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Abstract Fuzzy clustering is a popular unsuper-
vised learning method that is used in cluster analy-
sis. Fuzzy clustering allows a data point to belong
to two or more clusters. Fuzzy c-means is the most
well-known method that is applied to cluster analy-
sis, however, the shortcoming is that the number of
clusters need to be predefined. This paper proposes
a clustering approach based on Particle Swarm Opti-
mization (PSO). This PSO approach determines the
optimal number of clusters automatically with the
help of a threshold vector. The algorithm first ran-
domly partitions the data set within a preset num-
ber of clusters, and then uses a reconstruction crite-
rion to evaluate the performance of the clustering re-
sults. The experiments conducted demonstrate that
the proposed algorithm automatically finds the op-
timal number of clusters. Furthermore, to visualize
the results principal component analysis projection,
conventional sammon mapping, and fuzzy sammon
mapping were used.

1 Introduction

Data mining is a field that is also referred to as ex-
ploratory data analysis, which is an analytic pro-
cess designed to explore data. Data mining aims to
search for consistent patterns or systematic relation-
ships between variables within the data. The vali-
dation process then verifies the findings by applying
the detected patterns to new subsets of data [1]. The
application areas in which data mining is used for

are astronomy, banking, customer relationship man-
agement, climate modeling, ecology, finance, life sci-
ences, monitoring, manufacturing, network, retail, se-
curity, surveillance, web applications, etc. Data min-
ing is a statistical analysis process that identifies clus-
ters among a collection of data. The different tasks
of data mining are classification, association, predic-
tion, sequential pattern, and clustering [2].

Clustering analysis is one of the popular ap-
proaches and has been widely used in data mining,
and is a process to identify groups or clusters based
on some similarity measures. Most clustering al-
gorithms can be categorized into two popular tech-
niques known as hierarchical and partitional cluster-
ing. For hierarchical clustering, the output is a tree
showing a sequence of clusters whereby each cluster
being a partition of the data set. Hierarchical cluster-
ing on the other hand does not specify the number of
clusters beforehand, and the output is independent of
the initial condition. Furthermore, hierarchical clus-
tering is static, i.e., the data points assigned to a
cluster cannot be reassigned to another cluster. In
addition, hierarchical clustering will fail to separate
overlapping clusters due to the lack of information re-
garding the global shape or size of the clusters. Since
partitional clustering requires a fixed number of clus-
ters to be specified a priori, this is clearly a short-
coming. Usually objective functions such as square
error function are used as a criterion in the optimiza-
tion process during the data partitioning. Partitional
clustering uses an iterative process to both optimize



the cluster centers and the number of clusters. How-
ever, the challenge is to find the “optimum” number
of clusters since it always requires prior knowledge
about the data. To summarize, the advantages of
hierarchical algorithms are the disadvantages of the
partitional algorithms and vice versa.

The goal of clustering is to divide data points into
homogeneous groups such that the data points in the
same group are as similar as possible, and data points
in different groups are as dissimilar as possible [3, 2].
The strength of clustering is documented in different
areas such as pattern recognition [4], machine learn-
ing, image analysis [5], information retrieval, etc.
Clustering methods can be categorized as either hard
clustering [6, 7] or fuzzy clustering [8] depending on
whether a data point belongs to a single cluster or
several clusters with different membership degrees.
Fuzzy set theory was proposed by Zadeh [9] in 1965.
It is used to describe the membership degrees in fuzzy
cluster analysis. Thus, each data point of a data set
belongs to two or more clusters with a membership
degree between 0 and 1. Due to the capability of
handling uncertainty and vagueness, the potential of
fuzzy clustering can be exploited to reveal the under-
lying structures in data with regard to similarities or
dissimilarities among them [10].

One of the widely used methods in fuzzy cluster-
ing is Fuzzy C-Means clustering (FCM) [11]. FCM
attempts to partition a data set into a collection of
¢ fuzzy groups. The algorithm finds a cluster center
in each group such that the intra-distance within the
group is minimized, and the inter-distance between
each group is maximized. Most of the fuzzy cluster-
ing methods that have been applied recently use an
extension of the FCM algorithm. As we have men-
tioned before, partitional clustering suffers from the
following drawbacks:

1. The number of clusters needs to be pre-specified,
and prior knowledge or ground truth is required
of the data.

2. Most data points in overlapping areas cannot be
categorized correctly.

In order to address these two shortcomings, we pro-
posed a fuzzy c-means clustering approach using a

Particle Swarm Optimization (PSO) approach that
is applied to clustering analysis. The remainder of
this paper is organized as follows: In Section 2, fuzzy
c-means and PSO are introduced. The proposed al-
gorithm is described in Section 3, and a list of validity
indices is given in Section 4. The experimental results
and analysis is described in Section 5, and the paper
is concluded in Section 6.

