
Matchmaking Framework for Mathematical Web Services

Simone A. Ludwig1,j, Omer F. Rana1, Julian Padget2 and William Naylor2

1School of Computer Science, Cardiff University, 5 The Parade, Roath, Cardiff, CF24 3AA, UK

E-mail: Simone.Ludwig@cs.cardiff.ac.uk
2Department of Computer Science, University of Bath, Bath, UK

Received 9 August 2005; accepted in revised form 13 December 2005

Key words: match plug-ins, match score, matchmaking, mathematical web services

Abstract

Service discovery and matchmaking in a distributed environment has been an active research issue for some time

now. Previous work on matchmaking has typically presented the problem and service descriptions as free or

structured (marked-up) text, so that keyword searches, tree-matching or simple constraint solving are sufficient

to identify matches. In this paper, we discuss the problem of matchmaking for mathematical services, where the

semantics play a critical role in determining the applicability or otherwise of a service and for which we use

OpenMath descriptions of pre- and post-conditions. We describe a matchmaking architecture supporting the use

of match plug-ins and describe five kinds of plug-in that we have developed to date: (i) A basic structural match,

(ii) a syntax and ontology match, (iii) a value substitution match, (iv) an algebraic equivalence match and (v) a

decomposition match. The matchmaker uses the individual match scores from the plug-ins to compute a ranking

by applicability of the services. We consider the effect of pre- and post-conditions of mathematical service

descriptions on matching, and how and why to reduce queries into Disjunctive Normal Form (DNF) before

matching. A case study demonstrates in detail how the matching process works for all four algorithms.

1. Introduction

The amount of machine-oriented data on the Web is

increasing rapidly as semantic Web technologies

achieve greater up-take. At the same time, the dep-

loyment of agent/Web Services is increasing and

together create a problem for software agents that is

the analog of the human user searching for the right

HTML page. Humans typically use Google, but they

can filter out the irrelevant and spot the useful, so

while UDDI (the Web Services registry) with key-

word searching essentially offers something similar, it

is a long way from being very helpful. Consequently,

there has been much research on intelligent brokerage,

such as Infosleuth [18], LARKS [22], and IBROW

[4]. It is perhaps telling that much of the literature

appears to focus on architectures for brokerage, which

are as such domain-independent, rather than concrete

or domain-specific techniques for identifying matches

between a task or problem description and a capa-

bility or service description. Approaches to matching

in the literature fall into two broad categories:

� Syntactic matching, such as textual comparison

or the presence of keywords in free text.

� Semantic matching, which typically seems to

mean finding elements in structured (marked-up)

data and perhaps additionally the satisfaction of

constraints specifying ranges of values or rela-

tionships between one element and another.

For many problems this is both appropriate

and adequate, indeed it is not clear what more onej Corresponding author.

Journal of Grid Computing (2006) 4: 33–48 # Springer 2006
DOI: 10.1007/s10723-005-9019-z

could do, but in the particular domain of mathe-

matical services the actual mathematical semantics

are critical to determining the suitability (or other-

wise) of the capability for the task. The require-

ments are neatly captured in [11] by the following

condition:

Tin � Cin ^ Tout � Cout ^ Tpre) Cpre ^ Cpost) Tpost

where T refers to the task, C to the capability, in are

inputs, out are outputs, pre are pre-conditions and

post are post-conditions. What the condition

expresses is that the signature constrains the task

inputs to be at least as great as the capability inputs

(i.e., enough information), that the inverse relation-

ship holds for the outputs and there is a pairwise

implication between the respective pre- and post-

conditions. This however leaves unaddressed the

matter of establishing the validity of that implication.

In the MONET [7, 15] and GENSS [24] projects

the objective is mathematical problem solving

through service discovery and composition by means

of intelligent brokerage. Mathematical capability

descriptions turn out to be both a blessing and a

curse: Precise service description are possible thanks

to the use of the OpenMath [25] mathematical

semantic mark-up, but service matching can rapidly

turn into intractable (symbolic) mathematical calcu-

lations unless care is taken.

As Grid computing adopts the Service Oriented

Architecture for service usage and deployment, a

matchmaker can be seen as another infrastructure

service Y deployed as part of a discovery infrastruc-

ture. Our key motivation in using mathematical

services is that the provision of support for discov-

ering such services may be more useful than the

capability to provide services within a particular

domain (such as BioInformatics, for instance).

Numerical services are also generally much better

understood, and therefore may also serve as useful

benchmarks for evaluating a system. Furthermore,

multiple instances of mathematical services (imple-

mented by a variety of different vendors) can be

found, thereby providing the capability to choose

between similar services made available over differ-

ent deployment platforms.

This paper discusses our experience with devel-

oping such a domain-specific semantic matching for

mathematical services in which we put forward a

polyalgorithmic approach to answering the implica-

tion question posed above. The rest of the paper is

laid out as follows: In the next section we discuss the

description of mathematical services, in Section 3 we

describe the Web Services-based matchmaking ar-

chitecture and detail the roles of the components

within it, in Section 4 we provide a case study which

examines integer factorisation and in Section 5 we

summarise and conclude this paper.

1.1. Usage Scenarios

Within existing Grid applications, there are a number

of possible modes of use. For instance, a predomi-

nant use within the high performance computing

community involves a user submitting a single large

application to a remote compute service, and then

getting back the results on completion. However, a

significant benefit of the Grid computing vision is the

capability to combine results from multiple services

(often not co-located), aggregate the results and send

these back to the user. Generally, such an approach

involves the use of a workflow enactment engine to

coordinate the execution of services, and an overall

workflow system that allows the configuration of the

engine, a way to define the workflow graph, and

subsequently to present results in some meaningful

way to the user. The matchmaking approach pre-

sented here would therefore be useful in two types of

scenarios:

� Prototyping: In this instance, a user may be

interested in evaluating different mathematical

techniques in the context of a known problem.

