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Abstract—The need to deduce interesting and valuable
information from large, complex, information-rich data sets
is common to many research fields. Rule discovery or rule
mining uses a set of IF-THEN rules to classify a class
or category in a comprehensible way. Besides the classical
approaches, many rule mining approaches use biologically-
inspired algorithms such as evolutionary algorithms and swarm
intelligence approaches. In this paper, a Particle Swarm Op-
timization based discrete classification implementation with
a local search strategy (DPSO-LS) was devised and applied
to discrete data. In addition, a fuzzy DPSO-LS (FDPSO-LS)
classifier is proposed for both discrete and continuous data in
order to manage imprecision and uncertainty. Experimental
results reveal that DPSO-LS and FDPSO-LS outperform other
classification methods in most cases based on rule size, True
Positive Rate (TPR), False Positive Rate (FPR), and precision,
showing slightly improved results for FDPSO-LS.

Keywords-Fuzzy rule-based classification system, Pittsburgh
approach, particle swarm optimization, local strategy

I. INTRODUCTION

In this current information age, a tremendous expansion
in the volume of data is seen that is being generated and
stored. The need to understand large, complex, information-
rich data sets is common to all fields of studies. Given this
tremendous amount of data, efficient and effective tools need
to be available to analyze and reveal valuable knowledge that
is hidden. The objective of the field of knowledge discovery
and data mining is the discovery of knowledge that is not
only correct, but also comprehensible.

The two primary goals of data mining can be classified
as prediction and description [1]. Prediction involves using
some features or fields of the data set to predict unknown
or future values of interest, whereas description focuses on
finding patterns describing the data that can be interpreted by
humans. Several data mining techniques using prediction and
description have emerged that include classification, cluster-
ing, regression, dependence modeling, etc. The classification
technique is used to discover a predictive learning function
that classifies a data item into several predefined classes. It
is also known as supervised classification, whereby given
class labels are ordered to objects in the data collection. In
general, classification approaches use a training set in which
all objects are already associated with their corresponding

class labels. The classification algorithm then learns from
the training set data and builds a model. This model is then
used to classify unseen data and to assign a class label to
each data item.

Rule discovery is an important classification method that
has been attracting a significant amount of researchers in
recent years. It uses a set of IF-THEN rules to classify a class
or category in a natural way. A rule consists of antecedents
and a consequent. The antecedents of the rule consist of a
set of attribute values and the consequent of the rule is the
class which is predicted by that rule.

Frequently used classification methods include decision
trees, neural network, and naive Bayes classification, etc. [2].
Decision trees specify the sequences of decisions that need
to be made accompanied by the resulting recommendation.
Typically, a decision-tree learning approach uses a top-down
strategy. Information gain was introduced as a “goodness”
criterion first in a decision tree algorithm known as ID3 [3].
However, since then, ID3 has been further improved and is
now known as C4.5 [4]. These improvements include meth-
ods for dealing with numeric attributes, missing values, and
noisy data. Neural networks is another method frequently
used in data mining. It is a black box system with layers
of neurons that learn the task by applying input and output
values. Neural networks are seen as data driven self-adaptive
methods. They can adjust themselves to the data without
any explicit specification of the underlying model [5]. Naive
Bayes learning is one particular strategy belonging to the
category of neural networks. It is a statistical method for
classification, which is based on applying the Bayes theorem
with naive independence assumption [6].

Fuzzy logic can improve the classification system by using
fuzzy sets to define overlapping class definitions [7]. The
interpretability of the results can be improved and more
insight into the classifier structure and decision making
process is provided by the application of fuzzy IF-THEN
rules [8]. Fuzzy rules are linguistic IF-THEN constructs that
have the general form “IF A THEN C”, where A and C
are collections of propositions and postpositions containing
linguistic variables. A is called the antecedent, and C is
the consequent of the rule. In effect, the tolerance for
imprecision and uncertainty is exploited through granulation



in soft data compression by using linguistic variables and
fuzzy IF-THEN rules [8]. In this respect, fuzzy logic has
the feature of mimicking the essential ability of the human
mind to summarize data and focus on decision-relevant
information.

