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Abstract Structural health monitoring (SHM) has become a powerful tool for engineering fields to 

make decisions for resource allocation in harsh environments such as fire, earthquake, flood, etc. 

To effectively make a decision based on the monitoring data, the SHM system requires a large 

number of sensors for different data resource measurements, for example, strain, temperature, and 

vibration, resulting in a need to determine the tradeoff between the number of sensors of each type 

and the associated cost of the system. This paper introduces a sensor optimization approach based 

on genetic algorithm for the multiple-objective sensor placement of structural health monitoring in 

harsh environments. The derived theoretic multi-task objective function of the genetic function is 

validated by a single-bay steel frame in a harsh environment of simultaneous high temperature and 

large strain. The variance between the theoretical and the experimental analysis was within 5%, 

indicating an effective sensor placement optimization using the developed genetic algorithm, 

which can be further applied to general sensor optimization for SHM system applications in harsh 

environments.  

Keywords: Sensor Optimization, Structural Health Monitoring, Genetic Algorithm, Harsh 
environment 



1. Introduction 

A structural health monitoring (SHM) system has recently gained exceeding attention from 

engineering fields and it has been successfully applied to various civil infrastructures such as tall 

buildings, long bridges, hospitals, offshore facilities, nuclear power plants, etc. By collecting specific data 

from sensors on structures, the health condition of the structures can be analyzed in real time, which could 

help the users to track the structural damages, allowing associated maintenance in advance, and thus 

avoid severe fatality. However, compared with large-scale civil infrastructure, the lightweight sensors in 

an SHM system would be more vulnerable for damages, especially in harsh environments.  

A harsh environment describes a structural surrounding with potential high temperature involvement 

such as fire, appearance of reactive chemical substance and radiations such as corrosive environments, or 

an attack of high pressure or vibration such as an earthquake. Harsh environments may fail the allowable 

working condition of a sensor, leading to a sensor failure. When the number of failed sensors exceed an 

acceptable level, the SHM system would produce an unreliable monitoring or prediction of the structural 

performance. To avoid the occurrence of such condition, current practice uses high-cost harsh-

environment resistant sensors with extensive redundancies of sensor placement for an SHM system in 

harsh environments, resulting in a high-cost and unaffordable system to be widely applied.  

Therefore, to search for an affordable SHM system in harsh environments, it needs to reduce the total 

numbers of sensors while remaining an acceptable monitoring accuracy at the same time, requiring a 

sensor placement optimization for sensor location, sensor types and number (cost), and measurement 

accuracy. Sensor optimization problem, despite static or dynamic, is incorporated in a special class of 

mathematic problems, a convex optimization, which has been discussed for almost 100 years [1]. 

Unfortunately, the sensor selection problems have been proved to be NP-hard, which could result in a 

long execution time depending on the problem size. In order to get an exact solution, even with a 

powerful computer, the number of sensor candidates has to be reasonably small [2, 3]. In last two decades, 



new developments in this mathematic area brought us further possibilities to get the solution of sensor 

optimization problems more effectively and efficiently [4].  

Instead of an exact solution, recent approaches for sensor optimization focus on solving the problem 

approximately using local search methods. For the control and damage detection of dynamic structures, 

either local information-theory-based [5-11] or information-based [12-15] sensor placement optimizations 

can be applied. These local search methods frequently form the optimizing control function of the fisher 

information matrix (FIM) or its variants using structural dynamic properties, such as structural frequency 

mode shapes, strain energy, and structural curvature. Thus, these optimization methods emphasize either 

the controllability or observability of the system and are usually applied for placement of wireless 

acceleration sensors on structures. In addition, the computational performance of these local search 

approaches are suboptimal and not guaranteed to be minimum since these algorithms reduce the sensor 

number in an iterative manner. 