The user may not have access to a suitable

mathematical algorithm to solve the problem, or

may be interested in identifying alternative

techniques that could provide a solution. In such

a scenario, a search for a suitable service may be

undertaken in a localized manner, involving

NAG libraries that a user has direct access to Y
for instance, or may involve connecting to

multiple known registry services owned by other

users. The matchmaking approach presented

would be most relevant in such a setting.

� Workflow composition: A workflow system

generally involves a set of pre-defined services

(made available when a workflow system is

initialized) that can be connected together to

create an application. Generally, once services

have been combined into a graph, execution of

34

which is then via an enactment engine. Recent

efforts in workflow management however also

involve dynamic updating of the list of services

within a workflow system [23]. Such discovery

currently involves periodically connecting to a

known registry service, and updating the list of

available services within the workflow system.

The matchmaking approach presented here can also

add value within such a workflow system, by

allowing a user to search for services on-demand. A

matchmaker is provided as just another service in the

workflow system, but one which can be used to

discover new services. Once a suitable service has

been identified, a reference to this service can be

added to the workflow system Y and subsequent

enactment can be carried out as before.

Currently, no data is made available on perfor-

mance information associated with a matched service

in our system. The current focus is therefore primarily

on finding suitable services based on their functional-

ity. Provided suitable monitoring tools are available

(such as Ganglia [1]) within the environment hosting

a service, our existing service description can be ex-

tended to also support such non-functional properties

of a service [12].

2. Description of Mathematical Services

2.1. OpenMath and MathML

In order to describe mathematics and to allow

mathematical objects to be exchanged between

computer programs, stored in databases, or published

on the worldwide web an emerging standard called

OpenMath [25] has been introduced. OpenMath is a

mark up language for representing the semantics (as

opposed to the presentation) of mathematical objects

in an unambiguous way. It may be expressed using

an XML syntax. OpenMath expressions are com-

posed of a small number of primitives. The definition

of these may be found in [25], for instance: OMA

(OpenMath Application), OMI (OpenMath Integer),

OMS (OpenMath Symbol) and OMV (OpenMath Var-

iable). Symbols are used to represent objects defined

in the Content Dictionaries (to be discussed),

applications specify that the first child is a function

or operator to be applied to the following children

whilst the variables and integers speak for them-

selves. As an example, the expression xþ 1 might

look like:1

<om : OMA>

<om : OMS cd ¼ ""arith1"" name ¼ ""plus""/>

<om : OMV name ¼ "x"/>

<om : OMI> 1 </om : OMI>

</om : OMA>

where the symbol plus is defined in the Content

Dictionary (CD) arith1. Content Dictionaries are

definition repositories in the form of files defining a

collection of related symbols and their meanings,

together with various Commented Mathematical Pro-

perties (for human consumption) and Formal Math-

ematical Properties (for machine consumption). The

symbols may be uniquely referenced by the CD name

and symbol name via the attributes cd and name res-

pectively, as in the above example. Another way of

thinking of a CD is as a small, specialised ontology.

MathML comes in two forms:

� For presentation (rendering in browsers) and

� for content (semantics),

and both are W3C recommendations. The specifica-

tion ([29] Section 5.1) and [17] identify ambiguities

in presentation MathML. Content MathML is

designed to handle the semantics of a limited subset

of mathematics up to K-12 level, mathematics

beyond this may be encoded by using OpenMath

and the semantics tag, alternatively parallel markup

may be utilised ([29] Section 5.3).

There are various ways in which OpenMath can

help in matchmaking:

� OpenMath can be used to encode the mathemat-

ical part of a problem to be solved in a query, for

example a differential equation or an integral.

� OpenMath may be used to encode the input

parameters to be sent to a service and the values

returned by the service.

� The function of a service (together with the

signature of the input parameters, and output

objects) may be described in OpenMath, these

may then be encoded using specialist tags to form

a mathematical service description; described in

1 Throughout the paper, the prefix om is used to denote the

namespace: http://www.openmath.org/OpenMath.

35

http://www.openmath.org/OpenMath

Mathematical Service Description Language

(MSDL) [6].

MSDL is an extension of WSDL that was developed

as part of the MONET project [15], incorporating

more information about a service, in particular pre-

and post-conditions, taxonomic references etc. An

example MSDL document describing a factorisation

service for square-free integers is shown in Figure 1.2

OpenMath is used to describe the service semantics,

but other encodings are possible.

3. Mathematical Matchmaking

3.1. Schemas and Ontologies

The XML document schemas we are using in GENSS

are, at the moment, those developed for the MONET

project. There are three main schemas:

� Mathematical Service Description Language

(MSDL)

� Mathematical Problem Description Language

(MPDL) and

� Mathematical Query Description Language

(MQDL)

whose purposes are apparent in the second word in

each case. The obvious question, even criticism, is

why develop this range of languages when there is

DAML-S [2] and OWL-S [8]? The answer is purely

practical: At the time of the MONET project (April

2002 to March 2004) OWL and OWL-S were still

subject to change and there were hardly any tools

available, while DAML and DAML-S were clearly

about to be made obsolete by OWL/OWL-S and the

tool situation was hardly any better. Thus a pragmat-

ic decision was made to take the principles needed to

enable the MONET deliverables from DAML/OWL

and embed them in some simple restricted languages

over which the project had full control. Thus we see

the adoption of pre- and post-condition driven

descriptions of capabilities and tasks, following the

ideas set out in DAML/OWL and being explored in

various semantic brokerage projects such as Info-

Sleuth [18], RETSINA [22] and IBROW [3], while

embedding WSDL in MSDL to provide the neces-

sary information about how to invoke the service. It

is our intention to explore how we can move from

MSDL towards OWL/OWL-S during the lifetime of

the current GENSS project, since this will greatly aid

interoperability and enable the utilisation of the

increasing range of tools (for OWL/OWL-S) that

have become available.