In a more explicit form, the ith rule has the following
form:

IF xi1 ∈ Am
1 AND .. AND xij ∈ An

j THEN ci ∈ Ck
i (1)

where xij denotes the jth attribute of the ith rule. Am
j

denotes the mth antecedent value of the jth attribute. ci is
the consequent of the ith rule.

Due to its simplicity and capability, Particle Swarm Op-
timization (PSO) is a biology-inspired algorithm which has
been widely applied in different areas. This paper proposes
a discrete particle swarm optimization with a local strategy
(DPSO-LS) for solving the classification problem. The local
search strategy helps to overcome local optima in order
to improve the solution quality. The DPSO-LS uses the
Pittsburgh approach whereby a rule base is used to represent
a ‘particle’. Furthermore, since the DPSO-LS can only be
applied on discrete data, an additional classifier called Fuzzy
DPSO-LS (FDPSO-LS) classifier is implemented on both
discrete and continuous data to tolerate imprecision and
uncertainty. This paper is an extension of [9] whereby the
FDPSO-LS algorithm is proposed and evaluated.

The remainder of the paper is arranged as follows. Section
II describes related work. The proposed two approaches
DPSO-LS and FDPSO-LS are introduced in Section III. The
experimental setup and results of the two approaches are
demonstrated in Section IV. Finally, conclusions and future
work are discussed in Section V.

II. RELATED WORK

Related work in classification rule mining using biology-
inspired algorithms mainly include evolutionary algorithms
and swarm intelligence approaches. Genetic algorithm (GA)
based concept learning uses either the Pittsburgh approach
or the Michigan approach [10]. For the Pittsburgh approach,
every individual in the GA is a set of rules that represents
a complete solution to the learning problem. For the Michi-
gan approach, each individual represents a single rule that
provides only a partial solution to the overall learning task.

GA-based concept learning has been widely used for
rule mining. In [10], a GA-based algorithm is proposed to
discover comprehensive IF-THEN rules. It uses a flexible
chromosome encoding where each chromosome corresponds
to a classification rule. In addition, a hybrid decision tree/-
genetic algorithm is used to discover small disjunct rules in
[11]. A decision-tree algorithm is used to classify examples
belonging to large disjuncts, while a new GA is designed
for classifying examples belonging to small disjuncts.

Evolutionary approaches for automated discovery of cen-
sored production rules, augmented production rules and

comprehensible decision rules are introduced in [12], [13],
[14], respectively. The proposed GA-based approaches, sim-
ilarly, use a flexible chromosome encoding, where each
chromosome corresponds to an augmented production rule,
a comprehensible decision rule or a censored production
rule. An Evolutionary Multiobjective Optimization (EMO)
algorithm is used to search for a large number of non-
dominated fuzzy rule-based classifiers in [15].

With regards to swarm intelligence approaches, a classifi-
cation algorithm called Ant-Miner, first introduced in [16],
has been successfully applied to rule classification problems.
PSO is another approach inspired by nature. However, most
of the swarm intelligence algorithms for rule classification
are based on the Michigan approach ([17], [18]).

Related work in fuzzy classification rule mining using
the biology-inspired algorithms mainly include evolutionary
algorithms and swarm intelligence approaches. GA is a
popular evolutionary algorithm, which has been employed
for the learning of fuzzy rules. GAs have been applied to
learn both antecedent and consequent of fixed or varying
number of fuzzy rules [19], [20], [21]. Also, GAs have been
combined with other techniques like neural networks [22],
Kalman filters [23], hill climbing [24], and fuzzy clustering
[22]. EMO algorithms, which generate a family of equally
valid solutions, have been introduced in [25].

Ant Colony Optimization (ACO), one of the swarm in-
telligence techniques, has been successfully used to extract
rule based classification systems. In [26], ACO is used to
extract fuzzy IF-THEN rules for the diagnosis of diabetes.
A combination of ACO and fuzzy set theory, named FACO-
Miner, is applied to learn a set of fuzzy rules from labeled
data in a parallel manner in [27]. An improved ACO
technique using fuzzy inference rules is applied to image
classification and analysis in [28].