Global search methods have also been investigated such as Genetic algorithm (GA) [16, 17] and 

swarm intelligence method [18]. The GA was developed by Alan Turing as “learning machine” in 1950 

and started to become popular in the late 1980s due to the computational ability of desktop computers 

[19]. The GA has great advantages for multi-dimensional, non-differential, and non-continuous problems 

since it does not rely on an error surface and can be easily transferred from one model to another. Being a 

global search method, the GA has been widely used in sensor placement optimization problems for SHM 

systems such as active vibration control [16, 17, 20]. However, traditional GAs can be inefficient because 

they show a tendency of early convergence, and poorly known fitness functions that generate bad 

chromosomes causing in a failure of solving the sensor selection problems [19]. There are several 

modified GA applications of the sensor optimization [21-26]. Recent research combined multiple 

algorithms to achieve optimization for the sensor placement [27-29].  

In addition, various intelligent algorithms have also been developed as good tools for wireless sensor 

placement in a regular environment with consideration to optimize power consumption and signal 



strength, such as the monkey algorithm and glowworm swarm optimization algorithms [30-32]. However, 

in harsh environments, multiple sensor types will be involved such as strain sensors, temperature sensors, 

and vibration sensors, and the major task of optimization is to determine the optimized number of each 

sensor type. None of these applications consider more than one type of sensor for SHM application in 

harsh environments, and thus, this is the contribution of this paper. 

In this paper, we introduce a new approach based on GA to solve the sensor selection problem for 

SHM application in harsh environments where multiple types of sensors is a necessity. GA was chosen 

since it is a very well understood optimization algorithm with few parameters that need to be determined 

in advance. Furthermore, the authors have experience with GA, and thus, have chosen the GA to be 

applied to the sensor optimization problem. The developed algorithm uses a fitness function with 

consideration of the tradeoff between the sensor number/type and the measurement accuracy with a 

weight factor, which can better serve as decision-making criteria. The organization of the remaining paper 

is as follows: Section 2 introduces the developed GA, which can be used for sensor optimization of 

general SHM systems in harsh environments. Section 3 conducts a sensitivity study of the sensor 

deployment using a single-bay steel frame structure as a case study. Section 4 validates the reliability of 

the developed method using laboratory experiments. Finally, Section 5 provides the conclusion and 

outlines the potential future work. 

2. Genetic Algorithm based Sensor Placement Optimization Approach 

This section introduces the GA based sensor placement optimization method used to find the optimal 

number of sensors of a SHM system in harsh environments applied to different placement configurations 

of multiple sensor types. The optimization method referred to as genetic algorithm belongs to the family 

of evolutionary algorithms, which are inspired by natural phenomena of biological evolution. An 

evolutionary algorithm uses natural selection (biologically referred to as survival of the fittest) to improve 

the fitness of the overall population, when a population of individuals is given. With a function to be 

maximized, a set of candidate solutions is randomly created and the fitness function used as a fitness 



measure (the higher the better) is applied. Based on this fitness measure, some of the better candidates are 

chosen to undergo recombination and mutation. Recombination is applied to two candidates and results in 

one or more new candidates, whereas mutation is only applied to one candidate and results in one new 

candidate. After recombination and mutation are applied, a set of new candidates replaces the old ones 

and the next generation begins. This process repeats until a candidate with sufficient quality shows up or a 

predefined number of iterations is reached [33]. 

Fig. 1 shows the overview diagram of a general GA-based sensor placement optimization. First, the 

problem needs to be encoded using the chromosome representation, and the fitness equation needs to be 

defined. Afterwards, the selection method needs to be chosen, and the crossover and mutation operations 

need to be defined. Given that the sensor placement problem is a combinatorial optimization problem, the 

operators such as crossover and mutation that apply for continuous problems do not apply for 

combinatorial problems and thus need to be redefined. 