History is also the explanation for the ontology

language we use. OpenMath [25] recently (May

2004) celebrated its 10th anniversary, which indi-

cates how early an application of XML it was, when

many of the features we know today did not exist and

long before RDF came about Y although long after the

birth of KLONE [5]. Nevertheless, OpenMath stands

as probably the most developed ontology of mathe-

matics, because in contrast to MATHML-C [29] it is

extensible through the mechanism of content dictio-

naries which were developed to handle the absence of

modularisation facilities or namespaces in the original

XML. The OpenMath 2 standard [26] replaces DTDs

with schemas, seeks compatibility with RDF tools,

utilises XML namespaces and generally aims to

bring OpenMath in line with developments in

ontology representation over the last five years,

whilst keeping where feasible, backwards compati-

bility with OpenMath 1.1. Thus we shall continue to

use OpenMath as the primary representation lan-

guage for mathematical content in our work.

3.2. Related Matchmaking Approaches

A variety of matchmaking systems have been re-

ported in literature, we review some related systems

below.

The SHADE (SHAred Dependency Engineering)

matchmaker [14] operates over logic-based and

structured text languages. The aim is to dynamically

connect information sources. The matchmaking

process is based on KQML (Knowledge Query and

Manipulation Language) communication [9]. Content

languages of SHADE are a subset of KIF (Knowl-

edge Interchange Format) [10] as well as a structured

logic representation called MAX (Meta-reasoning

Architecture for FX_). Matchmaking is carried out

solely by matching the content of advertisements and

requests. There is no knowledge base and no

inference performed.

COINS (COmmon INterest Seeker) [14] is a

matchmaker which operates over free text. The

2 Throughout the paper, the prefix monet is used to denote the

namespace: http://monet.nag.co.uk/monet/ns.

36

http://monet.nag.co.uk/monet/ns

motivation for the COINS is the need for matchmak-

ing over large volumes of unstructured text on the

Web or other Wide Area Networks and the imprac-

ticality of using traditional matchmakers in such an

application domain. Initially the free text matchmak-

er was implemented as the central part of the COINS

system but it turned out that it was also useful as a

general-purpose facility. As in SHADE the access

Figure 1. MSDL description of a factorisation service.

37

language is KQML. The System for the Mechanical

Analysis and Retrieval of Text (SMART) [20]

information retrieval system is used to process free

text. The text is converted into a document vector

using SMART’s stemming and Fnoise_ word remov-

al. Then the document vectors are compared using an

inverse document frequency algorithm.

LARKS (Language for Advertisement and Re-

quest for Knowledge Sharing) [22] was developed to

enable interoperability between heterogeneous soft-

ware agents and had a strong influence on the

DAML-S specification. The system uses ontologies

defined by a concept language ITL (Information

Terminology Language). The technique used to

calculate the similarity of ontological concepts

involves the construction of a weighted associative

network, where the weights indicate the belief in

relationships. While it is argued that the weights can

be set automatically by default, it is clear that the

construction of realistically weighted relationships

requires human involvement, which becomes a hard

task when thousands of agents are available.

InfoSleuth [18] is a system for discovery and

retrieval of information in open and dynamically

changing environments. The brokering function

provides reasoning over the advertised syntax and

the semantics. InfoSleuth aims to support coopera-

tion among several software agents for information

discovery, where agents have roles as core, resource

or ontology agents. A central service is the broker

agent which is equipped with a matchmaker which

matches agents that require services with agents that

can provide those services. To apply this procedure

an advertising agent has to register with the broker

agent. The broker inserts the agent’s description into

its broker repository. The broker can then execute

queries by requesting agents. These queries are

formulated by agents who need other agents to fulfil

their tasks.

The GRAPPA [28] (Generic Request Architec-

ture) system allows multiple types of matchmaking

mechanisms to be employed within a system. It is

based on receiving arbitrary matchmaking offers and

requests, where each offer and request consist of

multiple criteria. Matching is achieved by applying

distance functions which compute the similarities

between the individual dimensions of an offer and a

request. Using particular aggregate functions, the

similarities are condensed to a single value and

reported to the user.

MathBroker is a project at RISC-Linz with some

elements in common with those described here,

including providing semantic descriptions of math-

ematical services. It too uses MSDL, however it

seems that most of the matchmaking is achieved

through traversing taxonomies, while actual under-

standing of the pre- and post-conditions is still an

open problem.

Most of the projects above have focused on

providing a generic matchmaker, capable of being

adapted for a particular application. However, the

motivation for many such projects has primarily been

e-commerce (as a means to match buyers with sellers,

for instance). Some projects are also focused on the

use of a particular multi-agent interaction language

(such as KQML), to enable communication between

the matchmaker and other agents. Our approach,

however, is centered on the implementation of a

matchmaker that is specific to mathematical relations.

Similar to GRAPPA, our matchmaker can support

multiple comparison techniques.

3.3. Matchmaking Requirements

To achieve matchmaking:

� We want sufficient input information in the task

to satisfy the capability, while the outputs of the

matched service should contain at least as much

information as the task is seeking, and

� the task pre-conditions should be more than

satisfied by the capability pre-conditions, while

the post-conditions of the capability should be

more than satisfied by the post-conditions of the

task.