2 Related Work

CM was first developed by [12] in 1973, and was ex-
tended by [11] in 1981. Since then, FCM is one of
the best fuzzy clustering methods. Many different
variants of FCM have been introduced. For example,
the Gustafson-Kessel (GK) algorithm [7] is a fuzzy
clustering technique which can estimate local covari-
ance to partition data into subsets, which can be well
fitted with linear sub-models. However, since consid-
ering a general structure of the covariance matrix can
have a substantial effect on the modeling approach,
the Gath-Geva algorithm [13] was proposed to over-
come this shortcoming. Another algorithm, called
Fuzzy C-Varieties (FCV) [14] clustering algorithm, is
a fuzzy clustering method for which the prototype
of each cluster is represented as a multi-dimensional
linear vector. The approach is similar to cluster anal-
ysis, however, it uses the statistical method of prin-
cipal component analysis for the clustering task. An-
other algorithm, referred to as generalized FCM al-
gorithm, is presented in [15], in which setting of the
algorithm parameters is being done automatically.
Related work lists many evolutionary computation
methods that have been applied for clustering. For
example, a hybrid technique based on combining the
k-means algorithm and Nelder-Mead simplex search
was applied for cluster analysis in [16]. Another algo-
rithm based on the combination of Genetic Algorithm
(GA), k-means and logarithmic regression expecta-
tion maximization was introduced in [17]. In [18],
a k-means algorithm that performs correct cluster-
ing without preassigning the exact number of clus-
ters was proposed. A genetic k-means algorithm for
cluster analysis was introduced in [19]. In [20], a GA
based method to solve the clustering problem and ex-



periment on synthetic and real life data sets to evalu-
ate the performance was proposed. A GA algorithm
that exchanges neighboring centers for k-means clus-
tering has been introduced in [21]. A combination of
evolutionary algorithm with an ant colony algorithm
for the clustering problem was presented in [21, 22].
A clonal selection based method has been combined
with FCM in [23].

PSO has also been applied to data clustering. In
particular, two methods called PSO-V and PSOU
are introduced in [24], whereby a reformulated ob-
jective function of fuzzy c-means is minimized by the
PSO algorithm for the cluster analysis task. Another
PSO-based fuzzy clustering algorithm is introduced
to overcome the shortcomings of FCM in [25]. An
ant colony clustering algorithm is applied for solving
the clustering task in [26]. The algorithm uses the
global pheromone update and heuristic information
to find clustering solutions. In [27], a genetic fuzzy
K-modes algorithm for clustering categorical data is
proposed, which uses a genetic algorithm to obtain
the global optimal clustering solution. A hybrid data
clustering algorithm that uses the merits of PSO and
K-harmonic means is proposed in [28]. The hybrid al-
gorithm helps to escape from local optima, and thus
overcomes the problem of slow convergence of the
PSO algorithm. A hybrid evolutionary algorithm,
called FAPSO-ACO-K, is introduced in [29]. The
hybrid algorithm combines PSO, ACO and k-means
applied to cluster analysis. Another method for dy-
namic parameter adaptation in PSO is proposed in
[30]. The proposed algorithm uses fuzzy logic to im-
prove the convergence and diversity of the swarm in
PSO.

The high computational cost and the slow conver-
gence rate severely limit the use of PSO on cluster-
ing analysis. For these reasons, a chaotic map PSO
with an accelerated convergence rate strategy was
introduced in [31]. The algorithm works by adopt-
ing chaotic maps and adaptive action to avoid local
minima. In [32], a hybrid fuzzy clustering method
based on FCM and FPSO is proposed to overcome
the shortcomings of PSO. Another modified version
of PSO, known as Multi-Elitist PSO (MEPSO), is
proposed in [33]. This approach solves the hard clus-
tering problem by automatically determining the op-

timal number of clusters. This approach shows that
PSO is guaranteed to solve clustering problems auto-
matically.

