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Abstract

Epilepsy is a chronic neurological disorder that
is caused by unprovoked recurrent seizures. The
most commonly used tool for the diagnosis
of epilepsy is the electroencephalogram (EEG)
whereby the electrical activity of the brain is
measured. In order to prevent potential risks,
the patients have to be monitored as to detect an
epileptic episode early on and to provide preven-
tion measures. Many different research studies
have used a combination of time and frequency
features for the automatic recognition of epilep-
tic seizures. In this paper, two fusion methods
are compared. The first is based on an ensemble
method and the second uses the Choquet fuzzy
integral method. In particular, three different
machine learning approaches namely RNN, ML
and DNN are used as inputs for the ensemble
method and the Choquet fuzzy integral fusion
method. Evaluation measures such as confu-
sion matrix, AUC and accuracy are compared as
well as MSE and RMSE are provided. The re-
sults show that the Choquet fuzzy integral fusion
method outperforms the ensemble method as
well as other state-of-the-art classification meth-
ods.

1 Introduction

Epilepsy is a very common neurological disorder,
which affects one in every 100 persons worldwide
[1]. When a person has an epileptic episode then
paroxysmal abnormal ultra-synchronized electri-
cal activity can be measured in the brain, which
usually occurs suddenly. Researchers are looking
for an automated way to monitor and detect an
epileptic episode such that the patient and neu-
rologist can be warned early on in order to pre-
vent potential risks to the patient [2]. However,
one of the challenges is that the time frequencies
of epileptic episodes are uncertain, and thus are
not easy to detect.

Researchers have used sensors [3] to col-
lect biological data from the patients’ surface
via electrocardiogram (ECG), electromyography
(EMG) [4], motion data [5], and electrodermog-
raphy (EDG) [6]. The sensors are usually in-
tegrated into clothing such as E-textiles [7], ca-
pacitive sensing [8], polymer materials, such as
carbon nanotube (CNT)-polydimethylsiloxane
(PDMS) [9], Ag/AgCl electrodes [10], and micro-
needle arrays [11]. The advantage of the so-
called wearable sensor systems is that they can
non-invasively monitor the signals of epileptic
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patients also for long periods. However, mea-
suring brain signals can provide faster and more
usable information.

Thus, many researchers have looked at differ-
ent approaches to directly measure ‘epilepsy sig-
nals’ from the brain. These are positron emis-
sion tomography (PET), single photon emission
computed tomography (SPECT), magnetic res-
onance imaging (MRI), and functional magnetic
resonance imaging (fMRI) [12]. At the moment,
most research investigations make use of video-
electroencephalograms (EEGs) [13, 14]. EEGs
provide temporal information but also spatial in-
formation of the electrical activity in the brain.
The video-EEG technique is seen as the cur-
rent best approach to study epilepsy. Since the
physiological processes of a seizure are typically
non-stationary, dynamic, and nonlinear, the dif-
ferentiation of rhythmic discharges from non-
stationary processes provides challenges to the
analysis of the EEG signals.

The automated way to detect EEG signals in-
cludes the two tasks, namely feature extraction
and classification. The extracted features can be
divided into four categories:

• Statistical features

• Fractal dimension features

• Entropy features

• Time-frequency domain features

Many different research studies have used a com-
bination of time and frequency features for the
automatic recognition of epileptic seizures. The
classification task to automatically detect EEG
uses machine learning approaches mostly driven
in the supervised learning mode.

In this paper, the 5-class epileptic seizure
recognition data set is investigated. Multi-label

classification is a challenging task and is usu-
ally being done using ensemble methods in order
to achieve the best classification performance.
State-of-the-art multi-label learning approaches
explain the label correlations in order to improve
the accuracy of the learner by building an in-
dividual multi-label learner or a combination of
learners that are based on a group of single-label
learners. Moreover, it is well-known that en-
semble learning can improve the generalizability
ability of the learning system by using multiple
base learner, and thus, improving the accuracy
as well as the diversity of the base learners [15].
Therefore, this investigation compares the en-
semble method with the Choquet fuzzy integral
fusion method, which has shown very promis-
ing results in the past. Three different machine
learning algorithms are used namely RNN, ML
and DNN as the input for the two different fusion
methods (ensemble and Choquet fuzzy integral
fusion).

