.1 Setup

4.1.1 GridSim Toolkit

The GridSim toolkit used as the simulation envi-
ronment is a java-based discrete-event Grid sim-
ulation toolkit. The toolkit supports modelling
and simulation of heterogeneous Grid resources
(time-shared and space-shared), users and appli-
cation models. It also provides primitives for the
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creation of application tasks, mapping of tasks to
resources, and their management [3].

Given the implementation nature of the pro-
posed algorithms, a time-shared policy was used
for the AntZ algorithm, and a space-shared policy
was taken for the ParticleZ algorithm.

The GridSim toolkit supports the modelling
and simulation of a wide range of heteroge-
neous resources, such as single or multiproces-
sor, shared and distributed memory machines
like PCs, workstations, SMPs (Symmetric Multi-
processing), and clusters with different capabili-
ties and configurations. It can also be used for the
modelling and simulation of application schedul-
ing on various classes of parallel and distributed
computing systems such as clusters, Grids, and
P2P networks.

The following are the reasons why the GridSim
toolkit was chosen to simulate and evaluate our
scheduling algorithms [3]:

– It allows modelling of heterogeneous types of
resources.

– Resource capability can be defined in the form
of MIPS (Million Instructions Per Second)
and SPEC (Standard Performance Evaluation
Corporation) benchmark.

– Application tasks can be heterogeneous and
they can be CPU or I/O intensive.

– There is no limit on the number of application
jobs that can be submitted to a resource.

– Network speed between resources can be
specified.

– It supports simulation of both static and dy-
namic schedulers.

– Statistics of all or selected operations can be
recorded. These statistics can then be fur-
ther analyzed using GridSim statistics analysis
methods.

4.1.2 System Model

For experimental purposes we assume that the
Grid consists of a set of resources connected
via different communication links with different
speeds. In general, each resource may contain
multiple computing nodes (machines), and each
computing node (machine) may have a single or
multiple Processing Elements (PEs). The compu-

tational power or the speed of each processor is
defined by the number of Cycles Per Unit Time
(CPUT). It is actually the GridSim framework’s
ability that provides us with the definition of the
computational power of PEs in CPUT.

Generally, each resource may consist of one
or several machines and each machine by itself
can have one or multiple processing elements.
Processors in each computing node can be hetero-
geneous, thus, they may have different processing
power. In our simulations, without loss of gen-
erality and to emphasize on the basic ideas of
the algorithms, we assume each resource consists
of one machine and each machine is equipped
with one or several processors (the variations of
this random number for experiments are provided
later). The processors in the same or different
computing nodes have different processing power.

At any one time, a computing node may have
background workload associated with it, which
will affect the completion time of the Grid jobs
assigned. The GridSim toolkit provides us with
the ability to define the background workload
according to historical and statistical information
for each node. As such, each resource has a back-
ground load associated which is taken from the
average load that the resource has experienced at
similar times (such as working days or weekends).

4.1.3 Application Model

For our application model, we assume that tasks
which are submitted to the Grid (or the applica-
tion which is being run) consists of a set of inde-
pendent tasks with no required order of execution.
The tasks are of different computational sizes,
meaning each task requires a different computa-
tion time and data transmission time for comple-
tion. The tasks can also have different input and
output size requirements.

The length of each task is presented in Mil-
lions of Instructions (MI). Tasks can be classified
into one of two categories: data-intensive and
computationally intensive tasks. In this research,
we are concerned with computationally intensive
tasks as they are more common in today’s real
world applications and the waste of computational
power of resources is, in general, more costly than
their memory.
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4.1.4 Network Topology

In order to account for different network topolo-
gies, a random connection graph for the specific
number of resources was generated. First, a Min-
imum Spanning Tree with all the resources is
created, then, random links are added to the tree
to generate the final topology of the Grid. Thus,
we have control on the number of links and the
topology of our Grid in different simulations. For
example, when a resource tries to find its neigh-
bours it sends a message in order to retrieve a list
of its connected resources.

