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Abstract—Mining workflow models has been a problem of
interest for the past few years. Event logs have been the
main source of data for the mining process. Previous workflow
mining approaches mostly focused on mining control flows that
were based on data mining methods, as well as exploited time
constraints of events to discover the workflow models. In this
work, we present a mining approach which not only takes
the behaviourial aspect of workflows into account, but also
takes advantage of their informational perspective. Provenance
information is a source of reasoning, learning, and analysis since
it provides information regarding the service inputs, outputs
and quality of service values. Therefore, provenance information
along with Bayesian structure-learning methods are exploited for
this purpose. Two constraint-based Bayesian structure-learning
algorithms are investigated and modified in order to make use of
additional provenance information. We will show that this leads
to better mining results based on three common mining scenarios.

I. INTRODUCTION

Combining a set of tasks together in a specific order for the
purpose of achieving a specific goal is a process taking place
in all different areas of science, from business to chemistry,
physics, math, etc. During such a process, referred to as a
workflow process, tasks might have prerequisites and are run
in sequential or parallel order. The most common form of
representing a workflow model is the directed graph. Tasks
or activities are usually enclosed in boxes or circles and are
referred to as vertices of the graph while the arrows depict
the edges, which represent the direction of the flow. As for
some workflow systems, the workflow events and their timing
information are recorded sequentially into logs. Keeping track
of certain data attributes of a process being executed, and
storing this information into an event log is a procedure taking
place in certain systems. These event logs usually contain
limited amount of information about the process and mostly
include the process id, the name of the task, and the execution
time of each task. Mining workflows and processes through
event logs has been a problem of interest. Event logs have been
analysed and searched in order to analyze the effectiveness of
a workflow process, to discover previous workflow models, to
find the hidden causal relationships existing among tasks, etc.

The process of workflow mining is referred to as the task of
extracting process knowledge from the event logs. It discusses
techniques for acquiring a workflow model from a workflow

log. As mentioned in [1], the desire for companies to learn
about their processes is the main reason behind exploitation
and development of process mining techniques.

The basic idea behind workflow mining is to construct the
workflow’s directed graph from the information gathered from
the execution of the workflow process. This process is usually
done using an algorithmic technique or statistical analysis.
Machine learning, data mining, genetic algorithms, and se-
quence mining are the main approaches of workflow mining
applied in literature. Data mining methods for discovering
sequential patterns, statistical analysis methods for building
and extracting statistical dependencies, or a combination of
both methods have been used.

In [2], the authors discuss the data mining algorithms used
to discover sequential patterns. The algorithms include the
Generalized Sequential Pattern (GSP), which has the advan-
tage of taking the time constraints into account, and the Apriori
algorithm [3]. Methods used for event-data analysis have also
been used for workflow mining. These methods vary from
purely algorithmic ones to purely statistical ones [4], or a
combination of both techniques [3].

The research provided in [1] presents a comparison of the
current workflow mining approaches and categorizes them
based on the contribution of each work. Some works, such
as the one presented in [5], are limited to sequential models.
Other approaches such as [6] support more complex structures
including concurrent processes, but are limited to workflow
models without repetitive or duplicate tasks. In [7], [8], and
[9], approaches are presented that allow the appearance of
the same task in the workflow model. Some methods such
as the Markovian approach do not target any of the major
workflow mining issues. Current approaches do not mine
process models from different perspectives. Also, there is no
one single approach that targets many of the workflow mining
issues. Thus, new approaches are required that address these
issues.

We believe, these challenges can be resolved if the logs
provide more information. As discussed in [10], a process
data warehouse is required to apply workflow mining. In [11],
we propose and discuss the benefits of an architecture that
addresses workflow problems using provenance information
along with statistical and mining methods. One of the compo-



nents of such an architecture is the workflow policy graph
extractor, which learns and mines workflow patterns from
provenance data. Following the proposed architecture, in order
to be able to mine workflow models using various perspectives
and to simplify the discovery of causal relations, we propose
the exploitation of provenance information for the purpose of
process mining.

In this paper, we exploit Bayesian structure learning meth-
ods along with provenance information. Two constraint-based
algorithms of Parents and Children (PC) and Max-Min Par-
ents and Children (MMPC) were selected for learning, and
modified in order to improve the workflow mining task.
Our approach is different from the previous approaches as it
exploits both data and control aspects of workflows for mining,
discovers concurrent processes, and supports structures with
duplicate tasks.