This paper addresses the shortcoming of the FCM
algorithm, which is the predefined cluster count. A
clustering approach based on PSO is proposed whose
aim it is to automatically determine the optimal num-
ber of clusters using a threshold vector. The algo-
rithm partitions the data set randomly (within a pre-
set maximum number of clusters) and uses a recon-
struction criterion to evaluate the performance of the
clustering results. This paper is an extended version
of [34].

3 Fuzzy C-Means and Particle
Swarm Optimization

3.1 Fuzzy C-means Clustering

Fuzzy clustering is a method of clustering that allows
one piece of data to belong to two or more clusters.
The FCM algorithm is an iterative partition cluster-
ing technique that was first introduced by Dunn [12],
and was then extended by Bezdek [11]. FCM uses a
standard least squared error model that generalizes
an earlier and very popular non-fuzzy c-means model
that produces hard clusters of the data. An optimal
¢ partition is iteratively produced by minimizing the
weighted within group sum of squared error objective
function:

J = Z Z(uij)mdz(yia cj)

i=1j=1

(1)

where Y = [y1,¥2,...,yn] is the data set in a d-
dimensional vector space, n is the number of data
items, ¢ is the number of clusters that is defined by
the user where 2 < ¢ < n, u;; is the degree of mem-
bership of y; in the j** cluster, m is a weighted ex-
ponent on each fuzzy membership, c; is the center
of cluster j, d*(z;,¢;) is a square distance measure
between object y; and cluster c;.

An optimal solution with ¢ partitions can be ob-
tained via an iterative process which is as follows:

1. Input(c, m, €, data)



2. Initialize the fuzzy partition matrix U = [u;]
3. Iteration starts and set t=1

4. Calculate the ¢ cluster centers with U?:

D i (i)™ yi
Z?:l (U” )m

C; =

5. Calculate the membership U**! using:

1
Uij = — 73 (3)
k=1 ( ;;)“"_1)

6. If the stopping criteria is not met, t = ¢+ 1 and
go to Step 4)

3.2 Particle Swarm Optimization

PSO was designed and introduced by Eberhart and
Kennedy [35]. PSO is a population-based search algo-
rithm that simulates the choreography of a bird flock.
Each individual, called particle, within the swarm is
represented by a vector in a multidimensional search
space. A velocity vector is assigned to each parti-
cle to determine the next movement of the particle.
Each particle updates its velocity based on the cur-
rent velocity, best personal position it has explored
so far, and the global best position explored by the
swarm:

The velocity and position of the particle at the next
iteration is updated as:

Vit +1) = wV;(t) + erri (X} (1) — X;(1))

+ corao (X9 — X;(t))  (4)

(5)

for the i particle, where w is the inertia weight, V; (t)
is the previous velocity at iteration ¢ of i*" particle,
c1 and cy are coefficients. Generally, r; and 7o are
random numbers between 0 and 1. (X!(t) — X;(t))
is the difference between the local best X! of the i
particle and the previous position X;(¢). Similarly,
(X9 —X;(t)) is the difference between the global best
X9 and the previous position X;(t).

Xi(t+1) = X;(t) + Vi(t + 1)

4 Proposed Approach

The proposed algorithm is based on PSO and FCM.
The particle encoding, velocity encoding, decoding
and clustering validation are described separately be-
low followed by the procedures of the proposed algo-
rithm.

4.1 Particle Encoding

A particle is a 2 x k matrix, where k is the maximum
number of clusters that is predefined. The first row
represents the centers. Each value in the second row
controls the activation of each center in the first row.

i i i
X = Ti1 T12 Tk
1 T t’L
2.k

. , 6

Byt ©
where xil’k represents the i*" particle’s position in
c'luster k. x7 . should be in the range of [Zyin, Tmaz)-
t5 y, is the it" particle’s threshold value in the range
of [0,1]. If the threshold value is greater than 0.5,

the center is activated, otherwise it is deactivated.

4.2 Velocity Encoding

The velocity matrix has to have the same dimension
as the position matrix with a range. Suppose we set
the range as [Umin, Umaz), all values of the velocity
matrix have to be between v,,,;, and v,,4,. Thus, the
ith velocity is denoted as:

U;ﬂ,k)

3
Vo k

V= U;izl,l U;m

i =\ e v
12,1 Ut2,2

Similarly, & is the maximum number of clusters. The

first row represents the velocity of the centers, and

the second row represents the velocity of the thresh-

old values.

