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ABSTRACT
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform in-
dependent computations at different positions simultaneously. Hence, these algorithms lend themselves well 
to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a 
recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the 
parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The 
authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on 
the speedup obtained on different benchmark functions for increasing problem dimensions.
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1. INTRODUCTION

Optimization is the process for searching for the best solution from a set of feasible solutions for 
a given problem with a set of constraints. Real world optimization problems can be challeng-
ing, apart from being highly complex and time consuming to solve, a given problem’s objec-
tive function may also be non-continuous and non-differentiable, which adds another layer of 
complexity. These real world optimization problems are ubiquitously found in various scientific 
and engineering domains.

For solving complex real world problems, researchers have been looking into optimization 
techniques inspired by natural processes such as Darwinian evolution, social group behavior 
and foraging strategies. Over the past few decades a significant growth in the field of nature-
inspired optimization algorithms has been seen. There are two main categories of algorithms: 
evolutionary computing methods and swarm intelligence algorithms.
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The common idea underlying evolutionary algorithms is that given a population of individu-
als, natural selection (biologically referred to as survival of the fittest) is used to improve the 
fitness of the overall population. Given a function to be maximized, a set of candidate solutions 
is randomly created and the fitness function used as a fitness measure (the higher the better) 
is applied. Based on this fitness measure, some of the better candidates are chosen to undergo 
recombination and mutation. Recombination is applied to two candidates and results in one or 
more new candidates, whereas mutation is only applied to one candidate and results in one new 
candidate. After recombination and mutation are applied a set of new candidates replace the old 
ones and the next generation begins. This process is iterated until a candidate with sufficient 
quality is found or a predefined number of iterations is reached (Eiben, 2003).

Swarm intelligence is characterized by the collective behavior of decentralized, self-organized 
systems that are typically made up of a population of simple agents interacting locally with one 
another and with their environment (Beni & Wang, 1989). The behavior of swarm optimization 
can be envisioned by comparing it to swarms searching for optimal food sources, where the 
direction in which each individual is influenced is its current movement, the best food source 
it ever experienced, and the best food source any individual in the swarm ever experienced.

There are several different algorithms that fall into the swarm intelligence category. The most 
famous algorithm is the Particle Swarm Optimization (PSO) algorithm (Eberhart & Kennedy, 
1995). The PSO algorithm searches for the best solution by keeping track of the best solution of 
each particle and weighing this with the best solution of the swarm. Another well-known algo-
rithm is the Ant Colony Optimization (ACO) algorithm (Dorigo, Maniezzo, & Colorni, 1996), 
which uses the interaction of ants. Similarly, the cuckoo search (Gandomi, Yang, & Alavi, 2013) 
uses the brooding parasitism of cuckoos, and the bat algorithm (Yang & Gandomi, 2012) uses 
the echolocation of foraging bats, whereas the bee algorithm (Yang, 2005) uses the foraging 
behavior of honeybees. Another algorithm that belongs to the swarm intelligence family is the 
Firefly algorithm (Yang, 2009). The algorithm is inspired by the flashing behavior of fireflies. 
The primary purpose for a firefly’s flash is to act as a signal system to attract other fireflies.

FireWorks Algorithm (FWA) (Tan & Zhu, 2010) is a recently developed swarm intelligence 
algorithm. It tries to simulate the firework explosion process to find the optimal solution in the 
search space. A firework is an initial location, which produces sparks (adjacent locations) through 
a series of explosions. It was reported in (Tan & Zhu, 2010) that FWA significantly outperforms 
Standard Particle Swarm Optimization (SPSO) and Clonal PSO (Tan & Xiao, 2007). FWA and 
its variants (Zheng, Xu, & Ling, 2012) have been studied and evaluated on both single and multi-
objective optimization problems (Zheng, Song, & Chen, 2013). FWA has also been successfully 
applied to many real life optimization problems (Janecek & Tan, 2011).

Its initial success notwithstanding, FWA has its own drawbacks. It tends to do poorly on 
shifted functions, and has a high computational cost relative to other swarm intelligence algo-
rithms. Enhanced FireWorks Algorithm (EFWA) is an improved version of FWA proposed in 
(Zheng, Janecek, & Tang, 2013) that tries to overcome its shortcomings, and has shown promising 
results. EFWA brings down the computational cost of FWA and at the same time outperforms 
FWA significantly.