The rest of this paper is organized as follows: our method-
ology is described in Section 2 along with the constraints,
conditions, and modifications applied to the constraint-based
algorithms. Section 3 provides the implementation details. In
Section 4, a case study is conducted showing three differ-
ent cases, as well as the performance evaluation results are
presented. Section 5 presents the conclusion of the research
provided.

II. METHODOLOGY

A. Bayesian Structure Learning Methods

Bayesian structure learning methods can be categorized
into two groups of constraint- and score-based algorithms.
Constraint-based algorithms perform structure learning in two
steps. The first step discovers the skeleton using conditional
hypothesis tests. The skeleton is the undirected structure in
which only the location of edges are determined with no
directions. The second step finds the orientation of the edges
in the skeleton. The scored-based methods address structure
learning as a model selection problem. After having defined a
scoring function that evaluates how well a structure matches
the data, these methods search through all possible network
structures for the highest scored network, and thus is NP-hard.

Compared to score-based methods, constraint-based ap-
proaches are more suitable for the purpose of knowledge
discovery as they produce more accurate results. These meth-
ods, which are also referred to as conditional independence
learners, use conditional independence tests to detect the
Markov blankets of the variables in order to compute the
structure of the Bayesian network.

Conditional independence tests in structure learning are
concerned with nodes/variables that are necessarily indepen-
dent given the structure of the underlying Directed Acyclic
Graph (DAG). The independence assertions are learnt from
data and are used in both steps of these algorithms. The
first phase exploits the conditional independence test to de-
termine whether an edge should exist between two nodes,
and represents the result as an misdirected skeleton. In order
to learn the structure of DAGs, a sufficient condition is
“faithfulness”. The faithfulness assumption asserts that the

conditional independencies observed in the distribution of a
network are due to the structure of the network. It allows us
to move from a probability distribution to a DAG. The later
step of the constraint-based algorithms discovers the separating
sets, which indicate the set of nodes that are sufficient to d-
separate two nodes from each other.

B. Modeling the Workflow Model Extraction Problem as
Bayesian Structure Learning

Constraint-based approaches in literature are different based
on the type of independence test or ordering heuristics. Among
the possible algorithms, we have selected the PC [12], as
well as, the MMPC [13] algorithms. Using statistical or
information-theoretic tests, these algorithms estimate based on
the data whether certain conditional independencies between
the variables hold. They start from a complete, undirected
graph and delete edges recursively based on conditional in-
dependence decisions. This yields an undirected graph, which
can then be partially directed and further extended to represent
the underlying DAG. The PC algorithm has an intuitive basis
and guarantees the recovery of the original causal structure
under ideal conditions [14]. It is faster than similar approaches
such as SGS [15] and produces better results. The other
algorithm, MMPC, outperforms on average several constraint-
based algorithms such as PC, Sparse Candidate [16], etc. [13].

As both of these algorithms take a similar approach to-
wards structure learning, i.e. using conditional independence
tests, they were selected as the main methods applied to the
workflow data for the aim of mining.

Constraint-based structure learning methods are based on
the assumption of having a very large database. This condition
is satisfied since provenance information is being used for
this purpose. The other condition that should be satisfied is
that the independence relationships have to have a perfect
representation of a DAG. In case of workflow mining, these
relationships represent the data flow connections that exist
between services (tasks). This condition can not be assumed to
be true since these relationships in a workflow structure might
not necessarily represent a DAG depending on the degree
of “faithfulness” of the data. Thus, we will be presenting
modified versions of these algorithms which provide better
results in case of unfaithful workflow models.

In order to model the problem workflow mining as a
Bayesian structure discovery, services serve as the nodes of
the Bayesian graph, each having values representing different
states a service provider provides. The links in the Bayesian
graph represent the causal relationships that exist among the
services. Therefore, the graph extracted from the provenance
data depicts the workflow policy graph.

To evaluate the degree of dependence between services
using conditional independence tests, the output parameters
and values of services are taken into account. The values are
matched against each other to assess the mutual information
the services provide, given the current discovered structure,
and investigate if dependencies can be found.