(7)

4.3 Decoding

Y = (y1,¥2,.-,Yn) is the data set with d dimen-
sions. The cluster centers can be decoded as C' =
(c1, €2, ...c) using Equation 2.



4.4 Clustering Validation Techniques

The aim of clustering validation is to evaluate the
clustering results by finding the best partition that
fits the underlying data. Thus, cluster validity is
used to quantitatively evaluate the results of clus-
tering algorithms. Compactness and separation two
widely considered criteria for measuring the quality
of the partitioning of a data set into different numbers
of clusters. Conventional approaches use an iterative
approach by choosing different input values, and they
select the best validity measure to determine the “op-
timum” number of clusters. A list of validity indices
for fuzzy clustering is listed below.

4.4.1 Dunn’s Index (DI)

The Dunn’s Index is proposed to identify the com-
pactness and separation of the clusters. The function
that uses to calculate the result of the clustering is
as follow:

min d(,
DI = min{ min { veCiyec; d(T,y)
jEcii#j MaXpec{max, yeo d(z,y)}

1}
(8)

where d(z,y) is the distance of the two cluster cen-
ters. DI takes its minimum value when the cluster

structure is optimal.

4.4.2 Weighted Inter-Intra (Wint) Index

The weighted inter-intra (Wint) measure is intro-
duced by Strehl [42] in 2002. It compares the com-
pactness of the data to its separation.

. 2c Zi n—1|c,-,| Zj?fi inter(q, Cj)
Wint=(1-——)-(1— a—
n > mmtra(ci)

(9)
where intra(c;) is the average intra-distance within
cluster i. inter(c;,c;) is the average inter-distance
between cluster ¢ and cluster 5. Wint obtains its
maximum value when the cluster structure is opti-
mal.

4.4.3 Least Squared Error (SE) Index

The weighted within cluster sum of squared error
function is used [36]:

n C
I =305 s — ol

i=1 j=1

(10)

where y; is the i'" data point with d dimensions. c¢;
is the value of the j*" cluster, and ||y; — ¢;|| is the
Euclidean distance between y; and c;. Jp, takes its
minimum value when the cluster structure is best.

4.4.4 Partition Coefficient (PC) Index

The partition coefficient (PC) is defined as [11]:

1 n c )
PC = ZZZUU

i=1 j=1

(11)

PC obtains its maximum value when the cluster
structure is optimal.

4.4.5 Partition Entropy (PE) Index

The partition entropy was defined as [14]:

PE = —% > uijlogy(ui)

i=1 j=1

(12)

where b is the logarithmic base. PE gets its minimum
value when the cluster structure is optimal.

4.4.6 Modified Partition Coefficient (MPC)
Index

Modification of the PC index, which can reduce the
monotonic tendency, is proposed by Dave in 1996
[37].

MPC =1- —~—(1 - PC)

po (13)

where c¢ is the number of cluster. An optimal cluster
number is found by maximizing MPC to produce a
best clustering performance for a data set.



4.4.7 Fukuyama and Sugeno (FS) Index

Fukuyama and Sugeno proposed a validity function
in 1989 [38]. It is defined as:

FS =" llzi—cll =Y 3 ulille;—ell (14)

i=1 j=1 i=1 j=1

where ¢ = Z;zl ¢j/c. It measures the separation.
The first term equals to J,,, which is the least squared
error. It measures the compactness. The best cluster-
ing performance for a data set is found by maximizing
the value of FS.

4.4.8 Xie-Beni (XB) Index

Xie and Beni proposed a validity function in 1991
[39], and later it was modified by Bezdek in 1995
[40].

JTVL

XB= : .
nX mingz; ||z — zl|

(15)

XB reaches its minimum value when the cluster struc-
ture is optimal.

4.4.9 Partition Coefficient and Exponential
Separation (PCAES) Index

The partition coefficient and exponential separation
(PCAES) index [41] is defined as:

PCAES = zn: Z (u)*
- i

i=1 j=1

— > exp(— min ||z; — zl[*/Br)  (16)
k=1 7

where wy = mini<j<{X u;} and Br =
(51 lz = 2IP) /e 2= 31 (yi/n). PCAES takes
its maximum value when the cluster structure is op-
timal.

The procedure of the proposed algorithm is as fol-
lows:

Input: dataset Y = [y1, y2, ..., Yn], number of clus-
ter ¢, fuzzification coefficient m.