4.1.5 Performance Evaluation Criteria

In this section we define our performance eval-
uation criteria which are used to evaluate the
performance of our algorithms. The criteria in-
clude makespan and the load balancing level. In
addition, two classical algorithms for comparison
purposes are discussed and used. For all measure-
ments taken, we have used an average of thirty
runs in order to guarantee statistical correctness.

Makespan One of the most common measures
in evaluating the performance of a load bal-
ancing algorithm is measuring the makespan.
The makespan is the “total application execu-
tion time”. The total application execution time
is measured from the time the first job is sent
to the Grid, until the last job comes out of the
Grid. As we generate Gridlets (term defined in
GridSim to represent jobs) and topologies ran-
domly, although every simulation yields roughly
the same result, each single simulation is different
from another one; thus, we have used an aver-
age makespan in order to account for realistic
conditions.

Load Balancing Level For each resource in the
Grid, the load related to that resource is depen-
dent on the number of jobs which are assigned to
the node njobs by the Grid scheduler and the power
of its processing elements pi. Equation (5), shows
how the resource load lr is calculated.

lr = njobs
∑max

i=1 pi
(5)

The total load l can be calculated using (6).
According to this equation when the resource load
lr increases, it results in an increase in the load l,
and a decrease in lr decreases l. The load l is a
value between 0 and 1, where 0 identifies that a
resource is not busy and 1 represents a resource
being busy.

l = 1 − 1
lr

(6)

One of the aims of a load balancing algorithm
is to minimize the variations in workloads on
all machines. Regarding this, the standard devi-
ation in workload is often taken as the perfor-
mance measure of a load balancing algorithm. The
smaller the standard deviation, the better the load
balancing scheme is. By looking at the changes
in the standard deviation of the workload with
respect to time, it is easier to visualize the effect
of load balancing upon the time of the system [7].
Equation (7), shows the standard deviation of the
load in the system.

d =
√

∑n
i=1(l − li)2

n
(7)

In the equation, l is the average load of the
system and li is the load of the ith resource.

We define the load balancing level (LBL) b of
the system to be a measure of how good the load
balancing algorithm is. The load balancing level
of the system is defined in (8). The most effective
load balancing is achieved when b equals to 100%
which implies that d should be zero or close
to zero.

b = (1 − d) ∗ 100% (8)

Comparison Against Classical Approaches We
have implemented two common classical ap-
proaches (Random and State Broadcast Algo-
rithm) in order to evaluate the performance of
our algorithms and discuss their benefits over
classical ones. Both algorithms were described
in Section 2.1.

4.2 Results

In order to evaluate the performance of our algo-
rithms, we first investigate the effect of different
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Fig. 1 Effect of the
change in wandering steps
on AntZ makespan
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Fig. 3 Effect of decay
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Fig. 5 Effect of link
number on ParticleZ
communication number

values for the parameters of each algorithm, and
then we investigate a set of experiments to mea-
sure the criteria we introduced in the previous
section. As described earlier, ParticleZ is im-
plemented with a space-shared FCFS policy in-
side the resources and the AntZ is accompanied
with a time-shared Round-robin policy to sched-
ule the jobs when they are received by a re-
source. In all the experiments we have compared
our algorithms with both the Random and the
SBA approach.

4.2.1 AntZ Parametric Measurement Ef fects

We investigate algorithm-specific performance
measures and their effect on the algorithms in
the next set of experiments. First, we investigate
the effect of wandering steps on the performance
of the AntZ algorithm. We have a one hundred
node Grid with one thousand jobs being sent to
the Grid. Figure 1 shows that as we increase the
number of steps an ant wanders until it delivers
the job to its destination, the makespan of the
algorithm improves, but this increase is larger at
the beginning but later on the rate drops to a great
extent until it becomes stable.

After about 5 or 6 steps the increase in wander-
ing steps does not seem to have an effect on the
performance of the algorithm. The reason behind
this phenomenon is that although increasing the
number of wandering steps seems to have a posi-

Table 1 Grid resource characteristics

Number of machines per resource 1
Number of PEs per machine 1–5
PE ratings 10 or 50 MIPS
Bandwidth 1,000 or 5,000 B/S

tive effect on the performance of the algorithm, as
tables are updated more frequently and ants have
more time to decide which way to go, but on the
other hand, it increases the delay before the jobs
are being delivered to the resources, and this delay
has a negative effect on the performance.