These constraints reflect work in component-based

software engineering and are, in fact, derived from

[31]. They are also more restrictive than is necessary

for our setting, by which we mean that some inputs

required by a capability can readily be inferred from

the task, such as the lower limit on a numerical

integration or the dependent variable in a symbolic

integration. Conversely, a numerical integration

routine might only work from 0 to the upper limit,

while the lower limit of the problem is non-zero. A

capability that matches the task can be synthesised

from the composition of two invocations of the

capability with the fixed lower limit of 0. Clearly

the nature of the second solution is quite different

38

from the first, but both serve to illustrate the

complexity of this domain. Furthermore, we believe

that given the nature of the problem, it is only very

rarely that a task description will match exactly a

capability description and so a range of reasoning

mechanisms must be applied to identify candidate

matches. This results in:

Requirement 1: A plug-in architecture supporting

the incorporation of an arbitrary

number of matchers.

The second problem is a consequence of the

above: There will potentially be several candidate

matches and some means of indicating their suitabil-

ity is desirable, rather than picking the first or

choosing randomly. Thus:

Requirement 2: A ranking mechanism is required

that takes into account pure techni-

cal (as discussed above in terms

of signatures and pre- and post-

condition) and quantitative and

qualitative aspects Y and even user

preferences.

3.4. Matchmaking Architecture

Our matchmaking architecture is outlined in Figure 2

and comprises the following parts:

� Client interface: Which may be employed by the

user to specify their service request.

� Matchmaker: Which contains a reasoning engine

and the matching module.

� UDDI registry: Where the matching algorithm

Web services are registered.

� Matching algorithm web services: Where the

logic of the matching is defined.

� Mathematical ontologies: Such as OpenMath

CDs, GAMS etc.

� Registry service: Where the mathematical ser-

vice descriptions are stored.

� Mathematical web services: Available on third

party sites, accessible over the Web.

The sequence diagram in Figure 3 shows the inter-

actions between these components of a service request.

The interactions of a search request are as follows:

� The user contacts the matchmaker, then

Figure 2. Matchmaking architecture.

39

� the matchmaker loads the matching algorithms

specified by the user via a lookup in the UDDI

registry; in the case of an ontological match,

further steps are necessary;

� the matchmaker contacts the reasoner which in

turn loads the corresponding ontology;

� having additional match values results in the

registry being queried, to see whether it contains

services which match the request and finally

� service details are returned to the user via the

matchmaker.

The parameters stored in the registry (a database) are

service name, URL, taxonomy, input, output, pre-

and post-conditions. Using contact details of the

service from the registry, the user can then call the

Web Service and interact with it. Each component of

the architecture is now described in more detail.

3.4.1. Client

The Client application3 (shown in Figure 4) allows

the user to specify the service request via entry fields

for pre- and post-conditions. The matchmaker returns

the matches in the table at the bottom of the GUI

listing the matched services ranked by similarity.

Subsequently the user can invoke the service by

clicking on the URL.

3.4.2. Matching Algorithms

Currently five matching algorithms have been imple-

mented within the matchmaker:

� Structural match

� Syntax and ontological match

� Algebraic equivalence match

� Value substitution match

� Decomposition match

These matchers are complementary and constitute

the polyalgorithmic approach mentioned in the

abstract. The structural match only compares the

OpenMath symbol element structures (e.g., OMA;
OMS; OMV etc.). The syntax and ontological match

algorithm goes a step further and compares the

OpenMath symbol elements and the content dictio-

nary values of OMS elements. If a syntax match is

found, which means that the values of the content

dictionary are identical, then no ontology match is

necessary. If an ontology match is required, the query

structure is matched using the content dictionary

hierarchy. The algebraic equivalence match and

value substitution match do actual mathematical

reasoning using the OpenMath structure.

Figure 3. Sequence diagram Y service request.

3 http://agentcities.cs.bath.ac.uk:8080/genss_

axis/GENSSMatchmaker/index.htm.

40

http://agentcities.cs.bath.ac.uk:8080/genss_axis/GENSSMatchmaker/index.htm
http://agentcities.cs.bath.ac.uk:8080/genss_axis/GENSSMatchmaker/index.htm

The structural match works as follows. The pre-

and post-conditions are extracted and an SQL query

is constructed to find the same OpenMath structure of

the pre- or post-conditions of the service descriptions

in the database.

The ontological match is performed similarly,

however, the OpenMath elements are compared with

an ontology [21] representing the OpenMath ele-

ments. The matchmaking mechanism allows a more

efficient matchmaking process by using mathemati-

cal ontologies such as the one for sets shown in

Figure 5. OWLJessKB [13] was used to implement

the ontological match. It is intended to facilitate

reading Ontology Web Language (OWL) files,

interpreting the information as per OWL and RDF

languages, and allowing the user to query on that

information. To give an example the user query

contains the OpenMath element:

<om : OMS cd ¼ ’setname1’ name ¼ ’Z’/>

and the service description contains the OpenMath

element:

<om : OMS cd ¼ ’setname1’ name ¼ ’P’/>:

The query finds the entities Z and P and determines

the similarity value depending on the distance bet-

ween the two entities (inclusive, on one side) which

in this case is SV ¼ 1
n
¼ 0:5, where n is the degree of

separation of the concepts or in other words the

distance between the two concepts.

For both the ontological and structural match, it is

necessary that the pre- and post- conditions are in

some standard form. For instance, consider the

Figure 4. Matchmaker client application.

Figure 5. Set ontology fragment.