 

Fig. 1 Flowchart of a general GA algorithm 

The overall flow of the algorithm is as follows: first, a randomly generated population is initialized, 

then the fitness of each chromosome (solution) is evaluated, afterwards the selection process is run 



whereby the tournament selection method was chosen. Then, crossover and mutation operations are 

applied in order to recombine potentially better solutions. The algorithm terminates once the maximum 

number of iterations has been achieved, and the solution is obtained representing the optimized sensor 

placement. 

Chromosome encoding: The chromosome will have a structure as follows. The position of the sensors is 

encoded based on the position within the chromosome whereas the location with only one type of sensor 

is denoted by a 1, with two types of sensors being present at a particular location this is denoted by a 2, 

and correspondingly, the location with N types of sensors is denoted by N. 

Fitness equation: The optimization in this study is to minimize the measurement error, resulting in the 

maximization of the measurement accuracy. At the same time, the optimization minimizes the 

measurement cost by analyzing the trade-off between measurement accuracy and cost. Figure 2 shows the 

flowchart of the developed GA algorithm with consideration of the specific fitness equation. The fitness 

equation for the sensor placement optimization is given as: 

𝐴 = min
  

𝑓 𝐹!,! 𝑥! , 𝑦! , 𝑧! ,𝐹!,! 𝑥! , 𝑦! , 𝑧! ,⋯ ,𝐹!,! 𝑥! , 𝑦! , 𝑧!  (1) 

where i is the time; 𝑥! , 𝑦! , 𝑧! : 𝑥! is the xth coordinate at time i; yi is the yth coordinate at time i; zi, is the zth 

coordinate at time i. FN,i is the measurement from the type-N sensor at time i and f(…) is the optimization 

function that consists of two parts as: 

𝑓 𝑖, 𝑗 = max
  

𝑤 ∙ 𝑎! 𝑖, 𝑗 + 1 − 𝑤 ∙ 𝑐! 𝑗  (2) 

where w is the weight factor, a is the accuracy function and c is the cost function, respectively. j is the 

sensor location identification number, the sum of j will be the maximum number of sensors, n. 

The accuracy function, 𝑎! 𝑖, 𝑗 , is defined as 1 − 𝑒! 𝑖, 𝑗 , where 𝑒! 𝑖, 𝑗  is the error function stated 

as follows: 



𝑎!   𝑖, 𝑗 = 1 −   𝑒! 𝑖, 𝑗 = 1 −
𝐹!,!"#$!%,! − 𝐹!,! 𝑗

𝐹!,!"#$!%,!

!

+⋯+ (
𝐹!,!"#$!%,! − 𝐹  !,! 𝑗

𝐹!,!"#$!%,!
)! (3) 

Thus, if an error function is 1, the accuracy function will be 0 and if the error function is 0, then the 

accuracy function will become 1. FN,i(j) is the linear interpolating value between the measurement of two 

nearby sensors at the same location given as FN,actual,i, j is the sensor identification number which can be 

described as the data set location, sum of j equals to the total data set. The linear interpolating values of 

FN,i(j) is given as: 

𝐹!,!(𝑗) = 𝐹!(𝑗) +
!!(!)!!!(!!!)

!
  𝑥! (4) 

where, FN,i(j) is the measured data from type-N sensor at location j from the sensor measurements, 

FN(j+1) is the measured data from type-N sensor at location j+1, L is the distance between the sensor j 

and j+1, xi is the distance between sensor location j and the calculation time i.  

The second part of the optimization function is the cost function, which is evaluated as follows: 

𝑐! 𝑗 =
1
𝑗 ∙ 𝑏!!

!
 (5) 

where 𝑗 is the sum of the type-N sensors based on the sensor location j, and bN is the unit price of the 

type-N sensor. Thus, the maximum cN(j) is 1 when no sensors are placed, and the minimum cN(j) is 0 

when all the locations have sensors.  

Selection method and crossover operation: The tournament selection method [34] was chosen as the 

selection method. The selection method, in general, enables better or fitter chromosomes (solutions) to be 

chosen more frequently compared to less fit chromosomes. The tournament selection method works as 

follows. Several "tournaments" are run between the individuals that are chosen at random from the 

population, and the winner of each tournament is then used for the crossover operation. 