Output: a n X ¢ partition matrix U and corre-
sponding centers.

1. Randomly initialize a swarm
2. Tteration starts and set t=1

3. Update the velocity of each particle using Equa-
tion 4

4. Update the position of each particle using Equa-
tion 5

5. Update the personal best and global best
6. Calculate the partition matrix U

7. If the stopping criterion is not met, t = t+ 1 and
go back to Step 3)

8. The partition matrix U of the global best is used
to reconstruct the original data

9. Calculate the reconstruction error. In order to
use a consistent method to evaluate the eight dif-
ferent indices, the reconstruction criterion (RC)
[43] is used. The reconstruction criterion uses
the cluster prototypes and partition matrix to
“reconstruct” the original data vectors. The re-
constructed version of the original data vectors,

Y = [§1, 92, ---, Un), is calculated as:

fo_ 25:1 U (17)
S SN

Once the reconstruction has been finished, the
squared error of the reconstruction vectors and
original vectors are evaluated using Equation 18.

E=> |4 —uill? (18)
=1

10. Select the partition matrix and centers corre-
sponding to the minimum reconstruction error.
5 Experiments and Results

In this section, the experimental setup, datasets and
experimental study are described in detail.



Parameter Value
Maximum number of cluster 10
Maximum iteration 50
Swarm size 25
Maximum run 30
Fuzzification coefficient (m) 2

Table 1: Parameters and their values of the proposed
algorithm.

Table 2: Datasets used for the experiments.

Data Set Dimensions Instances Classes
Pinwheel 2 1000 2
Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2
Jain 2 373 2
Thyroid 5 215 2
Iris 4 150 3
DIMO032 32 320 5
DIMO064 64 320 5
DIM128 128 320 5
DIM256 256 320 5

5.1 Experimental Setup

The experiments are implemented and evaluated on
an ASUS desktop (Intel(R) Dual Core I3 CPU @3.07
GHz, 3.07 GHz) Matlab Version 7.13. All measure-
ments of the proposed algorithm are executed 30
times and the average is taken. The parameters re-
quired for the proposed algorithm are listed in Table
1.

5.2 Datasets

The experiments are conducted on a number of
datasets taken from the UCI repository [44], and syn-
thetic data sets were generated using Matlab. The
datasets are described in Table 2.

5.3 Experimental Study
5.3.1 Use of Synthetic Data

In order to investigate the clustering performance
with different numbers of clusters, we use a synthetic
data set, named pinwheel, to test the clustering per-
formance using K-means [46], K-medoid [47], FCM,
Gustafson-Kessel (GK) and our proposed algorithm
(FPSO). K-means is one of the unsupervised learning
methods that uses an iterative refinement technique.
The number of desired cluster, k, is defined in ad-
vance. K-medoid is another unsupervised learning
method related to the K-means algorithm. Similarly,
the K-medoid classifies the data set into k clusters.
However, K-medoid is more robust to noise and out-
liers as compared to K-means. Unlike K-means, the
medoid is defined as the data point whose average dis-
similarity within the cluster is minimal. K-means and
K-medoid are traditional hard clustering techniques,
while FCM, GK and FPSO are soft clustering tech-
niques. The nine validity indices listed in Equations
8-16 are used.

The cluster performance of the pinwheel data set
is displayed in Figure 1. The first figure is the origi-
nal data set. As can be seen, the cluster centers are
different using Kmeans, K-medoid, FCM, GK and
FPSO, respectively.

Figure 2 shows the performance of the pinwheel
data set using the K-means algorithm. Figure 3
shows the performance of the pinwheel data set us-
ing the K-medoid algorithm. Since K-means and K-
medoid are algorithms using hard partitioning, the
DI index, Wint index and SE index are used for val-
idation.