41

algebraic expression x2 � y2, this could be repre-

sented in OpenMath as:

<om : OMOBJ><om : OMA>

<om : OMS cd ¼"arith1" name ¼ "minus"/>

<om : OMA>

<om : OMS cd ¼ "arith1" name ¼ "power"/>

<om : OMV name ¼ "x"/>

<om : OMI>2</om : OMI>

</om : OMA>

<om : OMA>

<om : OMS cd ¼ "arith1" name ¼ "power"/>

<om : OMV name ¼ "y"/>

<om : OMI>2</om : OMI>

</om : OMA></om : OMA>

</om : OMOBJ>

however, x2 � y2 ¼ ðxþ yÞðx� yÞ, leading to the

ontologically and structurally different markup:

<om : OMOBJ><om : OMA>

<om : OMS cd ¼ "arith1" name ¼ "times"/>

<om : OMA>

<om : OMS cd ¼ "arith1" name ¼ "plus"/>

<om : OMV name ¼ "x"/>

<om : OMV name ¼ "y"/>

</om : OMA>

<om : OMA>

<om : OMS cd ¼ "arith1" name ¼ "minus"/>

<om : OMV name ¼ "x"/>

<om : OMV name ¼ "y"/>

</om : OMA></om : OMA>

</om : OMOBJ>

Both are Fright,_ it just depends on what information

is wanted, so there can in general be no canonical

form. So in order to address the above observation,

we must look deeper into the mathematical structure

of the expressions which make up the post-condi-

tions. Most of the conditions examined may be

expressed in the form: QðLðRÞÞ where:

� Q is a quantifier block, e.g., 8x9ys:t: � � �
� L is a block of logical connectives, e.g.,

^;_;); � � �
� R is a block of relations, e.g., ¼;�;�; 6¼; � � �

Thus the objective of normalization is to put the task

and capability pre- and post-conditions in a form for

effective comparison. While there is no right repre-

sentation, as long as we normalize task and capability

using the same techniques, they can be compared and

a similarity value computed. Each of the above parts

of the expression is handled as follows:

The quantifier block: In most cases, the quantifier

block will just be a range restriction. In other cases

it may be possible to use quantifier elimination to

replace the quantifier block by an augmented

logical block. Quantifier elimination is a problem

for which code exists in many computer algebra

systems; e.g., RedLog in Reduce.

The logical block: Once the quantifier elimination

has been performed on the query descriptions

and the service descriptions, the resulting logical

blocks must be converted into normal forms. We

choose to transform the query logical block into

DNF (disjunctive normal form), that is a form

which only contains a disjunction of terms and

the negation of terms:
W

i QTi

W
j QTj, which

means the conditions are represented as a set of

alternatives, making the comparison relatively

easy, not least because superfluous conditions do

not then affect the eligibility test. The capability

description is transformed likewise (
W

i STi

W
j

STj), and consequently, we can define what

matching such terms means. There are four

possible combinations:

� A term in QTi matches a term in STi. This

should count as a positive match.

� A term in QTi matches a term in STj. This

should count as a negative match.

� A term in QTj matches a term in STi. This

should count as a negative match.

� A term in QTj matches a term in STj. This

should count as a positive match.

A more detailed discussion of the semantics of

matching mathematical descriptions appears in

[16].

42

The relations block: We now have a disjunction of

terms which we are matching against a set of

conjunction of terms. It is useful to note that a

term is of the general form: TL � TR where � is

some relation i.e., a predicate on two arguments.

In the case that TL and TR are real values, we

may proceed as follows: we have two terms we

wish to compare QL � QR and SL � SR, we first

isolate an output variable r, this will give us

terms r � Q and r � S. There are two ap-

proaches which we now try in order to prove

equivalence of r � Q and r � S:

� Algebraic equivalence: With this approach

we try to show that the expression Q� S ¼ 0

using algebraic means. There are many cases

were this approach will work, however it has

been proved [19] that in general this problem

is undecidable. Another approach involves

substitution of r determined from the condi-

tion r � S into r � Q, and subsequently

proving their equivalence.

� Value substitution: With this approach we

try to show that Q� S ¼ 0 by substituting

random values for each variable in the

expression, then evaluating and checking to

see if the valuation we get is zero. This is

evidence that Q� S ¼ 0, but is not conclu-

sive, since we may have been unlucky in the

case that the random values coincide with a

zero of the expression.

The decomposition match attempts to discover

an equivalent mathematical expression in case an

exact service match cannot be found. Essentially, this

involves dividing the query into sub-queries, and

trying to find a match for each decomposed sub-

query. The decomposition is supported by applying a

set of rules that try to match each service description.

The rules are applied recursively to decompose a

mathematical expression into its simplest form. If we

take the previous example, we see that evaluating the

expression x2 � y2 at specific values for x and y could

be decomposed into evaluations of the simpler

expressions e1 ¼ x� y, e2 ¼ xþ y and r ¼ e1 * e2.

3.4.3. UDDI Registry

The Web Services Description Language (WSDL)

[30] is an XML-based language used to describe a

Web service. This description allows an application

to dynamically determine a Web service’s capabili-

ties, which are for example, the operations it

provides, their parameters, return values, etc. A

UDDI [27] repository is a searchable directory of

Web services that Web service requestors can use to

search for Web services and obtain their WSDL

documents. UDDI consists of three components:

FWhite pages_ to hold basic contact information and

identifiers for a company, Fyellow pages_ to enable

companies to be listed based on their industry

categories (using standard taxonomies), and Fgreen

pages_ to record interface details of how a Web

service is to be invoked. Providers may register

services with one or more registries (using the same

identifier) Y and may be discovered by search

distributed over one or more registries.

Figure 6 shows the registered matching algorithm

Web services which are Structural Matcher, Ontolo-

gy Matcher, Substitution Matcher, Algebraic Match-

er and Decomposition Matcher. The business where

they are registered is GENSS Project. The industry

classification chosen for our matching algorithm

services is the NAICS (North American Industry

Classification System) standard which is encoded in

the tModelKey. All registered Web Services have an

access point which is the WSDL document.