The crossover operation takes two chromosomes and assures that the crossover point of each 

chromosome is in the middle such that an equal amount of sensors are on either side of the crossover 



breakpoint. This allows the different crossover pairs to be connected together without the need of 

chromosome repair afterwards. 

Mutation operation: The mutation operation works on a single chromosome whereby two genes within 

the chromosome are chosen at random and exchanged accordingly. This also ensures that the number of 

sensors will remain the same after the mutation has been applied. The termination criterion is the 

maximum number of iterations specified, i.e., the genetic algorithm will stop once the maximum number 

of iterations has been reached. 

Preliminary experiments were used to establish the best parameters (population size, crossover 

probability, mutation probability) to use for the GA run. Each data point shown in the following figures 

(Fig. 3 and 5) is the average of 25 independent runs of the GA algorithm. A population size of 500 was 

determined after running preliminary experiments for population sizes of 400, 500, and 600. The fitness 

values obtained were 0.843512, 0.844315, and 0.843498, respectively. As for the crossover probability, 

crossover values of 0.6, 0.7, and 0.8 achieved fitness values of 0.844031, 0.844315, and 0.844312, 

respectively. Thus, a crossover probability of 0.7 was chosen. Similar runs were performed with varying 

mutation probabilities of 0.05, 0.1, and 0.15 achieving fitness values of 0.843527, 0.843153, and 

0.843691, respectively. Thus, the mutation probability was set to 0.1. As for the maximum number of 

iterations, a value of 5,000 was chosen after observing the convergence graph ensuring that convergence 

has occurred. 

3. Sensitivity Study 

The objective function in Section 2 indicated that a tradeoff exists between the measurement accuracy 

and system cost for the sensor placements when performing SHM in harsh environments. Three factors 

will influence this tradeoff significantly including the total number of sensors, sensor type, and sensor 

locations. With given sensor types and criteria for the required measurement accuracy, the developed GA 

will search for the optimized total number of sensors and its corresponding sensor locations. This section 



conducts the sensitivity study of the developed GA approach on sensor placement optimization for 

structural health monitoring using a case study of a single-bay steel frame in a fire environment.  

3.1 Generation of Training Set Using Finite Element Modeling 

To generate the training set for the sensitivity study of the developed GA for sensor optimization of 

SHM system in harsh environments, a finite element (FE) model of a single-bay steel frame was built and 

analyzed using commercial FE program, ABAQUS [35]. Fig. 3(a) shows the 3-D FE model of the single-

bay steel frame made up by two columns (height: 84 in. or 2.13m) and one top beam (length: 56 in. or 

1.42m). The columns of the steel frame were modeled to be hot-rolled A36 steel S3×5.7, which has a 

flange width of 3 inches (7.62cm) and a height of 4 inches (10.16cm). Hot-rolled A36 steel S5×10 was 

used for the top beam of the steel frame to meet the requirement of at least 5 times larger stiffness than 

the column. To ensure a rigid beam-column connection, stiffened beam-column connections were used in 

the FE model. Between various structural components, perfect ties connections were applied. 

To a more accurate structural assessment in harsh environments, multiple structural health indicators 

were considered in this case study by simulating the steel frame under a fire environment. The assessment 

of the structural health condition of this steel frame, thus, can be evaluated based on two significant 

parameters: the strain and temperature distribution. The fire environment was modeled by changing the 

temperature distribution gradually on the middle of the left column from room temperature (72 °F) to 700 

°C (1,292 °F), following reference [35]. The material properties of the steel frame as a function of 

temperature follows reference [35]. Coupled temperature-displacement trilinear element (C3D8T, 

C3D6T, and C3D4T in ABAQUS) was used for the FE analysis. The C3D8T is an 8-node thermally 

coupled brick, trilinear displacement and temperature [36]. The mesh ended a total of 8,750 elements as 

also shown in Fig. 3(a). The bottom ends of the two columns of the steel frame were fixed to the ground 

and mechanical loading was applied in the middle of the top beam of 254 lb/in2 (175 N/cm2) for an area 

of 6 in. ×6 in. (15.24cm × 15.24cm). 