2 Related Work

Related work mostly concentrates on the Bonn
datasets [16]. For example, in [17] a neural net-
work (NN) classification technique was applied
in the field of brain science. Support vector ma-
chines (SVMs) was used to identify the EEG sig-
nals of epilepsy patients obtaining good recogni-
tion performance [18], [19], [14]. A least squares
support vector machine (LS-SVM) to classify
two-class seizure and non-seizure EEG signals
was proposed in [20] reporting a 98.0-99.5% ac-
curacy using a radial basis function (RBF) ker-
nel, and a 99.5-100% accuracy using a Morlet
kernel.

Another approach used an Ada-Boost classi-
fier to achieve good accuracy for spike detec-
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tion of epileptic seizures [21]. Given the no-
free-lunch theorem [22], several classification al-
gorithms have been applied to seizure detection,
including random forests (RF), K-nearest neigh-
bors (KNN) [23], and Bayesian neural networks
[24]. All these approaches yielded classification
results ranging from 93% to 99.66% in terms of
accuracy. However, these accuracy results only
used binary classification and are time consum-
ing for some practical clinical applications.

In [16], a three-label classification problem was
studied whereby the distinction was made be-
tween continuous ictal epilepsy patients, inter-
mittent epilepsy patients, and healthy subjects.
The researchers used a SVM-based recognition
system achieving an accuracy of 93.9%.

In terms of related work that is based on the
data set that is being used in this research study,
the following is provided. In [25], the researchers
use deep learning methods to predict epileptic
seizures. The authors used a deep learning clas-
sifier to distinguish the signals before and after
a seizure. Then, the classifier performance was
tested on held-out data from all patients and
compared against the performance of a random
predictor. The predicting system was modified
to adjust each patient’s feature set. Thus, the
prediction system was made adaptable so that
each patient could either choose ‘sensitivity’ or
‘time in warning’. Therefore, this system can
provide time and functional seizure prediction.

In [26], the authors built a deep learning model
with automatic learning features. More specifi-
cally, a CNN (convolutional neural network) as
deep learning method was used to learn the data.
The resulting model provided information re-
garding the different types of interictal epilep-
tiform discharges (IEDs) within the group, and
was invariant to time differences between the
IEDs. IEDs are pathological patterns of activ-

ity between seizures the brain of patients with
epilepsy generates.

In [27], the authors trained deep neural net-
works with EEG data for predicting the seizure.
Simultaneously, the authors collected spectral,
temporal and spatial information for the analy-
sis of seizures. Their study mostly focused on
the cross-patient study of predicting the seizure.
The results proved that the deep learning model
generalizes well among different patients.

Research presented in [28] applied traditional
machine learning algorithms, such as Linear
SVM, Logistic Regression, KNN (K Nearest
Neighbors). Furthermore, Neural Networks such
as CNN, RNN (Recurrent Neural Networks),
and LSTM (Long Short-Term Memory) were
used for the prediction.

The research presented in this paper is an ex-
tension of the work presented in [29] where differ-
ent neural network architectures/configurations
were applied to the ensemble and the Choquet
fuzzy fusion method.

3 Approaches

In this section, the methods applied are de-
scribed. First, recurrent neural networks, ML
algorithms, and deep neural networks are intro-
duced followed by the Ensemble learning method
and the Choquet integral fusion approach.

3.1 RNN

Recurrent Neural Network (RNN) is a special
type of feedforward neural network that contains
an internal memory. RNN has recurrent connec-
tions that perform the same function for every
input of data. The output of each input depends
on the past computation. After the output is
computed, the result is sent back and serves as
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the input for the nodes again. In order for the
RNN to make a decision, the current input and
output that was learned from the previous input
is considered. The difference of a RNN and a
feedforward neural networks is that a RNN can
use its internal state (memory) to process the
sequences of inputs. This property makes RNNs
able to accomplish tasks such as handwriting
recognition or speech recognition [30], [31].

3.2 ML Algorithms

Machine learning provides systems the ability
to automatically learn from experience without
being explicitly programmed for a specific task.
This learning is accomplished by either a super-
vised or unsupervised learning method depend-
ing on the goal of the learning task. Supervised
methods are used when we have a variable whose
value has to be predicted. In the unsupervised
case, the data is not labeled and there is no value
to predict or classify and thus the learning task
is to identify common patterns among the input
data. There are many learning algorithms avail-
able and researchers are always looking for the
best algorithm that will perform well on a par-
ticular data set. The main objective of ML tech-
niques is to train a model that can then be used
to perform classification, prediction, estimation,
or any other similar tasks [32].