Figure 2, shows how increasing the number
of wandering steps can effect the communication
overhead, which is introduced to the system. The
figure shows that while we increase the wandering
steps, the communication overhead also increases
linearly.

In another experiment we measure how
different values of the decay rate can effect the
performance of the AntZ algorithm. As you re-
member, while the ant is moving we decrease its
mutation rate by a factor; this factor is called the
decay rate. By running this experiment we can
find out what the best decay rate for a set of
specific attributes of a Grid and its jobs is. The
results are shown in Fig. 3. For the set of attributes
we have, 0.2 is the best decay rate while the muta-
tion rate is set to be 0.5 for this experiment.

4.2.2 ParticleZ Parametric Measurement Ef fects

In the next set of experiments we measure the
effect of different ParticleZ parameter settings on

Table 2 Scheduling parameters and their values

Number of resources 100
Number of Gridlets 1,000
ParticleZ link number 149
AntZ wander number 4
AntZ mutation rate 0.5
AntZ decay rate 0.2
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Table 3 Gridlet characteristics

Length 0–50,000 MI
File size 100 + (10–40%) MB
Output size 250 + (10–50%) MB

the performance of this algorithm. One of the
parameters which can effect the performance of
ParticleZ is the number of links that connect re-
sources together. As each particle (resource) com-
municates with its neighbours to find the lightest
node, the number of neighbours can effect the
performance of the algorithm.

Figure 4 shows the effect of increasing the num-
ber of links and the connectivity of the resources
on ParticleZ’s makespan. Although it is better
to communicate with more resources before ex-
changing jobs, however, it is not always good as
communication with more resources adds an extra
time overhead, which prevents a significant im-
provement in the performance of the system.

Figure 5 shows the effect of increasing the num-
ber of links on the communication overhead of the
ParticleZ algorithm. As can be seen in the figure,
it has a linear growth with an increasing number
of links.

4.2.3 Makespan and Simulation Time

The characteristics of the resources as Grid re-
sources we have used for all of the following
experiments are shown in Table 1. There is one
machine for each Grid resource and each machine
has a random number of PEs ranging between 1
and 5. Each PE has a different processing power.
Without loss of generality, we set the local load
factor for resources to be zero; this does not

effect the performance measure of the algorithms.
Setting it to zero helps us analyze the effect and
behaviour of the algorithms better.

For the next set of experiments, we compare
the makespan of the different algorithms. The val-
ues for the different parameters of each algorithm
are shown in Table 2.

As said earlier, the Gridlets which are sent to
the Grid are supposed to be independent of each
other. The characteristics of the Gridlets sent to
the Grid to compare the makespan of different
algorithms are shown in Table 3.

Figure 6 shows a comparison between the
makespan of the different algorithms with pa-
rameter specifications described above. The ex-
perimental results show SBA is performing best
amongst all. This is expected as the SBA is keep-
ing track of the state of all the resources at each
point in time, which enables it to make optimal
decisions at each point in time than all the other
approaches. After SBA, ParticleZ wins the com-
petition by having the second smallest makespan.
Comparing ParticleZ and AntZ with each other,
ParticleZ performs better than AntZ by a fac-
tor of 1.72; also, ParticleZ performs better than
Random-SpaceShared by a factor of 3.42, and
AntZ performs better than Random-TimeShared
by a factor of 1.83.