We can not assume to have a Bayesian structure in the
data if the workflows do not follow the conditions underlying
such a structure. Thus, the faithfulness of the data can not be
guaranteed as it depends on the workflow models. Therefore,
the Bayesian learning algorithms need to be modified in order
to be able to discover the structure as accurate as possible even
in the absence of the faithfulness condition.

Assume a workflow consisting of 3 sequential services of
A, B, and C for finding an Internet Provider (IP) address,
searching for the city name based on the IP, and finding
the weather forecast for that city. This workflow structure
example will not satisfy the faithfullness condition as both
“IP” and “city” services’ output values provide the same
mutual information for the “weather” service. Thus, “weather”
and “city” are assessed as independent given “IP”. Such issues
prevent the Bayesian structure learning algorithms to discover
the whole model of a workflow. Given the described example,
the learnt model will only include arcs from A to B and to
C, and services B and C are assumed to be independent. This
will result in a workflow structure represented as B <- A ->C
while the original model suggests A ->B ->C.

In order to overcome these issues, the original PC and
MMPC algorithms are augmented with certain heuristics that
make their results more accurate in case of the unfaithful-
ness condition. These heuristics exploit timing information
provided in the provenance data, gathered during workflow
executions, to identify the ordering of the variables for variable
selection, to discover the mutually exclusive or parallel ser-
vices, and to find services that provide the same information.

C. Parents and Children (PC) Algorithm

The first phase of the PC algorithm will be used for
learning the structure of the graph. As discussed in [12], the
performance of this phase of the algorithm can be improved
by knowing the ordering of the edges. Since the provenance
information are used for learning, the timestamps including
the starting time of services and duration can be exploited for
the purpose of ordering. This results not only in a better per-
formance of the algorithm with less time complexity, but also
saves execution time of the V-structure phase of the algorithm
that is aimed at discovering edge directions. The Modified PC
algorithm is shown in Algorithm 1. Apart from using a timely
ordered set of nodes, the two functions of “Check Splits” and
“Check Same Info” are the main modifications applied to the
original PC algorithm. The first function, i.e. Check Splits,
checks if the two variables being checked for independency are
parallel-splits (and-splits or or-splits). A parallel split creates
a split in a workflow model. In case of and-split all the
branches will be active, as for an or-split only one branch
is active at a time. In order to check this, the starting time of
the two variables, i.e. services, are taken into account. If the
time difference between the two starting times is less than a
threshold, the two services are considered parallel and based
on their data values are added to the split-and or split-or
lists. The other function, “Check Same Info”, checks if the
two variables x and y being checked for independence given

variable z provide the same information, i.e. fall into the same
information provider category. It performs the assessment by
first checking if x belongs to y’s conditional set. If this is not
the case, y and z are tested for independence conditioned on
x. If either of these tests are true, then x and y and z provide
the same information, and thus, the scenarios such as the one
presented in the previous subsection are discovered correctly.

Algorithm 1 Modified PC Algorithm
function MODIFIED PC(G,O)

Input: Fully connected graph G, Timely Ordered Variables O
i = 0
repeat

for all x ∈ V do
for all y ∈ Adjx do

if Check Splits(x, y,G,O) then
Continue

end if
Determine if S ⊂ |Ajx|{y} | with | |S| = iandI(x, y|S)
if this set exists then

if Check Same Info(x, y,G,O, S) then
if time difference(x,y) < time difference(y,S) then

Remove S-y link from G
break

else
Remove x-y link from G
Add y-S link to G
break

end if
else

Make Sxy = S
Remove x-y link from G

end if
end if

end for
end for

until |Adjx|<i∀x
end function
function CHECK SAME INFO(x, y, cond)

if !check mutual(x, cond) | && |!check mutual(y, cond) then
if x ∈ Conditional Set(y, cond) then

return true
end if
if I(y, cond|x) then

Add x to Conditional Set(y, cond)
return true

end if
end if
return false

end function

D. Max-Min Parents and Children (MMPC) Algorithm

This algorithm is based on the local discovery algorithm
called Max-Min Parents and Children (MMPC). The Max-Min
part of the algorithm name refers to the heuristic the algorithm
uses, while the parents and children part refers to its output
[13].