  
(a) The setup of FEM model (b) Strain distribution at temperature environment 212°F (100°C) 

Fig. 2 FEM model and the simulated strain distribution at fire temperature of 212 °F (100 °C) 

Fig. 2(b) shows the strain distribution with fire temperature at 212 °F (100 °C). With most of the 

strain and temperature changes concentrated on the left column with fire loads, sensor placement 

optimization only was considered on this column. The simulated strain and temperature distribution data 

from the bottom to top of the column was used to feed into the developed algorithm for training purposes. 

A total of 84 nodes were identified for potential sensor placement with one inch (2.54cm) apart from one 

to another. Thus, a total 84 data points (maximum sensor locations) was used to train the developed 

algorithm with various temperature environments. 

3.2 Generation of GA Fitness Function 

In this case study, two types of sensors were considered, including temperature and strain sensors. 

Thus, the function of measurement accuracy in this case study can be specifically obtained as follows: 

 𝑎 𝑖, 𝑛,𝑚 = 1 − (!!"#$!%,!!!!(!)
!!"#$!%,!

)! + (!!"#$!%,!!!!(!)
!!"#$!%,!

)! (6) 

in which, 𝑇!(𝑛)  and 𝜀!(𝑚)  are the linear interpolating value between the temperature and strain 

measurement of two nearby sensors at the same location given as Tactual and εactual. At the two ends of the 

interested subject, room temperature and zero strain are assumed as boundary conditions. n and m are the 



location of the each type of sensor and the sum of n and m will be the number of each type of sensor, 

respectively. The linear interpolating values of 𝑇! 𝑛  and 𝜀!(𝑚) are given as: 

 𝑇!(𝑛) = 𝑇(𝑛) + !(!)!!(!!!)
!

  𝑥!   and  𝜀!(𝑚) = 𝜀(𝑚) + !(!)!!(!!!)
!

  𝑥! (7) 

where, 𝑇! 𝑛  is the temperature data at location i from sensor measurements, 𝑇(𝑛) is the temperature at 

sensor location n, and 𝑇 𝑛 + 1  is the temperature at sensor location n+1, L is the distance between the 

sensor n and n+1, xi is the distance between sensor n location and the calculation location i. The same 

principle applies to the strain equation 𝜀! 𝑚 .   

The cost function, thus, can be simplified to: 

𝑐(𝑛,𝑚) =
1

( 𝑛) ∙ 𝑏 + ( 𝑚) ∙ 𝑐𝑚  
 (8) 

where 𝑛 is  the sum of the temperature sensors based on the sensor location n, and 𝑚 is the sum of the 

strain sensors based on the strain sensor locations, b is the unit price of the temperature sensors, and cm is 

the unit price of the strain sensors.  

Therefore, the fitness function in Eq. (3) can be specifically simplified as:  

𝐴 = min
  

𝑓 𝑇! 𝑥! , 𝑦! , 𝑧! , 𝜀! 𝑥! , 𝑦! , 𝑧!  (9) 

where 𝑓 𝑖, 𝑗 = max   𝑤 ∙ 𝑎 𝑖, 𝑛,𝑚 + 1 − 𝑤 ∙ 𝑐 𝑛,𝑚 . 

With the defined fitness function, the data training for the sensitivity study was performed following 

the procedure described in Section 2 on the total number of sensors (n+m) and sensor type N. For the GA 

implementation, the population size was set to 500, the tournament size was 2, the crossover and mutation 

probabilities were 70% and 10%, respectively, and the maximum number of iterations was set to 5,000. 