3.3 Deep Neural Networks

Deep learning is a category in machine learning
that involves artificial neural networks. Archi-
tectures that belong to deep learning are deep
neural networks (DNN), deep belief networks, re-
current neural networks and convolutional neu-
ral networks. These have been widely applied
to many different research areas such as speech

recognition, natural language processing, au-
dio recognition, computer vision, bioinformatics,
gaming, and many more. A DNN [33] consists
of an input layer, several hidden layers, and an
output layer. The network is trained using back-
propagation in order to minimize the error be-
tween the actual output and the desired output.

3.4 Ensemble

The concept of ensemble learning was first intro-
duced in 1979 [34], which proposed using an en-
semble system in a divide-and-conquer fashion,
whereby the feature space was partitioned us-
ing two or more classifiers. More than 10 years
later, another ensemble system was introduced
showing that the generalization performance of
similar neural network configurations can be im-
proved using ensembles by introducing the vari-
ance reduction property [35]. However, research
in [36] placed ensemble systems at the center of
machine learning research. This was achieved by
proving that a strong classifier in the probably
approximately correct sense can be generated by
combining weak classifiers through a procedure
called boosting.

Ensemble methods are heavily used in the ma-
chine learning community due to their success
primarily in classification tasks. Ensemble meth-
ods can be described as a technique that trains
multiple learning algorithms, which achieve sig-
nificantly higher accuracy than a single learner
[37]. The common methods that are used are
boosting, bagging, stacking, and a combination
of base learners.

Boosting uses a model that was trained on
data and then incrementally constructs new
models that focus on the errors in the classifica-
tion made by the previous model. An example
of boosting is XGBoost [38].
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Bagging involves the training of models on
random subsamples. Then, each model votes
with equal weight on the classification. For ex-
ample, Random forest uses a bagging approach
to allow the selection of a random set of features
at each internal node to be used [39].

Stacking takes that output of a set of mod-
els and feeds them into another algorithm that
combines them in order to make a final predic-
tion. For this, any set of base learners and com-
biner algorithm can be used. The combiner al-
gorithm takes the predictions of the models and
combines them with a simple or weighted aver-
age approach.

3.5 Choquet

The data fusion process of the Choquet method
is as follows. The data set is provided to the
three different models (RNN, ML, and DNN),
then the fusion is performed by taking the
learned densities as well as the classification per-
formance of the three models, and the result is
the classification performance based on a test
set.

The Choquet Integral (ChI) [40] - [43] is a
well-known parametric function for data and in-
formation fusion. In particular, ChI is a gen-
erator function that is parametrized by the so-
called Fuzzy Measure (FM), which is monotone
and normal. Once the FM has been determined
the ChI turns into a specific aggregation opera-
tor [44].

The basic idea of a fusion algorithm is that
the algorithm should prioritize the most accurate
evidence among the different inputs while never
disregarding any contribution an input makes.
The Choquet fuzzy integral conducts this via
a non-linear weighted average calculation of all
data sources. From a so-called defined fuzzy

measure, the incoming evidence is weighted by
a fuzzy measure value and this is summed over
to produce a single confidence value. Usually,
the Sugeno λ-measure is used. The Sugeno
λ-measure needs to be initialized for the data
source subsets. These data source subsets can
be thought of as different values of importance
of each data source. These values of importance
are called densities and are often defined either
by experts or by some metric. In our experi-
ments, the AUC (Area Under the Curve) of ROC
curves is used. Thus, the nonzero λ-value can
be solved as to obtain the fuzzy measure com-
ponents, and then the final Choquet fuzzy inte-
gral values can be computed for every classifier
[45]. For more detailed information as well as
the equations please refer to [46].

4 Experiments and Results

In this section, the data set used is described fol-
lowed by the models used, and the experiments
conducted as well as their results.