In this paper, we introduce a parallel version of the EFWA algorithm and evaluation the 
implementation with a scalability analysis using different benchmark functions and multiple di-
mensions. The implementation makes use of the MapReduce paradigm that allows the algorithm 
to scale to thousands of computers. We will evaluate the MapReduce implementation using an 
available infrastructure that provides us with the necessary computing power. Furthermore, a 
comparison with a MapReduce PSO implementation is conducted.
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The rest of this paper is organized as follows. Section 2 describes related work done over 
the past few years that improved the FWA algorithm. In Section 3, we describe our MapReduce-
based implementation of the EFWA algorithm. Section 4 describes the experimental setup and 
shows the results obtained, and Section 5 concludes with our findings.

2. RELATED WORK

2.1. Fireworks Algorithm

FWA (Tan & Zhu, 2010) steers the search towards the optimal solution through the generation 
of sparks (new locations) about a firework (initial location), similar to an actual firework explo-
sion. Each randomly initialized firework is allowed to explode, generating a number of explosion 
sparks, which along with the parent firework, act as search agents. The explosion is characterized 
by an amplitude disturbance in selected dimensions for every firework. The amplitude is calcu-
lated for every thi  firework separately as:
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ix , and miny  and maxy  are the best and the worst fitness values so far, respectively. ε  is a very 
small number used to avoid the division-by-zero error. It is quite explicit that a better firework 
will generate more sparks but with smaller amplitude disturbances. The number of sparks gen-
erated is bounded by certain restrictions. Afterwards, the sparks (new locations) are generated 
for each firework according to Algorithm 1.

Then, another type of spark, namely the Gaussian spark, is generated using the parent fire-
works according to Algorithm 2.

All the sparks are then evaluated and the ones deemed fit (depends upon the selection model 
used), are promoted to generate the next round of sparks. FWA is summarized in Algorithm 3.

2.2. GPU-Based Fireworks Algorithm

Graphical Processing Unit (GPU), as the name characterizes, is an electronic unit originally built 
to accelerate the rendering of images on visual devices and acted as a helper for a CPU (Central 
Processing Unit). Recently, GPUs are beginning to be used for general purpose computing and 
the trend has shown rise in popularity (Owens et al., 2007). At the same time, programming 
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GPUs for general-purpose tasks requires learning new interfaces provided by the manufacturer. 
Programming GPUs for general purpose computing may become a challenge if suitable APIs 
are not provided concerning the task at hand. Recently, better APIs are being made available for 
easy programmability (Veronese & Krohling, 2009; Wong, Wong, & Fok, 2005).

Swarm intelligence algorithms, though inherently parallel, have to be modified if they are 
to leverage the full power of GPUs. Hence, to use the capabilities of GPUs, the algorithm has 
to be refashioned significantly. In (Ding, Zheng, & Tan, 2013), the authors introduced a GPU 
based parallel FWA algorithm and implemented it on NVIDIA’s Computing Unified Device 
Architecture (CUDA) platform, which is a high level general purpose programming model. The 
authors refashioned the conventional FWA to suit the GPU architecture and called it GPU-FWA, 
and in addition, introduced and used the attract-repulse mutation for the generation of Gaussian 
sparks instead of the one used in conventional FWA:

( )  k k k k
i i i bestF F F F e= + − × 	 (3)

Algorithm 1. Explosion sparks generation in FWA

Algorithm 2. Gaussian sparks generation in FWA
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where iF  and bestF  are the current and best firework respectively, and e  is a random number 
drawn from the Gaussian distribution with mean 0 and standard deviation 1. According to Ding, 
Zheng, & Tan (2013), this approach balances both exploration and exploitation. This approach 
is quite similar to the Gaussian mutation scheme of EFWA.

To make FWA more suited to the GPU architecture, some changes were proposed by the 
authors. GPU-FWA was designed to make every firework generate a fixed number of sparks, 
m, differing from FWA, where the number of sparks generated by a firework is dependent on 
its fitness value. It is worth recalling that in FWA a better firework would generate more sparks 
than worse ones. The fixed number of sparks, m, is determined by the GPU architecture, and the 
authors argue that this scheme is more suitable for parallel implementation as it offsets the extra 
synchronization overhead. Authors refer to this overhead as the dynamic computational load for 
determining the number of sparks for each firework, which would require access to other fireworks 
and their respective sparks. In GPU-FWA, fireworks do not exchange information during every 
explosion. This exchange of information requires explicit synchronization and results in another 
computing overhead. Fireworks are allowed to explode without exchanging information for a 
certain number of iterations. Thus, by restricting global communications between the sparks and 
keeping the number of generated sparks fixed, GPU-FWA tries to avoid the related overheads 
and thereby increasing the speedup. GPU-FWA is summarized in Algorithm 4.