3.3 Sensitivity on Total Numbers of Sensors 

To analyze the sensitivity of the GA on the total number of sensors, an analysis was performed by 

changing the total number of strain sensors from 3 until 84 with increments of 3 at four different 



temperature environments from 212 °F (100 °C) to 1,292 °F (700 °C). It is assumed that at each strain 

sensor location, one corresponding temperature sensor was placed. Thus, the total number of sensors will 

be 6 to 168 if adding two types of sensors together. Fig. 3(a) shows the measurement accuracy changes 

versus the total numbers of strain sensors. As the temperature increases, an accurate measurement will 

require more sensors when compared to lower temperatures. For all four different temperature 

environments, the measurement accuracy changes significantly between 3 and 21 sensors.  

To investigate the influence of the total numbers of sensors on the measurement accuracy, another 

analysis was performed by changing the total numbers of strain sensors from 1 to 21 sensors with 

increments of 1 as shown in Fig. 3(b) based on the same assumption used in Fig. 3(a). If the required 

measurement accuracy is 90% for all four-temperature environments (fire environment with temperature 

up to 1,292 °F), ten strain sensors and ten temperature sensors are needed, resulting in twenty sensors on 

the column for an adequate measurement accuracy. If a measurement accuracy of 80% is acceptable for 

all four-temperature environments, three strain sensors and three temperature sensors will be adequate, 

resulting in a total number of six sensors on the column of interest. A 10% of measurement accuracy 

could trade off 2/3 of the total numbers of sensors required for the system. 

  

(a) 3~84 strain sensors with an interval of 3 sensors (b) 1~21 strain sensors with an interval of one sensor 

Fig. 3 Measurement accuracy versus number of strain sensors for various temperatures 

With the optimized number of sensors, the developed GA also delivers the optimized sensor 

locations. Table 1 shows the optimized sensor locations for the three cases with measurement accuracy of 



84.3%, 92.2%, and 95.4% at heating temperature of 212°F. The total numbers of strain sensors ranging 

from 3 to 9 sensors. With the assumption that at each strain sensor location, there is one temperature 

sensor, the total number of the two types of sensors ranges from 6 to 18. The sensor layout shows the 

arrangement of sensors based on their location. A total number of 84 locations were considered with one 

inch (2.54cm) between each location. In Table 1, a “0” denotes that there is no sensor at that particular 

location, and a “2” denotes both a temperature and strain sensor being present at that location. For the 

case of three strain sensors, it can be seen that all the three sensors were located inside the higher 

temperature range to have a better prediction of the structural behavior of the single-beam frame in fire 

environments. 

Table 1 Sensor layout for 3, 6, and 9 strain sensors for T=212°F 

Number of strain sensors Sensor layout 

3 
000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000002000
20000020000000000000000000000000000000000000000000000000 

6 
020002000000000000000000000000000000000000000000000000000
000000000000000000000000000000002002000000000000000000000
00000000200000000000000200000000000000000000000000000000 

9 
000000020000000000000000000000000020000000000000000020000
000002000000000000000000000000000000000000200000000000000
00000002020000200000000020000000000000000000000000000000 

To validate the developed GA for the sensor placement optimization, the convergence of the genetic 

algorithm was also investigated as shown in Fig. 4 for three strain sensors at the temperature of 212 °F. 

The fitness function of the measurement accuracy stabilizes to the optimum value of 84.3% after 2,469 

iterations. The maximum iteration was set as 5,000, which is sufficient to provide accurate optimization 

analysis. The algorithm converged at 2,500 iterations. 