The following paragraph describes the process of

registering a new matching algorithm in the Cardiff

UDDI. It is necessary to connect to UDDI4 and

register the matching algorithm Web Service with the

business key 5 shown in the binding template in

Figure 7. The authtoken provides a way to

authenticate a particular session with the Web server.

The business key is obtained when registering a new

Business in the UDDI Y and generally associated

with particular categories that a given Business may

be assigned to. However, in order to make the

matching algorithm work with the matchmaker, the

matching algorithm needs to follow a defined

interface description, whereby the passed argument

is a DataHandler object containing a vector of pre-

conditions and a vector of post-conditions, and the

return argument is a DataHandler object consisting

of a vector of ServiceMatchDetails objects. In our

example using the Fwhite_ pages search word GENSS

would result in querying the business information

4 http://uddi.wesc.ac.uk:8334/juddi/.
5 businessKey="226BB8A0-6BC3-11D9-B8A0-865238

849EB8".

43

http://uddi.wesc.ac.uk:8334/juddi/

encoded in the businessKey returning the five

matching algorithm services. This allows a dynamic

loading of matchmaking algorithms in order to allow

the matchmaker to be driven in the different match-

ing modes. Using the Fyellow_ pages search with the

keyword OntologyMatcher would return the WSDL

document of the Web Service accordingly. As

illustrated in Figure 7, the URL points to the location

of the service interface Y accessed by a Web Service

client to invoke the service.

3.4.4. Service Registry

The mathematical service descriptions are stored in a

database comprising the following tables: service,

taxonomy, input, output, precond and postcond, and

omsymbol. For the matching of pre- and post-

conditions, the tables omsymbol, precond and post-

cond are used. The other tables give additional

details about a service once the matching is done,

in order for the user to select the appropriate service

from the returned list.

3.4.5. Matchmaker

Algorithm 1 Matchmaking

PrCQ: Pre-conditions of query

PoCQ: Post-conditions of query

PrCS: Pre-conditions of service

PoCS: Post-conditions of service

SVPrC: Similarity values of Pre-conditions

SVPoC: Similarity values of Post-conditions

MVPrC: Match values of Pre-conditions

MVPoC: Match values of Post-conditions

MVO: Overall match score of service

SD: Service details

MD: Match details of service

PrCQ read In PreCondsðÞ
PoCQ read In PostCondsðÞ
connect To DBðÞ
for all service In DB do

PrC read PreConds From DBðÞ
for {PrCS} do

SVPrC select Match AlgoðÞ
end for

MVPrC calculate Match ValueðÞ
PoCS read PostConds From DBðÞ
for PoCS do

SVPoC select Match AlgoðÞ
end for

MVPoC calculate Match ValueðÞ
MVO calculate Match ScoreðÞ
SD retrieve Service DetailsðÞ
MD store Match DetailsðÞ

end for

disconnect From DBðÞ
return MD

Figure 6. Matching algorithm web services registered in UDDI registry.

44

The matchmaking algorithm is specified in Algo-

rithm 1. The pre- and post-conditions are read in first.

Then a connection to the database is made. For all

services in the database, first the pre-conditions are

read and for each the matching algorithm selected is

applied Y which returns a similarity value. For all

similarity values of pre-conditions a match value is

calculated and stored. The same procedure is then

used for the post-conditions. For each service the

match values for all pre- and post-conditions are

calculated and stored together with the service details.

The overall consideration within the matchmak-

ing approach is to get a match score returned which

should be between 0 and 1, where 0 represents no

match and 1 represents an exact match (1). Looking

at the pre- and post-conditions separately, it is first of

all necessary to determine the ratio of the number of

pre-conditions given in the query in relation to the

number given by the actual service where some or all

pre- or post-conditions match. To make sure that this

ratio does not exceed 1, a normalisation is performed

with the inverse of the sum of both values. This is

multiplied by the sum of the similarity values for

each match of a pre-condition divided by the number

of actual matches in order to keep the overall score

value between 0 and 1 in Equation (2). The same is

done with the post-conditions (3). The importance of

the pre- or post-conditions is reflected in the weight

values. The match scores may be calculated using the

following equations:

MO ¼
MA þMB

2
ð1Þ

MA ¼
wa

jAQj þ jAS j
*
jAQj
jAS j

*

PjAj
i¼1ðSVAðiÞÞÞ
jAj

where wa þ wb ¼ 1 ð2Þ

MB ¼
wb

jBQj þ jBS j
*
jBQj
jBS j

*

PjBj
j¼1ðSVBðjÞÞÞ
jBj

where wa þ wb ¼ 1 ð3Þ

Figure 7. UDDI binding template.

45

In the above, MO; MA; MB are the overall, the pre-

condition and the post-condition match scores re-

spectively. jfcgj denotes the number of conditions in

fcg, AQ and AS are pre-conditions, BQ and BS are

post-conditions, the subscripts Q and S refer to the

queries and services respectively. A; B are a set of

matched pre-conditions, post-conditions respectively

and SVAðiÞ, SVBð jÞ are the similarity values for the

ith matched pre-condition and the jth matched post-

condition respectively.

4. Case Study

For the case study we only consider the first four

matching modes. The Factorisor service we shall look

at is a service which finds all prime factors of an In-

teger. The Factorisor has the following post-condition:

<om : OMOBJ>

<om : OMA>

<om : OMS cd ¼ ’relation1’ name ¼ ’eq’/>

<om : OMV name ¼ ’n’/>

<om : OMA>

<om : OMS cd ¼ ’fns2’ name ¼ ’apply to list’/>

<om : OMS cd ¼ ’arith1’ name ¼ ’times’/>

<om : OMV name ¼ ’lst fcts’/>

<=om : OMA>

<=om : OMA>

<=om : OMOBJ>

where n is the number we wish to factorise and

lst fcts is the output list of factors.