MMPC focuses on learning substructures around each vari-
able. It is invoked by each variable of the network, referred
to as t, in order to identify the existence of edges to and from
that variable, and to discover the structure of the network.
Similarly to PC, this algorithm starts with a fully connected
graph and exploits two heuristics to discover the dependencies.
The first phase, which is referred to as the forward phase,
incrementally discovers edges using the Max-Min heuristic.
The Max-Min heuristic selects the variable that maximizes the
minimum association with a selected variable relative to the
so far learned graph. It uses the function Assoc(x, t|Z) which



measures the strength of dependency between x and t given a
set of variables Z. As mentioned in [12], the justification for
the Max-Min heuristic is to select the variable that remains
dependent even after conditioning all the subsets of the so
far discovered network. The second phase removes the false
positives that might have been entered in the first phase by
running conditional independence tests on x and t given any
subset of the learned graph.

The mutual information existing between the output values
of the two services is used as the criteria evaluating the
strength of the association. The MinAssoc function determines
the minimum dependency achieved between x and t over all
the subsets of the variables discovered.

The modified MMPC algorithm is presented in Algorithm 2.
The function Ind(X;T—Z) return true if x and t are condition-
ally independent given Z. As for the modified PC algorithm,
the Check Splits function is used to discover the split-ands
or split-ors of the workflow graph. The MaxMinHeuristic
function is modified so that if two x variables are equally
mutually informative, the one which is closer in time to the
selected t is chosen as the variable representing the maximum
association.

Algorithm 2 Modified MMPC Algorithm
function MODIFIED MMPC(t,D)

Input: target variable t, data D
Output: parents and children of t
G = 0
repeat

<F, assoF> = MaxMinHeuristic(t, G)
if assocF<>0 then

G = G ∪ F
end if

until G has not change
for all x ∈ G do

if ∃S ⊂ Gs.t.Ind(x, t | S) then
if Check Same Info(x, t, s) then

if time difference(x, t)>time difference(t, S) then
G = G \ {s}

else
G = G \ {x}
G = G ∪ {s}

end if
end if

end if
end for
return G

end function
function MAXMINHEURISTIC(t,G)

Input: variable t, subset of variables G
Output: maximum over all variables of the min association with t relative to G,

and variable that achieves the maximum
assocf = max x ∈ v MinAssoc(x, t|G) if !Check Splits(x, t)
f = arg max x ∈ v MinAssoc(x, t|G)
return <f, assocf>

end function

III. IMPLEMENTATION

In order to perform real world and valuable experiments,
Taverna (version 2.1) [17] was selected as a practical prove-
nance system and was expanded to incorporate the addi-
tional features required for our experiments. Taverna does
not record timing information such as start or execution time
of services during workflow runs. Since Taverna does not
record non-functional specifications of web services, Taverna’s

Fig. 1: Implementation Model

provenance data model was changed to allow the storage of
the QoS values of services. A QoS tracker was added to
Taverna to record the QoS specifications of the WSDL services
imported by Taverna. The QoS recorder exploits WebInject
[18], a tool for automated testing of web applications and
web services, to monitor the services. Transaction monitors
are set up for service-level monitoring of response time and
availability of web services. Apart from these parameters, the
QoS tracker also keeps track of the execution time and status
of execution of services. The conditional independence test
from the “bnlearn” library of the R [19] package was exploited
to discover the causal dependencies between services. The
“Rserve” [20] server creates the facility to connect to R
libraries through our application.

An overview of the implementation model is shown in
Figure 1. At the beginning, a workflow is created by Taverna.
The related services are added to WebInject to record QoS
parameters such as timing information. Every time a workflow
instance is run, the data regarding the functional aspects of
the workflow is generated by the Taverna system while the
QoS values are produced by WebInject. All this information
is stored into the provenance store and is exploited later
by the modified PC and MMPC algorithms for the learning
of the workflow structure. These algorithms use R libraries
through Rserve to assess the conditional independence tests
and discover the causal relationships.

IV. CASE STUDY AND PERFORMANCE EVALUATION

A. Three Scenarios

In order to observe the performance of the modified al-
gorithms, 3 different workflow scenarios were considered and
tested. The first one consists of a sequential workflow scenario
that does not satisfy the faithfulness condition, the second one
contains a parallel workflow structure, and the third includes
a complex scenario composing of two split constructs.

The web services used by the three scenarios were selected
randomly from different service providers and were placed



Fig. 2: Case Study 1: a sequential workflow scenario

together as a workflow in Taverna. Having executed the
workflows for multiple times, a dataset of 10,000 rows was
created for the experiments.