One important but hidden drawback that SBA
is subjected to is related to the overall cpu cycles
and the time it takes for the Grid to execute it.
Since there is a copy of the system state vector in
all machines, each machine is using some time and
cpu cycles to search the state vector individually
in order to schedule each task. This causes a lot
of cpu cycles to be wasted, but as we are running
a parallel platform this disadvantage cannot be

Fig. 6 Comparing the
makespan of different
approaches



294 S.A. Ludwig, A. Moallem

Fig. 7 Simulation time
related to each algorithm
in milliseconds

observed. This negative effect is shown in Fig. 7
and the time shown in this figure shows only the
simulation time of each algorithm. As the simula-
tion is measured on a single machine, the effect
of parallelism is discarded and SBA, although
having a very low makespan, actually takes longer
to run and it is because all these wasted seconds
can not be seen in the previous figure because
of parallelism. This effect is even worse as the
number of resources grow in the Grid. Please
note that this figure only shows the simulation
time and does not count for different job lengths,
etc.

Another drawback related to SBA is the num-
ber of communications it takes. Figure 8 shows
the number of extra communications of each algo-
rithm to achieve the load balancing. For ParticleZ,
each communication message a node sends to its
neighbours to acquire their load status and its
response, and each job exchange between two
resources is considered as communication. For
AntZ, each ant taking a step while searching for
the best node to deliver the job to, is considered
as a communication. Finally for SBA, each broad-
cast message a resource sends to other resources
is considered as communication overhead. The
numbers shown in the figure are the average val-
ues of thirty runs with the same parameter settings
as described earlier. As shown in the figure, AntZ

has a higher communication overhead compared
to ParticleZ. Obviously, the other two random
approaches have no communication overhead at
all, thus, they are not shown in the figure. SBA has
the highest number of communications by a factor
of around 1300. This large number of communica-
tions can be a bottleneck for the network and in
scenarios with congested networks the probability
of messages being lost increases.

4.2.4 Scalability

In the next experiment we investigate how fair
each of the algorithms is. Table 4 shows the load
balancing level of the system described earlier in
(8) along with their standard deviation from sev-
eral runs. The closer the value approaches 100%,
the better the load balancing of the algorithms is.
It means that the load is spread more fairly among
all the resources. According to the experimental
results both, ParticleZ and SBA, have the best
load balancing levels. AntZ along with the other
random approaches ranks third in spreading the
load uniformly among resources.

As can be seen in Fig. 9, all the algorithms
show a linear growth in response to the increasing
number of jobs. However, SBA along with the
proposed approaches show a much slower growth
compared to the random approaches. Among

Fig. 8 Communication
overhead related to each
algorithm
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Table 4 Average load balancing level of the system for
different algorithms

Algorithm Average LBL (%)

ParticleZ-SpaceShared 81±2.09
SBA 80±0.47
Random-SpaceShared 67±1.29
AntZ-TimeShared 65±0.70
Random-TimeShared 62±0.95

them, ParticleZ and SBA are quite close to each
other. Table 5 shows each algorithm with its pre-
diction trend line for a 100 node Grid. As can
be seen, ParticleZ and SBA have smaller slopes
among all other approaches.

In the next set of experiments we investigate
the effect of increasing the number of jobs on
the performance of the algorithms. Thus, we keep
a fixed number of resources and run the experi-
ments while we increase the number of jobs being
sent to the Grid. The specifications and parameter
settings of the algorithms and the system are listed
in Tables 1–3.

In Fig. 10, we investigate the effect of increasing
the length of jobs on the performance of the algo-
rithms. Length of the jobs is defined in Millions of
Instructions (MIs) in GridSim. Parameter settings
to run this experiment are the same as described in
Tables 1–3. We increase the length of the Gridlets
by adding 250,000 MIs at each step and investigate
its effect on the makespan. The numbers at the
bottom of the figure show the execution time
for each algorithm. As can be seen, the growth

Table 5 Predicting execution time based on number of
jobs

Algorithm Prediction trend line (in seconds)

SBA 762.5 * njobs + 808.5
ParticleZ-SpaceShared 906.7 * njobs + 1782
AntZ-TimeShared 2,478 * njobs + 1,291
Random-TimeShared 5,518 * njobs − 291.2
Random-SpaceShared 6,069 * njobs − 1,419

is linear for all the approaches and the results
show the best performance is achieved by both
the ParticleZ and the SBA algorithm. AntZ ranks
third and the other two random approaches, as
expected, do not respond well to the larger lengths
of Gridlets, but for small Gridlet lengths they can
perform comparably to others.