In Figure 4, the performance of the pinwheel data
set using FCM is given. Figure 5 shows the perfor-
mance of the pinwheel data set using the GK algo-
rithm. The performance of the proposed algorithm
(FPSO) is displayed in Figure 6. The correct num-
ber of clusters found for the nine indices are listed in
Table 3. The correct cluster number for the pinwheel
data set is 2. The correct number of clusters found
measuring DI using the five different algorithms are
5, 5, 7, 10, and 7, respectively. The correct number
of clusters found applying Wint are consistent with
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Figure 1: Synthetic data set

the correct cluster number. The correct number of
clusters found by SE is consistent with 10. As the
number of clusters increases, the SE values decrease.
PC, PE and MPC using the FCM, GK and FPSO al-
gorithms find the correct cluster number. Measuring
FS using the FCM, GK and FPSO algorithm are sim-
ilar to SE. As the number of clusters increases, the
FS values decrease. The correct number of clusters
found applying XB using the FCM, GK and FPSO al-
gorithms are 10, 7, and 10, respectively. The correct
number of clusters found measuring PCAES using
the FCM, GK and FPSO algorithms are 4, 10, and
8, respectively. Overall, the Wint, PC, PE and MPC
indices, which outperform the other indices, find the
correct number of clusters.

5.3.2 Use of Real-World Data

In this section, we investigate the behavior of the
clustering results using nine different validity mea-
sures listed.

In Table 4, the reconstruction errors of the trans-
fusion data set, where ¢ ranges from 2 to 9, have been
calculated using the proposed algorithm by applying
Equations 8-16. As shown by the results, the values
in bold identifying the minimum reconstruction er-
rors with different cluster numbers for each measure.

6 out of 8 cases show that ¢ = 2 is the correct number
of clusters. This indicates that the proposed FPSO
can find the best number of clusters automatically.

Due to the stochastic nature of our proposed al-
gorithm, we tested the proposed algorithm on 30
runs and calculated the average number of clusters
as listed in Table 5. The standard deviation val-
ues are given as well. The correct numbers of clus-
ters using different validity measures are tabulated,
respectively. In all the cases, the number of clus-
ters predicted by FPSO is close to the correct num-
ber of clusters. DI, SE, XB and PCAES do not
find the correct number of clusters. Wint can iden-
tify the correct number of clusters but only for low-
dimensional datasets. MPC returns the correct num-
ber of clusters, but with larger standard deviation
values. PC and PE find the correct number of clus-
ters consistently, however, as the number of dimen-
sion increases, the accuracy decreases.

5.4 Visualization of Clustering Re-
sults

Since the validity measures reduce the overall eval-
uation to a certain number, therefore there is some
loss of information. In order to better analyze the



Table 3: Index values with varying ¢ using pinwheel data set.

Indices Kmeans K-medoid FCM GK FPSO
DI 5 5 7 10 7
Wint 2 2 2 2 2
SE 10 10 10 10 10
PC - - 2 2 2
PE - - 2 2
MPC - - 2 2
FS - - 10 10 10
XB - - 10 7 10
PCAES - - 4 10 8
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results, a low-dimensional graphical representation
of the clusters is adopted. A toolbox implemented
by [45] is used to visualize the cluster results using
the proposed algorithm. Principal Component Anal-
ysis (PCA) projection, Conventional Sammon Map-
ping (CSM), and Fuzzy Sammon Mapping (FSM) are
used. The dimensions of DIM032, DIM064, DIM128
and DIM256 are 32, 64, 128 and 256, respectively.
The correct number of clusters is 5. Figure 7 lists
the performance of PCA, CSM and FSM using the
four data sets. The black cross represents the iden-
tified cluster centers. Obviously, the correct number
of clusters can be seen by looking at the figure. As
the number of dimension increases, the performance
of the PCA, CSM and FSM decrease.

The performance of the mapping are listed in Ta-
ble 6. The mean square error of the re-calculated
membership values (P), two different original and
re-calculated validity measures (F and F*), and the
Sammon stress coefficient (S) are listed in the paren-
thesis. As the number of dimension increases, the
FSM is better than PCA and CSM in terms of smaller
P, F* and S values. The performance of PCA, CSM
and FSM are the same in terms of F values.

6 Conclusion

This paper proposed an algorithm to overcome the
drawbacks of traditional partition clustering, which
is that the number of clusters needs to be predefined.
The proposed algorithm uses using PSO and FCM
with a threshold vector to control and identify the
optimal number of clusters. The algorithm solves
the clustering problem via an iterative fuzzy parti-
tion process.