 

Fig. 4 Number of iterations for GA optimization of 3 strain sensors for T=212°F 

3.4 Sensitivity on Sensor Types 

The analysis in Section 3.2 is based on the assumption that at each sensor location, we have an equal 

number of strain and temperature sensors. However, in practical applications, we may have varying 

sensor types at each sensor location. In this section, the sensitivity on different number of sensors in each 

sensor type was studied. A case study of a 1/3 ratio of temperature to strain sensors was analyzed based 

on the assumption that the temperature sensors will be located at one of the strain sensor locations. Fig. 5 

shows the measurement accuracy versus the total numbers of temperature sensors in the case of a 1/3 

temperature/strain ratio from 1 to 21 sensors with increments of one based on the same assumption at 

each sensor location. Fig. 5 indicates that with two temperature sensors and six strain sensors, the 

measurement accuracy for all four-temperature environments will be higher than 80%, resulting in a total 

number of eight sensors required. If the requirement of a measurement accuracy is 90% for a temperature 

environment up to 1,292 °F, it will need 9 temperature sensors and 27 strain sensors totaling to 36 

sensors. For an unequal number of sensors for different type of sensors, a 10% of measurement accuracy 

could trade off as high as 3/4 of the total cost for the system. By comparing Fig. 4(b) and Fig. 5, it can be 

seen that two temperature sensors and six strain sensors show similar measurement accuracy with three 



temperature sensors and three strain sensors. If a temperature sensor has a cost of three times higher than 

the strain sensors, the two cases will yield the same fitness value.  

 

Fig. 5 Measurement accuracy vs number of temperature sensors for various temperatures with 

unequal numbers of strain and temperature sensors 

The optimized sensor locations for the unequal numbers of different types of sensors can also be 

obtained through the developed GA. Table 2 shows the optimized sensor locations with the numbers of 

temperature sensors ranging from one to three sensors at 212 °F. In the sensor layout, a “0” denotes no 

sensor at that location, a “1” denotes only a strain sensor at that location, and a “2” denotes both a 

temperature and strain sensor being present at that location. Table 2 demonstrates that if only one 

temperature sensor is applied in this case study, the temperature sensor will be placed at the middle of the 

temperature-loading zone.  

Table 2 Sensor layout for the unequal case at T=212°F  

Number of temperature sensors Sensor layout 

1 
000010000000000000000000000000000000000000000000000000000
000000000000000002000000000000000000000000000000000000000
00000000000000000000000000000000000010000000000000000000 

2 
001000000000000010000001000000000000000000000000000001000
000000000000000000000000000000000000000000000000000000002
00000000000000000000020000000000000000000000000000000000 

3 
000000100000001000000000000000000000000001000000000000000
000000000000010000000000000000000000000000000000000000000
00000002100200002000000000000100000000000000000000000000 



4. Experimental Validation and Discussions 

Section 3 demonstrated that with a known required measurement accuracy, the total number of 

sensors, the types of sensors to be applied, and the locations of the associated sensors can be optimized 

using the developed GA. To validate the effectiveness of the developed GA method for sensor placement 

optimization of SHM system in harsh environments, laboratory experiments were performed based on the 

case study in Section 3 as shown in Fig. 6. The material and the size of the steel frame were built the same 

as described in Section 3.1. A tube furnace made by Thermo Scientific (Model: Lindberg/Blue M) was 

used to provide a temperature change environment for validation. It had three temperature zones that can 

be programmed and operated independently, which were programmed to have the same temperature 

increase profile in this validation test. The temperature in the furnace was increased at a rate of 18 °F/min 

(10 °C/min) from 72 °F (room temperature, 22 °C) to 1,292°F (700 °C) by an interval of 180 °F (100 °C). 

At each temperature level, the test paused for 10 minutes to ensure that the temperature distribution is 

stable both inside and outside the furnace. Vertical load was applied on the top beam by the displacement-

controlled actuator of 4.6 kips (20.46 kN) to 10 kips (44.48 kN). 	
  