As the structural and ontological modes compare

the OpenMath structure of queries and services, and

the algebraic equivalence and substitution modes

perform mathematical reasoning, the case study

needs to reflect this by providing two different types

of queries.

For the structural and ontological mode let us

assume that the user specifies the following query:

<om : OMOBJ>

<om : OMA>

<om : OMS cd ¼ ’fns2’ name ¼ ’apply to list’/>

<om : OMS cd ¼ ’arith1’ name ¼ ’plus’/>

<om : OMV name ¼ ’lst fcts’/>

<=om : OMA>

<=om : OMOBJ>

For the structural match, the query would be split

into the following OM collection: OMA, OMS, OMS, OMV

and OMA in order to search the database with this

given pattern. The match score of the post-condition

results in (using the equations as stated above):

MA ¼
0:5

1þ 1
� 1

1
�

5
9

1
¼ 0:13889

whereby 5
9

is the number of items in the collection

divided by the number of items in the pre-condition

of the service, and MB ¼ 0, thus MO ¼ 0:06944.

The syntax and ontology match works slightly

different as it also considers the values of the OM

symbols. In our example we have three OM symbol

structures. There are two instances of OMS and one of

OMV. First the query and the service description are

compared syntactically. If there is no match, then the

ontology match is called for the OMS structure. The

value of the content dictionary (CD) and the value of

the name are compared using the ontology of that

particular CD. In this case the result is:

MA ¼
0:5

1þ 1
� 1

1
�

4:1
9

1
¼ 0:11389

whereby fraction 4.1 is the similarity value (four

items in the collection match and the similarity value

measured via the ontology is 0.1). MB ¼ 0 and

therefore MO results in a value of 0.05695.

If the OM structure of the service description is

exactly the same as the query then the structural

match score is the same as for the syntax and

ontology match.

The post-condition for the Factorisor service

represents:

n ¼
Yl

i¼1

lst fctsi where l ¼ jlst fctsj ð4Þ

Considering the algebraic equivalence and the value

substitution, a user asking for a service with post-

condition:

8ij1 � i � jlst fctsj) n mod lst fctsi ¼ 0

ð5Þ
should get a match to this Factorisor service.

To carry out the algebraic equivalence match we

use a proof checker to show that:

� Equation (4)) Equation (5): This is clear since

the value of n may be substituted into Equation

(4) and the resulting equality will be true for

each value in lst fcts.

46

� Equation (5)) Equation (4): A slightly stronger

version of Equation (5) which says that there are

no other numbers which divide n.

To compute the value substitution match we must

gather evidence for the truth of Equations (4) and (5)

by considering a number of random examples, we

proceed as follows:

� We first need to decide on the length of the list for

our random example. A good basis would be to

take jlst fctsj ¼ dlog2ðnÞe, this represents a

bound on the number of factors in the input

number.

� We then collect that number of random num-

bers, each of size bounded by
ffiffiffi
n
p

.

� Then we calculate their product, from Equation

(4), this gives a new value for n.

� We may now check Equation (5). We see that it

is true for every value in lst fcts.

If we try this for a few random selections, we obtain

evidence for the equivalence of Equations (4) and

(5).

5. Conclusion and Further Work

We have presented an approach to matchmaking in

the context of mathematical semantics. The addition-

al semantic information greatly assists in identifying

suitable services in some cases, but also significantly

complicates matters in others, due to their inherent

richness. Consequently, we have put forward an

extensible matchmaker architecture supporting the

dynamic loading of plug-in matchers that may

employ a variety of reasoning techniques, including

theorem provers and computer algebra systems as

well as information retrieval from textual documen-

tation of mathematical routines (this last is under

development at present). Although our set of test

cases is as yet quite small, the results are promising

and we foresee the outputs of the project being of

widespread utility in both the e-Science and Grid

communities, as well as more generally advancing

semantic matchmaking technology. Although the

focus here is on matchmaking mathematical capabil-

ities, the descriptive power, deriving from quantifi-

cation and logic combined with the extensibility of

OpenMath creates the possibility for an extremely

powerful general-purpose mechanism for the descrip-

tion of both tasks and capabilities. In part, this

appears to overlap, but also to complement the

descriptive capabilities of OWL and, in much the

same way as it was applied in MONET, we expect to

utilise OWL reasoners as plug-in matchers in the

architecture we have set out. Furthermore, we are

currently running experiments for measuring the

scalability of this framework in comparison with

another matchmaking framework called the instan-

ceStore. Preliminary findings suggest that the scal-

ability of this framework is much higher than the

instanceStore when searching for the right service.

However, the initialisation (loading of the ontology)

in turn is much slower.

Acknowledgements

The work reported here is partially supported by the

Engineering and Physical Sciences Research Council

under the Semantic Grids call of the e-Science

program (grant reference GR/S44723/01).

References

1. BGanglia Monitoring System^, http://ganglia.

sourceforge.net/.

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

S. McIlraithe, S. Narayanan, M. Paolucci, T. Payne, K.

Sycara and H. Zeng, BDAML-S: Semantic markup for web

services^, in Proc. 1st Int’l Semantic Web Conf. (ISWC 02),

2002.

3. V.R. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B.

Wielinga, G. Schreiber, Z. Zdrahal and S. Decker, BAn

intelligent brokering service for knowledge-component reuse

on the world-wideweb^, in Proceedings of the 11th Banff

Knowledge Acquisition for Knowledge-Based System Work-

shop (KAW’98), Banff, Canada, pp. 18Y23, April 1998.

4. V.R. Benjamins, B. Wielinga, J. Wielemaker and D.

Fensel, BTowards brokering problem-solving knowledge

on the internet^, in D. Fensel and R. Studer (eds.),

Proceedings of the 11th European Workshop on Knowledge

Acquisition, Modeling and Management (EKAW-99), Vol.