GPU-FWA was evaluated against FWA and PSO on its speed up capability and solution qual-
ity. The authors conducted the experiments on eight well known benchmark functions, utilizing 
multiple initial swarm sizes. The swarm sizes chosen were dependent on the GPU architecture. 
In the experimentation, GeForce 560 Ti GPU with 12 CUDA cores was used. Hence, the initial 
number of fireworks or swarm size chosen, to compare the solution quality, was 12×4=48, which 
was large enough to avoid compute cycle wastage. For a comparison of the speedup of GPU-FWA 
against FWA and PSO, swarm sizes were 48, 72, 96, and 144, respectively. The same number of 
function evaluations was executed for all three compared algorithms.

GPU-FWA was reported to have outperformed FWA and PSO in solution quality and obtained 
a speedup of 160 and 200 compared to conventional FWA and PSO, respectively. GPU-FWA 
also proved to be more scalable than its counterpart GPU-PSO.

Algorithm 3. Pseudo-code for Fireworks Algorithm (FWA)
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2.3. MapReduce-based Nature-inspired Algorithms

Since the aim of this paper is to parallelize the EFWA algorithm using MapReduce, related work 
in which evolutionary computation or swarm intelligence approaches were parallelized using 
MapReduce are reviewed.

A Genetic Algorithm (GA) was first implemented with the MapReduce framework in (Jin, 
2008) featuring a hierarchical reduction phase. This hierarchical reduction phase allows speed-
ing up the computation by extending MapReduce. The extension is done by adding a second 
reduce phase and a special optimization on the merge phase. This allows the GA to be executed 
very efficiently.

Another MapReduce-enabled GA was introduced in (Verma, 2009). The author investigated 
the convergence and scalability of the implementation on the BitCounting problem. Good speedup 
results were achieved even on small problems investigated.

A practical application of GA modeled with MapReduce was proposed in (Huang, 2010), 
where the authors implemented GA for job shop scheduling problems running experiments with 
various population sizes and on clusters of various sizes. The authors comment on the speedup 
results obtained with an evaluation of different shop scheduling benchmark problems.

The MapReduce model was applied to PSO and evaluated on a radial basis function as 
the benchmark (McNabb, 2007). The authors describe the details of the communication and 
synchronization involved and confirmed that their approach scaled well for optimizing data-
intensive functions. However, the authors comment that the MapReduce implementation applied 

Algorithm 4. GPU-FWA



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38   International Journal of Swarm Intelligence Research, 6(2), 32-51, April-June 2015

to easy benchmark functions is not appropriate since the parallelization overhead outweighs the 
speedup gain.

The authors proposed a MapReduce-based Ant Colony Optimization (ACO) approach in 
(Wu, 2012), and outlined the modeling with the MapReduce framework. The author argues that 
larger population sizes are necessary in order for the ACO approach to avoid local minima. The 
MapReduce implementation was evaluated on the Traveling Salesman Problem achieving good 
scalability.

The authors of this paper have experience in the parallelization of nature–inspired algorithms 
using the MapReduce framework. For example, in the clustering area three MapReduce-enabled 
algorithms were implemented, two using PSO (Aljarah and Ludwig, 2012) and (Aljarah and 
Ludwig, 2013), and the other using a Glowworm Swarm Optimization (GSO) approach (Al-
Madi, Aljarah & Ludwig, 2014). Furthermore, an overlay network optimization approach was 
parallelized using MapReduce (Ludwig, 2014) showing good scalability.

3. PROPOSED APPROACH: MAPREDUCE-ENABLED 
ENHANCED FIREWORK ALGORITHM (MR-EFWA)

3.1. Enhanced Firework Algorithm

In (Zheng, Janecek, & Tang, 2013), the authors discuss important shortcomings of FWA and 
propose improvements to overcome those. They introduce their new improved algorithm as 
Enhanced FireWorks Algorithm (EFWA). This improved version attacks the primary inherent 
shortcomings of FWA, which are:

•	 Poor performance on shifted functions.
•	 High computational cost per iteration as compared to other metaheuristic optimization 

algorithms.