1) Case 1: The first scenario is a completely
sequential workflow consisting of 4 web services of
“WhatisMyIP”, “GetCity”, “WhatsWeather”, “GetWeather”.
The “WhatisMyIP” service finds the IP of the customer,
sends it to the “GetCity” service, which finds the city
based on the IP address. The city name is passed to the
“GetWeather” service and the weather forecast of the city is
predicted. Having the forecast, the forecast image is shown
to the workflow user presenting the weather condition for his
location. Figure 2 shows the structure of the workflow as well
as the experimental results. As can be seen from the figure,
the original “PC” and “MMPC” algorithms discover some
of the edges, while the modified PC and MMPC algorithms
discover the complete workflow graph even though the data
for this scenario does not satisfy the faithfulness condition.

2) Case 2: The next workflow scenario includes four
services, two being run in parallel. Figure 3 shows the scenario
along with the results of the Bayesian structure learning
algorithms. As can be seen from the figure, the original PC and
MMPC algorithms can not find the complete parallel structure.
This is due to the lack of the faithfulness condition in the
structure of the workflow scenario graph. The “productID”,
“salePrice”, and “AveragePrice” mutually provide the same
information, thus the original PC and MMPC algorithms find
the two services of “SalePrice” and “AveragePrice” indepen-
dent given the “ProductID”. These issues have been resolved
with the modified algorithms by the two added functions. The
modified algorithms discover the two services of “SalePrice”
and “StockPrice” as parallel, and thus, they are removed from
the each other’s conditional sets. Thus, the complete structure
is discovered via these modified approaches.

3) Case 3: As for the third scenario, three separate rel-
evant workflows were considered and the structure learning
algorithms were used to discover the graph policy from these
workflows. The scenario involves services for receiving and
delivering an order in case of a valid credit card payment as
well as the availability of the product. Figure 4 shows the
three paths that can be taken based on the service outputs.
In this scenario, the distinguishable difference between the
performances of the modified algorithms versus the original
algorithms shows the effects the modifications have had on
the extraction of more accurate graphs. This scenario includes
a split-or, a split-and and a join. The original algorithms can

Fig. 3: Case Study 2: workflow with parallel parts

Fig. 4: Case Study 3: more complicated scenario

not extract many of the edges due to the large dependencies
that exist within the service data. Figures 5 and 6 display
the results of the modified algorithms as well as the original
algorithms.

B. Experimental Results

We evaluated the performance of the modified algorithms
with regards to execution time. The original algorithms of PC
and MMPC were compared with the modified ones in terms
of workflow sizes and execution time. For the experiments,
data values of sequential workflows of sizes 5 to 25, with
increments of 5, were randomly generated. The experiments
were done 10 times on different datasets. As can be seen
from the graph shown in Figures 7 and 8, the modified
algorithms have a steeper slope with the PC algorithm having

Fig. 5: Case Study 3: workflow of Modified PC and MMPC



Fig. 6: Case Study 3: workflow of PC and MMPC

Fig. 7: Performance of MMPC and modified MMPC

Fig. 8: Performance of PC and modified PC

the better performance overall. The modified PC and MMPC
algorithms consume more time since the Check Same Info
and Check Mutual functions increase the number of condi-
tional independence tests the original algorithms use. The
MMPC algorithm uses more conditional tests compared to PC
since both the forward and backward phases, perform tests of
independency.

V. CONCLUSION

In this paper, we exploited constraint-based Bayesian struc-
ture learning algorithms to extract the structure of workflows
from provenance data. The output values of services were used
to discover the data flow between services along with timing
information to provide control flow information. Provenance
information was used since it provides the appropriate amount
of data gathered over time, and therefore, makes it suitable

for learning. The two algorithms of PC and MMPC were
modified in order to better discover the workflow models of
the scenarios which do not support the faithfulness condition.
PC, MMPC and the modified algorithms were assessed using 3
different scenarios. As the results presented, despite of the fact
that some workflow scenarios might not follow the faithfulness
condition, the changes applied to both algorithms (PC and
MMPC) provide complete and robust structures. The benefit
of mining accurate workflow structures comes at the price of
higher execution times. Both modified algorithms take longer
to find the correct workflow structure.
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