1621 of LNAI, Springer, Berlin Heidelberg New York pp.

33Y48, 1999.

5. R. Brachman and J. Schmolze, BAn overview of the KL-ONE

knowledge representation system^, 1985.

6. S. Buswell, O. Caprotti and M. Dewar, BMathematical Service

Description Language^, Technical Report, 2003. Available

from the MONET website: http://monet.nag.co.uk/

cocoon/monet/publicdocs/monet-msdl-nal.pdf.

7. O. Caprotti, M. Dewar, J. Davenport and J. Padget,

BMathematics on the (Semantic) Net^, in C. Bussler, J.

47

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf
http://http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf

Davies, D. Fensel, and R. Studer (eds.), Proceedings of the

European Symposium on the Semantic Web, Vol. 3053 of

LNCS, Springer, pp. 213Y224, 2004.

8. Coalition, BOWL-S: Semantic markup for web services^,

2003.

9. T. Finin, R. Fritzson, D. McKay and R. McEntire, BKQML as

an agent communication language^, in Proceedings of 3rd

International Conference on Information and Knowledge

Management, pp. 456Y463, 1994.

10. M. Genesereth and R. Fikes, BKnowledge interchange format,

version 3.0 reference manual^, Technical report, Computer

Science Department, Stanford University, 1992. Available

from http://www-ksl.stanford.edu/knowledge-

sharing/papers/kif.ps.

11. M. Gomez and E. Plaza, BExtended matchmaking to maximize

capability reuse^, in N. R. Jennings, C. Sierra, L. Sonnenberg

and M. Tambe (eds.), Proceedings of The Third International

Joint Conference on Autonomous Agents and Multi Agent

Systems, Vol. 1., ACM, pp. 144Y151, 2004.

12. L. Huang, D. Walker, Y. Huang and O. Rana, BDynamic web

service selection for workflow optimisation^, Proceedings of

UK eScience All-Hands Meeting, Nottingham, 2005.

13. J. Kopena,BOWLJessKB^, 2004. http://edge.cs.drexel.

edu/assemblies/software/ owljesskb/.

14. D. Kuokka and L. Harada, BIntegrating information via

matchmaking^, Intelligent Information Systems, Vol. 6, No.

2Y3, pp. 261Y279, 1996.

15. MONET Consortium, BMONET Home Page^, 2002, Avail-

able from http://monet.nag.co.uk.

16. W. Naylor and J. Padget, BSemantic matching for mathemat-

ical services^, Lecture Notes in Computer Science, Vol. 3863,

pp. 174Y189, 2006.

17. W. Naylor and S. Watt, BMeta-stylesheets for the conversion

of mathematical documents into multiple forms^, Annals of

Mathematics and Artificial Intelligence, Vol. 38, No. 1Y3, pp.

3Y25, 2003.

18. M. Nodine, W. Bohrer, and A. Ngu, BSemantic brokering over

dynamic heterogenous data sources in InfoSleuth^, in Pro-

ceedings of the 15th International Conference on Data

Engineering, pp. 358Y365, 1999.

19. D. Richardson, BSome unsolvable problems involving ele-

mentary functions of a real variable^, Journal of Computa-

tional Logic, Vol. 33, pp. 514Y520, 1968.

20. G.Salton,Automatic Text Processing, Addison-Wesley, 1989.

21. J. Sowa, BOntology, Metadata, and Semiotics, Conceptual

Structures: Logical, Linguistic, and Computational Issues^,

Lecture Notes in AI #1867, Springer, Berlin Heidelberg New

York pp. 55Y81, 2000.

22. K. Sycara, S. Widoff, M. Klusch and J. Lu, BLarks: Dynamic

matchmaking among heterogeneous software agents in

cyberspace^, Journal of Autonomous Agents and Multi Agent

Systems, Vol. 5, No. 2, pp. 173Y203, 2002.

23. I. Taylor, M.Shields, I. Wangand O. Rana,BTrianaapplications

within Grid computing and peer to peer environments^,

Journal of Grid Computing, Vol. 1, pp. 199Y217, 2003.

24. The GENSS Project, BGENSS Home Page^, 2004. Available

from http://genss.cs.bath.ac.uk.

25. The OpenMath Society, BThe OpenMath Standard^, 2002.

Available from http://www.openmath.org/standard/

om11/omstd11.xml.

26. The OpenMath Society, BThe OpenMath Standard^, 2004.

Available from http://www.openmath.org/cocoon/

openmath/standard/om20/index.html.

27. UDDI, BUDDI Technical White Paper^, 2003, Available from

http://www.uddi.org/pubs/Iru_UDDI_Technical_

White_Paper.pdf.

28. D. Veit, Matchmaking in Electronic Markets, Vol. 2882 of

LNCS. Springer. Hot Topics, 2003.

29. W3C MathML, BMathematical Markup Language (MathML)

Version 2.0^, 2003. Available from http://www.w3.org/

TR/MathML2/.

30. W3C WSDL, BWeb Services Description Language (WSDL)

1.1^, 2004. Available from http://www.w3.org/TR/wsdl.

31. A.M. Zaremski and J.M. Wing, BSpecification matching of

software components^, ACM Transactions on Software Engi-

neering and Methodology, Vol. 6, No. 4, pp. 333Y369, 1997.

48

http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps
http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps
http://edge.cs.drexel.edu/assemblies/software/%20owljesskb/
http://edge.cs.drexel.edu/assemblies/software/%20owljesskb/
http://monet.nag.co.uk
http://genss.cs.bath.ac.uk
http://www.openmath.org/standard/om11/omstd11.xml
http://www.openmath.org/standard/om11/omstd11.xml
http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_�Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_�Paper.pdf
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/wsdl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