EFWA effectively introduces the following changes to FWA:

•	 A minimal explosion amplitude check: According to Equation 1, a better firework would have 
a lesser amplitude and the best firework’s amplitude would almost be negligible limiting its 
search capability. Thus, a minimal amplitude was specified in EFWA that is reduced with 
increasing function evaluations. For every selected dimension k of firework i, the explosion 
amplitude is calculated as:
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where currFev  and  maxFev are the current and maximum number of function evaluations, re-
spectively.

•	 A new operator for explosion spark generation and a new mapping operator were introduced:

•	 A new operator for Gaussian spark generation was introduced, which is a new and relatively 
much less costly selection method:

This work primarily aims to leverage the inherent parallelism of EFWA as a swarm intel-
ligence algorithm. We investigate the scalability of EFWA employing the MapReduce framework 
as the platform. We call our algorithm MR-EFWA. This has an advantage of simplicity over 
GPU-FWA as the algorithm does not have to be redesigned as per GPU architecture. More details 
are given in the following section.

3.2. Enhanced Firework Algorithm Implementation Using MapReduce

Google introduced the MapReduce programming paradigm (Dean & Ghemawat, 2004) that has 
become very popular in recent years. It is being seen as the alternative for parallel data program-
ming compared to the Message Passing Methodology (MPI) (Snir, Otto, Huss-Lederman, Walker, 
& Dongarra, 1995). Besides Google’s implementation of MapReduce, there are several open 
source implementations available such as Apache Hadoop (Apache software foundation, 2011), 
and Disco (Disco mapreduce framework, 2011). These implementation frameworks contain a 
very scalable model that can be used across many computing nodes. The concept that MapRe-
duce employs is that it moves the processing to the data and processes data sequentially to avoid 
random access that requires expensive seek and disk throughput. Furthermore, the MapReduce 
model provides fault-tolerance and load balancing.

MapReduce technologies have been adopted by a number of groups in industry such as 
Facebook (Hadoop, 2011), Yahoo (Yahoo inc., 2011), etc. Researchers in academia are using 

Algorithm 5. Explosion spark generation in EFWA with the new mapping operator
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MapReduce for scientific computing in areas such as Bioinformatics (Gunarathne, Wu, Qiu, & 
Fox, 2010), and in the Geosciences (Krishnan, Baru, & Crosby, 2010).

The basic idea behind the MapReduce methodology is that the parallelization of a program 
is formulated as a functional abstraction using two main operations: Map and Reduce. The Map 
operation iterates over a large number of records and extracts interesting information from each 
record, and all values with the same key are sent to the same Reduce operation. The Reduce 
operation aggregates intermediate results with the same key that is generated by the Map opera-
tion and then generates the final results. The two operations are as follows:

Map Operation: Map(k,v) -> [(k’,v’)]
Reduce Operation: Reduce(k’,[v’]) -> [(k’,v’)]

Apache Hadoop [5] is a very popular open-source MapReduce implementation that supports 
the parallelization of applications. An implemented application can work with many thousands 
of computationally independent computers and petabytes of data. Apache Hadoop consists of 
the Hadoop Distributed File System (HDFS), which is the storage component, and MapReduce, 
which is the processing component. The HDFS provides high-throughput access to the data, while 
maintaining fault tolerance by creating multiple replicas of the target data blocks. MapReduce 
is designed to work with the HDFS to provide the ability to move computation to the data and 
not vice versa.

EFWA has been implemented with the Map and Reduce functions. The main EFWA code 
is run in the Map function, and the Reduce function aggregates the fitness values and emits the 
best value of the entire run. Algorithm 7 gives an account of the MapReduce implementation. 
The Main function first sets up the parameters necessary for executing the MapReduce job. The 
parameters include the number of mappers, number of reducers, input directory, and output direc-
tory. Then, the Hadoop framework starts the execution of the MapReduce job, which internally 
calls the Map and Reduce functions. In the Map function, the entire EFWA code is run and the 
best fitness is emitted. Depending on the n mappers specified, n Map functions emit the best 
fitness value of each run. In the Reduce function all fitness values are iterated over in order to 
identify the best fitness value of the entire run, which is then emitted.