4.2.5 Resource Ef fect and Injection Points

Figure 11 shows how increasing the number of
resources, while keeping the same number of
jobs being sent to the Grid constant, decreases
the performance of the Grid in terms of an in-
crease in execution time. In this experiment, 3,000
jobs are sent to the Grid with varying number
of resources, and as can be seen increasing the
number of resources has a decreasing effect on
the execution time. ParticleZ and SBA are per-
forming better when we have a small number
of resources (50) and a large number of jobs
compared to the number of resources (3,000).
As the number of resources increases the per-

Fig. 9 Effect of the increase in number of jobs on performance of the algorithms
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Fig. 10 Effect of the increase in job length on performance of the algorithms

formance, the difference between the algorithms
decreases.

One of the very interesting performance ques-
tions which arises in a distributed algorithm like
AntZ and ParticleZ is: how do the algorithms
respond if all the jobs are injected from a single
point in the Grid? From the AntZ’s perspective it
will take longer to build the load table informa-
tion, and from the ParticleZ’s perspective it will
have a negative effect as the jobs will need more
time to be spread evenly. We have investigated
this effect to see how much it will slow down
or have a negative effect on the performance of
the algorithms.

The random approaches obviously perform
very poorly if we send all jobs to one node. Figure
12 shows AntZ copes better than ParticleZ in re-
sponse to all the jobs being sent to one node in the
Grid. The reason lies in the mutation factor which
is incorporated inside AntZ. With the mutation,

an ant moves randomly from time to time which
helps to build up the load tables more quickly to
overcome the negative effect. It can be inferred
from the figure, that ParticleZ’s performance de-
creases by a factor of 2.4 for a one hundred
node network with Gridlets of a length between
0 and 50,000. On the other hand, AntZ’s perfor-
mance decreases by a factor of 1.36 in the same
scenario setting.

4.2.6 Resource Heterogenity

In analyzing the performance of the introduced
algorithms one characteristic that is of impor-
tance in real world scenarios is how each algo-
rithm responds to different heterogeneity of jobs
and resources. Figure 13 shows a comparison of
different makespans for both high and low re-
source heterogeneity as well as high and low job
heterogeneity. In this analysis, high resource het-

Fig. 11 Effect of
increasing number of
resources on execution
time
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Fig. 12 Effect of single
and random injection
points on the
performance of the
algorithms

erogeneity is simulated by each resource having
a random number of PEs between 6 and 20. The
low resource heterogeneity is defined by having
the number of PEs between 1 and 5. High job
heterogeneity is simulated by having the length of
the Gridlets between 0 and 500,000 MIs, while low
job heterogeneity refers to the condition whereby
Gridlet lengths are between 40,000 to 50,000 MIs.

By analyzing the results in Fig. 13 we can see
when both resource heterogeneity and job het-
erogeneity are low, ParticleZ outperforms all the
other approaches. SBA performs very close to
ParticleZ, while the AntZ approach ranks third.

We can see a similar trend in high job hetero-
geneity with low resource heterogeneity. When
having a high resource heterogeneity, SBA out-
performs all other approaches with both high and
low job heterogeneity, however, ParticleZ is very
close to SBA in terms of performance. The other
three approaches have higher execution times.

4.3 Summary and Discussion

We investigated several algorithm-related para-
metric effects for both the AntZ and Parti-
cleZ algorithms. We investigated the effect of

different wandering steps on the execution time
and the communication overhead of the AntZ
algorithm. The results show as we increase the
number of wandering steps the performance of
the AntZ improves, but there is a limit to this
improvement after which the performance re-
mains the same, although the number of wander-
ing steps increases. We also studied the effect of
different decay rates on the performance of the
AntZ, and identified the best decay rate for our
simulation setting.

For the ParticleZ algorithm, we investigated
the effect of different link numbers on both the
execution time and the communication overhead
of the algorithm. The communication overhead
grows linearly by increasing the number of links
while the makespan decreases.