For the evaluation of our algorithm we generated a
synthetic dataset as well as used 6 datasets from the
UCIT repository. We compared our algorithm with
hard clustering approaches such as Kmeans and K-
medoid as well as with fuzzy clustering algorithms
such as FCM and GK. Nine different validity indices
were used to evaluate the performance. Furthermore,
measures such principal component analysis projec-
tion, conventional sammon mapping, and fuzzy sam-
mon mapping were used to visualize the clustering
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results. Overall, the results show that the proposed
algorithm can identify the correct number of clusters
on all the data set tested. However, due to the slow
convergence and the stochastic nature of the PSO al-
gorithm, the prediction results of a single run vary
and thus make it difficult to prediction the correct
number of clusters. Unlike K-means and FCM, the
proposed algorithm needs to be executed repeatedly
in order to find the correct solution. In addition, the
maximum number of clusters has to be predefined,
and the iterative process to identify the optimal num-
ber of clusters is computationally expensive.

As for future work, it would be interesting to im-
prove the proposed algorithm to achieve more sta-
ble predictions with fewer runs. Moreover, we are
planning to explore the proposed algorithm with big
datasets, and therefore parallelization techniques are
necessary.
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Table 4: Reconstruction error with varying ¢ using transfusion data set.

c=2 3 6 7 9

DI 31.2 304 24.5 613 313 24.5 598 25.0
Wint 23.6 293 254 474 515 688 425 36.5
SE 23.6 256 265 23.6 28.7 337 243 259
PC 16.3 296 342 818 227 751 311 214
PE 26.3 8.0 260 57.0 249 393 16.9 303
MPC 17.0 448 246 604 933 12.2 166.7 12.5
FS 23.6 23.6 23.6 256 295 249 336 23.7
XB 23.6 430 25.1 36.1 27.1 613 688 63.1
PCAES 38.9 81.7 825 481 53.8 575 972 934

Table 5: Nine different indices using the proposed algorithm.

DI Wint SE PC PE MPC FS XB PCAES | FPSO

Transfusion | 5.70 2.63 9.43 2.17 213 3.67 273 9.63 6.87 2.42

std. 1.84 049 086 0.38 035 215 1.05 0.56 2.29 0.58

Haberman | 5.90 2.93 997 2.00 2.00 6.50 2.07 9.83 8.80 2.24

std. 0.55 0.25 0.18 0.00 0.00 1.50 0.25 0.75 2.51 0.15

Breast 6.13 3.00 843 3.27 217 530 213 9.77 6.83 2.64

std. 1.96 0.00 143 1.72 038 245 0.35 0.63 2.09 0.62

Jain 730 297 9.57 2.87 210 3.60 3.37 7.90 6.47 2.25

std. 1.64 056 0.68 0.82 031 1.52 2.75 2.20 2.22 0.15

Thyroid 427 2.83 990 2.10 2.03 427 2.00 9.53 8.10 2.24

std. 1.87 038 031 040 0.18 221 0.00 0.68 1.99 0.24

Iris 3.83 293 9.00 253 230 4.13 240 9.57 6.30 2.55

std. 1.58 0.52 1.62 0.94 047 2.06 0.89 0.57 2.58 0.7

DIMO032 6.33 2.73 7.90 4.60 4.00 490 3.73 7.40 6.40 5.34

std. 1.07 064 183 143 191 1.44 1.10 1.30 2.04 2.08

DIMO064 717 320 777 547 550 553 200 9.43 7.40 5.94

std. 263 192 1.83 1.33 141 146 0.00 1.01 1.92 1.50

DIM128 6.90 2.57 827 b5.63 5.57 577 2.00 8.37 8.03 5.90

std. 2.02 057 155 1.25 138 1.04 0.00 1.97 1.35 1.24

DIM256 857 257 857 6.43 6.13 6.70 2.00 9.13 8.57 6.52

std. 1.19 050 143 1.65 1.72 1.56 0.00 1.07 1.33 1.16

Table 6: Mapping using the proposed algorithm.
Datasets PCA CSM FSM

DIMO032 | (0.0030 0.9826 0.9975 0.0821) | (0.0104 0.9826 0.9495 0.2953) | (0.0023 0.9826 0.9742 0.0780)
DIMO064 | (0.0011 0.9939 0.9995 0.1329) | (0.0005 0.9939 0.9931 0.0553) | (0.0005 0.9939 0.9920 0.0556)
DIM128 | (0.0008 0.9956 0.9998 0.1252) | (0.0050 0.9956 0.9765 1.5603) | (0.0004 0.9956 0.9941 0.0498)
DIM256 | (0.0046 0.2003 0.2010 0.1138) | (0.0262 0.2003 0.2081 34.2770) | (0.0044 0.2003 0.2001 0.0482)
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