4.1 Data Set Description

The Epileptic Seizure Recognition data set [47]
contains 4,097 data points collected from a EEG
recording whereby each data point represents the
value of the EEG recording at a particular point
in time. 500 individuals were recorded to ob-
tain the data points. The data was divided and
shuffled into 23 chunks. Each chunk contains
178 data points (features). Thus, the 23 chunks
times 500 individuals results in an overall value
of 11,500 rows and 178 columns plus the last col-
umn representing the class label. The class label
contains 5 labels:

• 1: Recording of seizure activity
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• 2: Recording of tumor area

• 3: Recording from the healthy brain area

• 4: Recording when patient had their eyes
closed

• 5: Recording when patient had their eyes
open

In the past, this data set was primarily used as
a binary data set where classes 2, 3, 4 and 5 were
categorized as not having an epileptic seizure,
versus class 1 having an epileptic seizure. How-
ever, binary classification is easier, thus this data
set was used for a multi-label classification study.

The class distribution is as follows totaling
8,627 samples/rows:

• Class 1: 1,735

• Class 2: 1,732

• Class 3: 1,693

• Class 4: 1,744

• Class 5: 1,726

4.2 Results of State-of-the-Art Ma-
chine Learning Approaches

Table 1 shows the results of applying standard
machine learning techniques. The accuracy re-
sults are provided for the following approaches
Support Vector Machines (SVM), Decision Tree
(DT), Logistic regression (LR), Gaussian Near-
est Neighbour (GNN), Random Forest Classifier
(RFC), Extra Tree Classifier (ETC), and Gradi-
ent Boosting Classifier (GBDT). The best AUC
result was achieved by the GNN algorithm with
59.59% followed by SVM and DTC with 57.08%
and 56.01%, respectively. As for the accuracy,
ETC scored best with 69.08% followed by RC
and GBC with 67.86% and 62.47%, respectively.

4.3 ML Ensemble and Choquet

The experiments were conduced in the following
way. The three ML models were trained first.
Then, using the results from these models the
ensemble model is obtained by average ranking.
The Choquet integral fusion is done using the
three ML models together with the learned den-
sities to build the classification model.

4.3.1 Models

The following ML algorithms were used with
their corresponding parameters:

• RandomForestClassifier
n estimators=100
n jobs=-1
criterion=‘gini’

• ExtraTreesClassifier
n estimators=100
n jobs=-1
criterion=‘gini’

• GradientBoostingClassifier
learning rate=0.05
subsample=0.5
max depth=6
n estimators=50

4.3.2 Results

Fig. 1 shows the confusion matrices obtained
from the three ML models. Model ML2 is the
best followed by ML1, and ML3 scores worst.
Table 2 shows the results in form of AUC and ac-
curacy. Only comparing the three ML models we
can see that ML3 has the highest AUC score with
45.70%. In terms of accuracy though ML2 out-
performs the other two models. Surprisingly, the
Ensemble method does not achieve better results
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Table 1: Machine Learning Results in %

SVM DTC LR GNB KNC RFC ETC GBC

AUC 57.08 56.01 51.56 59.59 44.45 39.84 38.87 44.04

Accuracy 54.85 33.88 22.47 43.06 47.41 67.86 69.08 62.47

only scoring best with ML3 in terms of AUC.
The Choquet method however outperforms all
by far with values of 47.42% and 79.10% for AUC
and accuracy, respectively. Table 3 shows the
MSE and RMSE results confirming the superior
results of the Choquet method. The confusion
matrices of the Ensemble method and the Cho-
quet method are shown in Fig. 2.

4.4 RNN Ensemble and Choquet

The three RNN models were trained first and
then the results were the input to the ensemble
model that used average ranking. In addition,
the Choquet integral fusion uses the three RNN
model output together with the learned densities
to build the classification model.

4.4.1 Models

The following RNN algorithms were used:

• SimpleRNN

• LSTM

• GRU

The parameter were the same for all three al-
gorithms consisting of:

• ReLU activation function in dense layer

• Softmax activation function in output layer

• Adam optimizer

• Categorical cross-entropy loss function

4.4.2 Results

Fig. 3 shows the confusion matrices obtained
from the three RNN models. Model RNN3
scores the best followed by RNN1. Table 4
shows the results in form of AUC and accuracy.
Only comparing the three RNN models we can
see that RNN1 has the highest AUC score with
48.68%. In terms of accuracy though RNN3 out-
performs the other two models. Again surpris-
ingly, the Ensemble method does not achieve
better results, however, the Choquet method
outperforms all by far with values of 51.46% and
68.94% for AUC and accuracy, respectively. Ta-
ble 5 shows the MSE and RMSE results confirm-
ing the Choquet method to be the winner. The
confusion matrices of the Ensemble method and
the Choquet method are shown in Fig. 4.