Algorithm 6. Explosion spark generation in EFWA with the new mapping operator
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4. EXPERIMENTATION AND RESULTS

The experiments were conducted on the Rustler Hadoop cluster hosted by the Texas Advanced 
Computing Center (TACC)1. The TACC cluster consists of 66 nodes computing cluster for data 
intensive computing. Each node has dual eight core Ivy Bridge CPUs (Intel(R) Xeon(R) CPU 
E5-2650) running at 2.60GHz, with 128 GB DDR3 memory and 16 1TB SATA drives providing 
the backing for the HDFS file system. All nodes are connected via a 10 Gbps network. Hadoop 
version 0.21 is used for the MapReduce framework, and Java runtime 1.7 for the system imple-
mentation.

Four sets of experiments were performed. The first and second set investigates the effect 
of dimensionality using the Rosenbrock benchmark function measuring the execution time and 
speedup. The difference between the two sets of experiments is that in the first experiment the 
number of independent optimization runs were equal to the number of mappers used, whereas 
in the second experiment a constant number of independent optimization runs were executed on 
varying numbers of mappers. The third set of experiments executes 6 benchmark functions and 
investigates the execution time and speedup for a problem dimension of 30. The fourth set of 

Algorithm 7. MapReduce-enabled EFWA (MR-EFWA)
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experiments shows the execution time and speedup of a MapReduce PSO (MR-PSO) algorithm 
for the six benchmark functions using 30 dimensions.

The overall settings of EFWA that are the same throughout the different sets of experiments 
are as follows:

•	 Number of locations = 100
•	 Number of maximum sparks = 60
•	 Number of minimum sparks = 2
•	 Number of maximum amplitude = 40
•	 Number of Gaussian sparks = 5
•	 Number of function evaluations = 300,000

The benchmark functions that are used are shown in Table 1.
The first experiment investigates the execution times of the Rosenbrock function for three 

different dimensions (30, 60, and 90) using different numbers of mappers. The number of reduc-
ers is set to 1 for all experiments. Basically, in this experiment one EFWA optimization run is 
executed in one mapper. What can be seen from by the results listed in Table 2 is that we observe 
a constant execution time for each of the three dimensions with dim = 90 having, as expected, 
the largest execution time. Running the optimization of the benchmark function on 450 and 
500 nodes shows slightly shorter execution times. It seems that the utilization of the Hadoop 
framework improves with larger number of nodes used.

The results of the second set of experiments are shown in Figures 1-3 using Rosenbrock 
for dimensionality of 30, 60, and 90, respectively. For these experiments the number of EFWA 
optimization runs are 500, which are spread over the different number of mappers used. Figure 
1 shows the execution time exponentially decreasing with increasing number of mappers used, 
and the speedup increases linearly. The speedup is calculated with the execution time of using 
2 mappers and 1 reducer as the base. What we can see is a linear trend achieving a speedup of 
around 58 for 500 mappers used.

Figure 2 shows the execution time in seconds and the speedup for Rosenbrock using 60 
dimensions. We observe similar time and speedup graphs, however, with the higher dimension-
ality we see larger execution times compared to dim=30 and slightly lesser speedup (achieving 
a speedup of 50 when 500 mappers are used).

Figure 3 shows the results for the optimization of Rosenbrock for dimension 90. Again, 
the execution time is longer and the speedup is smaller compared to 60 and 30 dimensions. A 
speedup of 45 is achieved when 500 mappers are used.

Table 1. Benchmark functions

Benchmark Function Range Dimension Opt. f(x)

F1 Sphere [±100] 30 0.0

F2 Schwefel [±100] 30 0.0

F3 Gen. Rosenbrock [±30] 30, 60, 90 0.0

F4 Ackley [±32] 30 0.0

F5 Gen. Griewank [±600] 30 0.0

F6 Gen. Rastrigin [±5.12] 30 0.0
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The third set of experiments use the 6 benchmark functions outlined in Table 1. In these 
experiments, 300 independent EFWA optimization runs were executed on 100, 200, and 300 
mappers, respectively. Figure 4 shows the results in terms of execution time in seconds (on the 
left) and speedup (on the right). Comparing the different benchmark functions we observe that 
F1 executes the fastest followed by F2, F3, and F5. The largest execution times are measured 
on F4 and F6. The speedup results show that F4 scales best achieving a speedup of 76, whereas 
F1 and F2 scale worst.