Analyzing the results of the makespan shows
that SBA has the smallest makespan among all
and ParticleZ performs better than AntZ in this
regard. Although SBA has the smallest makespan
among all the approaches, comparing its simula-
tion time with others reveals that there are many
computational activities going on in parallel in all
machines to execute SBA, which although it does
not effect the overall makespan, it increases the

Fig. 13 Effect of
heterogeneity of jobs and
resources on the
makespan (measured in
seconds)
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computational complexity for the overall Grid,
and therefore, makes SBA the worst approach
among all in terms of computational complexity.

Comparing the number of communications
each algorithm is concerned with, SBA shows the
largest growth in communication cost compared
to the other two approaches, whereby ParticleZ
involves the smallest number of communications
among all.

ParticleZ also wins the competition among all
other approaches regarding the “fairness” mea-
sure, as it has the highest load balancing level
amongst all other approaches.

Looking at the scalability of the algorithms, all
approaches show a linear growth in response to
an increase in the number of jobs. ParticleZ and
SBA have the smallest gradient and are very close
to each other, AntZ ranks third.

Regarding an increase in the length of jobs,
all approaches show a linear increase; however,
ParticleZ along with SBA are best among all. Fur-
thermore, an increase in the number of resources
decreases the makespan.

Overall, ParticleZ proves to perform slightly
better than AntZ in many regards. On the other
hand, looking at the results it shows that Parti-
cleZ has most of the advantages of SBA with-
out having its disadvantages. However, there is
one drawback associated with ParticleZ. When
jobs are sent to the Grid and are submitted to
one or a small number of resources and are not
spread throughout the Grid, ParticleZ’s perfor-
mance decreases more than AntZ’s performance.
The reason is the mutation factor incorporated
within AntZ, which makes it better to deal with
such situations.

5 Conclusion

In this research we have investigated the use of
swarm intelligence inspired techniques in design-
ing distributed Grid load balancing algorithms.
Specifically, we have taken inspiration from social
insect systems and sociological behaviour of birds
and school of fishes.

The contributions of the designed algorithms
(AntZ and ParticleZ) can be categorized as fol-
lows: (1) Many centralized load balancing ap-

proaches have been developed and applied to
the Grid, even those with inspiration taken from
swarm intelligence techniques such as genetic al-
gorithms and Tabu search, however, the central-
ized approaches have many drawbacks as we pre-
viously outlined. Research using swarm intelli-
gence techniques for distributed load balancing
has only started to be investigated. (2) Although
a variety of ant colony inspired approaches have
been used for distributed load balancing, there
is no comparison of these approaches with any
other distributed swarm intelligence technique. In
this research, we compared the performance of
the ant colony approach with another swarm in-
telligence technique, particle swarm optimization.
We performed measurements to compare the two
algorithms in order to identify which are more
effective and under which conditions. We also
compared the performance of the algorithms with
other classical techniques. (3) Particle swarm op-
timization has been used to address the problem
of centralized load balancing [1, 6, 21], but it has
never been used for distributed load balancing
in a dynamic environment such as the Grid. (4)
Most of the research and experimental results,
especially in the area of distributed load balancing
and ant colony, have used their own developed
infrastructure to simulate the performance of their
approaches, thus, the question remains how well
they would perform in a real world environment.
We have used a real world simulation platform,
GridSim, which provides us with a reliable toolkit
by allowing evaluations to be done under realistic
conditions.

This research investigated two different ap-
proaches (inspired by ant colony and particle
swarm optimization) for developing load bal-
ancing algorithms and it shows the benefits of
swarm intelligence techniques in the distributed
Grid load balancing domain. Furthermore, we
showed, although particle swarm optimization has
not been used widely in designing distributed load
balancing algorithms, it performs quite well and
it even outperforms the ant colony approach in
many scenarios. One of the important charac-
teristics of the designed algorithms compared to
central approaches is their responsiveness to scal-
ability of the Grid. In centralized approaches, an
increase in the number of resources in the Grid
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can always be a problem as the information of
all the resources has to be stored and must be
recalled at all time, but our distributed approaches
work quite well with a large number of resources
and jobs. This drawback was seen by running the
SBA simulations with a large number of resources
and examining the simulation time.