4.5 DNN Ensemble and Choquet

Again, the three DNN models were trained first.
Then, the outputs from these models were fed
into the ensemble model applying average rank-
ing. The Choquet integral fusion also uses
the three DNN models as input together with
the learned densities to build the classification
model.

4.5.1 Models

Figure 5 shows the three DNN models that were
used for the investigation. The three models con-
tain three, two and four hidden layers with a
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Table 2: AUC and Accuracy Results of ML in %

ML1 ML2 ML3 Ensemble Choquet

AUC 39.14 37.76 45.70 45.70 47.42

Accuracy 68.21 69.74 63.13 67.20 79.10

Table 3: MSE and RMSE Results of ML

ML1 ML2 ML3 Ensemble Choquet

MSE 0.830261 0.831304 1.160000 0.737391 0.685565

RMSE 0.911187 0.911759 1.077033 0.858715 0.827989

Table 4: AUC and Accuracy Results of RNN in %

RNN1 RNN2 RNN3 Ensemble Choquet

AUC 48.68 44.80 44.22 44.22 51.46

Accuracy 49.50 49.04 51.10 42.37 68.94

Table 5: MSE and RMSE Results of RNN

RNN1 RNN2 RNN3 Ensemble Choquet

MSE 2.283478 1.988870 2.169739 1.968000 1.439304

RMSE 1.511118 1.410273 1.473003 1.402854 1.199710
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Figure 1: Confusion Matrices of ML Models

softmax function at the output.

4.5.2 Results

Fig. 6 shows the confusion matrices obtained
from the three DNN models. Model DNN3 is the
best followed by DNN1, and DNN2 scores worst.
Table 6 shows the results in form of AUC and ac-
curacy. Only comparing the three DNN models
we can see that DNN2 has the highest AUC score
with 42.07%. In terms of accuracy though DNN3
outperforms the other two models. Surprisingly,
the Ensemble method does not achieve better re-
sults, however, the Choquet method outperforms
all by far with values of 50.72% and 89.57% for
AUC and accuracy, respectively. Table 7 shows
the MSE and RMSE results confirming the su-
perior results of the Choquet method. The con-
fusion matrices of the Ensemble method and the
Choquet method are shown in Fig. 7.

4.6 Comparison

Table 8 shows the comparison of the three ap-
proaches (RNN, ML, DNN) using the Choquet
fusion technique. The results are given in terms

of AUC and accuracy. What can be seen is that
the Choquet fusion based RNN method scores
best in terms of AUC, however, the Choquet fu-
sion based DNN method obtains the best accu-
racy.

5 Conclusion

The Choquet fuzzy integral fusion method had
shown very good performance applied to fused
CNN model results that were trained on im-
age data. This paper investigated the epileptic
seizure recognition data set using three different
methods namely RNN, ML and DNN and then
compared their ensemble fusion method with
the Choquet fuzzy integral fusion method. The
three different approaches (RNN, ML, DNN)
were trained and then the ensemble method and
the Choquet fusion method were applied. The
evaluation measures used were confusion matrix,
AUC, accuracy, MSE and RMSE.

The results showed that the Choquet fuzzy in-
tegral fusion method on the whole outperforms
the ensemble method as well as other state-of-
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Figure 2: Confusion Matrices of Ensemble and Choquet Methods for ML

Table 6: AUC and Accuracy Results of DNN in %

DNN1 DNN2 DNN3 Ensemble Choquet

AUC 41.29 42.07 36.93 36.93 50.72

Accuracy 61.95 57.95 64.21 63.37 89.57

the-art classification methods. In particular, the
AUC and accuracy results with values of 50.72%
and 89.57%, respectively compared to 36.93%
and 63.93% achieved by the ensemble method.
Furthermore, a comparison with state-of-the-art
classification algorithms showed that the Cho-
quet fusion method is far superior to the best
performing ML algorithm that achieved only
69.08% accuracy.
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