In (Ding, Zheng, & Tan, 2013), the authors compared their GPU-EFWA with a GPU-enabled 
PSO algorithm, and therefore, this paper has also implemented a MapReduce-based PSO (MR-
PSO) algorithm in order to compare MR-EFWA with. Thus, the fourth set of experiments use 
the 6 benchmark functions outlined in Table 1 evaluating the MR-PSO algorithm. Similar to the 
third set of experiments, 300 independent PSO optimization runs were executed on 100, 200, 
and 300 mappers, respectively.

Figure 5 shows the execution time in seconds (on the left) and the speedup results (on the 
right). Comparing the different benchmark functions we observe that F1 executes the fastest 
followed by F6, F3, and F4. The largest execution times are measured on F5. F3 shows the best 
scalability results achieving a speedup of 63, whereas F1 and F2 scale worst.

Comparing MR-PSO (Figure 5) with MR-EFWA (Figure 4), both similarities but also differ-
ences can be observed. Overall, even though the execution times of F1 and F2 are comparable, 
however those for F3-F6 are quite different. This implies that the optimization for both, EFWA 
and PSO, operate differently and the parallelization is used differently.

Furthermore, MR-EFWA achieves better speedup results (best: 76) compared to MR-PSO 
(best: 63). This implies that the utilization of the MapReduce framework is better for the MR-
EFWA algorithm. Thus, this concurs with the findings in (Ding, Zheng, & Tan, 2013) where the 
same result was found.

Table 2. Time results in seconds for Rosenbrock on dim = 30, 60, and 90 using different number 
of mappers (M) and equal number of optimization runs

M Time in seconds

Dim = 30 Dim = 60 Dim = 90

50 94 151 218

100 93 153 215

150 95 154 218

200 96 155 212

250 98 159 210

300 97 168 208

350 97 159 222

400 92 155 209

450 86 125 211

500 88 123 202
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Figure 1. Time and Speedup versus number of mappers for dim = 30



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Swarm Intelligence Research, 6(2), 32-51, April-June 2015   45

Figure 2. Time and Speedup versus number of mappers for dim = 60
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Figure 3. Time and speedup versus number of mappers for dim = 90
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5. CONCLUSION

This paper presents a scalability analysis of the Enhanced Fireworks Algorithm (EFWA), an 
improved version of the original Fireworks algorithm by introducing a parallel implementation 
of EFWA. We employed the MapReduce framework to investigate the scalability of our imple-
mented MR-EFWA for different benchmark functions with different dimensions.

From the different experiments conducted we can see that our MR-EFWA implementation 
scales very well achieving good speedup values. The highest speedup that was achieved was 77 
for the Rosenbrock function when 300 independent EFWA optimization runs were executed. 
When 500 independent runs were used, a speedup of 58 was achieved as on the Rosenbrock 

Figure 4. Time and speedup for six functions for different numbers of mappers
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function. Furthermore, given the difficulty of the optimization functions used, the speedup values 
vary. The more difficult the optimization function is, the better speedup values can be achieved. 
In addition, a comparison with a MapReduce PSO (MR-PSO) algorithm demonstrated that the 
MapReduce framework is better utilized by the MR-EFWA algorithm. This finding concurs with 
the finding of the GPU-based implementation versus the PSO-based implementation in (Ding, 
Zheng, Tan, 2013).

Even though FWA has been parallelized before using a GPU architecture achieving speedup 
values of 250 on some benchmark functions, however, first of all the basic FWA was used 
(EFWA has shown an improved execution time compared to FWA), and secondly, a different 
architecture (GPU) was used. These two facts make a direct comparison impossible. However, 
the benefit of using the MapReduce concept is that commodity hardware can be used to execute 

Figure 5. Time and speedup for six functions for different numbers of mappers
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MapReduce-enabled applications, which makes the execution more affordable. Secondly, fault-
tolerance and load-balancing is already implemented within the framework, whereas for the GPU 
implementation this needs to be explicitly programmed. Thirdly, the implementation using the 
MapReduce concept is easy and straightforward.

Future work will investigate the effect of other parameters settings such as larger numbers 
of sparks (normal and Gaussian) on the execution time. Moreover, in this paper we kept the 
number of function evaluations constant, however, the effect of different numbers of function 
evaluations should be investigated.
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