  

Fig. 6 Laboratory experimental setup 

4.1 Sensor Layout from the Developed Algorithm 

Column #1 



To validate the effectiveness of the developed GA for sensor placement optimization, a 

comprehensive sensing network was applied on the steel frame at the identified locations based on the 

analysis in Section 3.4 for two temperature sensors and six strain sensors as shown in Fig. 7 for the 

detailed locations of the installed sensors. This validation test used sensors developed in reference to [35] 

for simultaneous high temperature and large strain measurements. The temperature sensors used long 

period fiber grating (LPFG) and the strain sensors used movable extrinsic Fabry-Perot interferometer 

(EFPI) large strain sensors [35]. Ceramic adhesives that can endure high temperatures up to 2,012 °F 

(1,100 °C) were used to attach optical sensors on the surface of the column flanges. 

  

(a) Sensor layout based on developed GA (b) Test scene with installed sensors 

Fig. 7 Sensor layout in the laboratory experiment 

4.2 Experimental Results and Discussion 

Fig. 8 shows the measured temperature and strains at the installed sensor locations using the location 

identified by the developed GA. From the measurements, it is clearly seen that the steel frame 

experienced harsh environment with simultaneous high temperature up to 1,292°F (700 °C) and large 

deformation up to 8%. Using the measured strains and temperatures, the strain and temperatures at other 

locations on the column were calculated based on linear interpolation. Fig. 9, therefore, compares the 

measurement accuracy changes as simulated fire temperature increases from the experiments and that 
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from the theoretic analysis obtained by the algorithm as shown in Section 3.4. At the temperature of 212 

°F (100 °C), the measurement accuracy is predicted to be 85% and the actual measurement accuracy from 

the experiment is 88%. The measurement accuracy at 1,292°F (700 °C) was expected to be 80% from the 

training, and the measured accuracy through experiments is 76%. A variance less than 5% between the 

theoretical and the experimental analysis indicates a very effective sensor placement optimization using 

the developed GA. 

  

(a) Measured temperatures (b) Measured strains 

Fig. 8 Measured temperature and strain as furnace temperature increases 

 

Fig. 9 Comparison between theoretic and experimental analysis 

5. Conclusions and Future Work 

This paper outlines an effective approach for sensor placement optimization with consideration of the 

tradeoff between measurement accuracy and cost of the system. The authors conducted a theoretic and 
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numerical analysis to develop the algorithm followed by laboratory validation experiments. The 

conclusions of this paper are as follows: 

1) In harsh environments, structures will require multiple types of sensors with different cost 

consideration. A GA developed in this article can optimize the sensor placement for structural 

health monitoring in harsh environments using a fitness function with considerations of parameters 

from multiple types of sensors. 

2) Numerical simulation for a case study on a single-bay one-story steel frame in fire as harsh 

environment proved that with a known required measurement accuracy of a SHM system, the total 

numbers of sensors, the types of sensors to be applied, and the locations of the associated sensors 

can be optimized using the developed GA. If equal numbers of strain and temperature sensors are 

placed at one location, a measurement accuracy of 80% to be achieved will need three strain and 

temperature sensors; and if unequal numbers of strain and temperature sensors (1/3 

temperature/strain sensor ratio) are allowed, 80% of measurement accuracy will need two 

temperature sensors and six strain sensors. 

3) The laboratory experiments validated the results of the developed GA for sensor placement 

optimization of SHM system in harsh environments using the single-bay one-story steel frame 

case study. The sensors placement layout based on the developed GA with two temperature 

sensors and six strain sensors yielded a measurement accuracy of 76% in a fire environment of 

1,292 °F (700 °C), which is very close to the expected value of 80% obtained by the numerical 

analysis. 

The results of this research provide an effective way to place optimal numbers of sensors with a 

consideration of both measurement accuracy and cost on the target significant structures in harsh 

environments such as tall buildings, hospitals, nuclear power plants, etc. The current algorithm is 

applicable for one-dimension (1-D) problems. Future work will apply this method to multiple dimension 



problems such as structures in three dimensions (3-D) and include more parameters to be considered such 

as vibration and moisture if needed. 
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