The advantages of our proposed algorithms can
be summarized as follows: 1) Looking at the sim-
ulation results, the algorithms show good perfor-
mance results and optimized resource utilization.
2) The algorithms have proved to be “fair” com-
pared to a random and SBA approach. ParticleZ
has a load balancing level of 81%, SBA has a load
balancing level of 80%, AntZ achieves a load bal-
ancing level of 65% and the random approaches
have a load balancing level close to 65%. 3) Both
ParticleZ and AntZ are flexible approaches in
dealing with the changes that happen in the Grid.
4) Both proposed approaches are distributed in
nature. As the algorithms have taken inspiration
from sociological systems, being distributed is an
inherent part and we used this ability in design-
ing the approaches. 5) Both algorithms are very
simple which is a benefit for a distributed system.
In the AntZ approach, the ants which have to
move among resources to find the best resource
to deliver the job to, are very small in size and
perform small computations in each resource. The
ParticleZ algorithm implements simple computa-
tions as it only sends small messages and has to
choose the lightest resource amongst all neigh-
bour resources. 6) Looking at the scalability of the
algorithms they show linear growth in response
to both an increase in the number of jobs and an
increase in the length of jobs.

In conclusion, we can say classical approaches
such as Random and SBA, although suitable
for small sized networks, are not efficient for
large Grids.

6 Future Work

The algorithms in their current state do not ad-
dress the problem of dynamic resource failure in
the Grid. A mechanism should be in place that
prevents Gridlet loss while any resource in the
Grid shuts down. Another issue which is worth

addressing is the special scenario when all re-
sources in the Grid are too busy to take new
jobs on. The question arises what should be done
with new jobs that are submitted to the Grid. An-
other issue worth investigating is that although we
have simulated the algorithms within a simulation
framework similar to a real world scenario; it may
still need some small modification. For example,
we have not considered issues related to secu-
rity in this research. One of the steps which can
be taken toward adding security is limiting ants
from performing particular actions in different
resources.

One of the important issues in large-scale Grids
and peer-to-peer systems is resource failures and
the robustness of the system. As the size of the
Grids is continually increasing, the probability of
resource failures also increases. As such, devel-
oping fault tolerant algorithms which are able
to deal with these failures are gaining more and
more attention. Failures which happen in a Grid
environment can be divided into two categories.

A resource may shutdown manually, thus, it can
send a notice message or perform some additional
steps before shutting down. Or the resources may
fail suddenly without any notice. Thus, we need
to incorporate a mechanism to deal with both
cases of resource failures in our system without
effecting jobs submitted by users.

The ParticleZ algorithm can deal with failures
more easily. At the time a resource wants to
share its workload with other resources, it sim-
ply sends a message and queries about its avail-
able neighbours, therefore, whenever a resource
breaks down it is automatically eliminated from
this process. Thus, in case of ParticleZ, a message
sent to the user reporting on the uncompleted jobs
would suffice.

However, when a resource fails without further
notice the situation is more complex. One possible
solution is the following. When a job is sent to the
Grid by a user, the worst case execution time will
be estimated for that job. This predicted time rep-
resents the worst case in which the user must have
received the results of its job submission. An event
is then scheduled for the predicted time. At this
specific time, the user will check whether the job
result was returned; if the job result has already
come back successfully, no further actions will be
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taken; otherwise, the job will be resubmitted and
the whole process repeats.

Another important issue is to pay attention
that the nodes may not be dedicated nodes in the
Grid, and each may have their own background
workload. Thus, the local load of each resource
should be incorporated in the load calculation
equation, which effects the decision making of the
algorithms accordingly.

In this research, we have simulated the pro-
posed algorithms with a simulation platform de-
veloped for the Grid, and the results proved to
be promising. The next step would be to apply
the algorithms in a real world Grid or incorporate
the algorithm in existing Grid toolkits such as the
Sun Grid Engine or Globus toolkit to confirm the
simulation results.
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