With respect to PSO, a Pittsburgh-based PSO fuzzy
system for knowledge acquisition is introduced in [29]. A
modified PSO, called Mutation PSO (MPSO), is built and
used to obtain an optimal fuzzy rule-base. The algorithm
generated a compact fuzzy rule base that works efficiently
for medical diagnosis problems [30]. In [31], a case study of
intrusion detection using a PSO approach for evolutionary
fuzzy rule learning is proposed. It is capable of detecting
known intrusive behavior in a computer network with an
acceptable performance.

PSO has been proven to be able to achieve a faster
convergence than the GA algorithm [29]. It has been ex-
perimentally shown that the PSO algorithm scales well and
is not highly sensitive to the population size [29]. As far
as the authors’ knowledge is concerned, due to the lack of
flexibility of the Pittsburgh approach [32], the Pittsburgh-
based PSO algorithm on rule classification is rarely used in
literature. On the other hand, in order to avoid premature
convergence of particles, the Michigan approach usually
requires some changes in the definition of the PSO algorithm



to repel a particle from its neighbor [32]. In addition, the
Michigan approach aims to optimize each rule’s quality
individually, and does not take the interaction between other
rules into account [17]. In [29], the knowledge acquisition
with a Pittsburgh-based swarm-intelligence approach is in-
troduced. A learning strategy of a fuzzy-rule-based meta-
scheduler is analyzed and compared with other scheduling
strategies. In our study, similarly, we propose a Pittsburgh-
based swarm-intelligence method, however, we improve the
classification by applying a local strategy to address PSO’s
convergences problem. Furthermore, in order for the method
to handle imprecision and vagueness in data sets fuzzy logic
is employed.

III. PROPOSED APPROACHES

Two classifiers are proposed and investigated: a DPSO-
LS classifier and a fuzzy DPSO-LS classifier (abbreviated as
FDPSO-LS). The DPSO-LS classifier is designed to classify
discrete data sets. As we have mentioned above, the use of
linguistic variables and fuzzy IF-THEN rules exploits the
tolerance for imprecision and uncertainty. In this respect,
we extend the DPSO-LS classifier to a fuzzy DPSO-LS
(FDPSO-LS) classifier, which can classify both discrete and
continuous data sets. In this section, we first describe the
DPSO-LS algorithm followed by a detailed description of
the FDPSO-LS classifier.

A. Discrete Particle Swarm Optimization with Local Strat-
egy (DPSO-LS)

PSO was introduced by Eberhart and Kennedy [33] and
is based on the analogy of the behavior of flocks of birds or
schools of fish. Although the PSO algorithm was proposed
for continuous space problems, however, many real-world
datasets use categorical data, and therefore, we considered
this within our classification task formulation. In classi-
cal PSO, swarm individuals are called particles, and the
population is called the swarm. Each particle has its own
position, velocity and historical information. The particles
fly through the search space by using their own as well as
their neighbors’ historical information to steer toward the
local or global optima.

In particular, a discrete PSO approach (DPSO-LS) for the
classification rule mining problem is proposed. A Rule Base
(RB) as a whole represents a ‘particle’. Each RB is denoted
as a matrix, where each row describes a classification rule.
The rules are IF-THEN rules consisting of conjunctive
antecedents and one consequent. Hence, the ith particle is
presented as follows:

Pi =


ai1,1 ai1,2 ... ai1,n ci1
ai2,1 ai2,2 ... ai2,n ci2
... ... ... ... ...
aim,1 aim,2 ... aim,n cim

 (2)

where aimn represents the nth antecedent in the mth rule
of the ith particle. cim is the mth consequent of the ith

particle. m is the number of rules, and n is the number of
antecedents. Thus, a particle consists of m rules, where each
rule has n antecedents and 1 consequent.

The values of every antecedent are enumerated consec-
utively starting from 1. In this work, an antecedent has 3
discrete values, it will be enumerated as {1, 2, 3}. In this
way, 0 means the antecedent is ignored. Thus, a rule with
all its antecedents having a value of 0 is not allowed. In
addition, the constraints of the swarm position updating
process need to be considered since the particle might fly
outside the solution space:

aij,k ∈ [0, NFin], j ∈ {1, 2, ...,m} (3)

k ∈ {1, 2, ..., n} (4)

cij ∈ [1, NFout] (5)

where NFin and NFout represent the number of discrete
values for an antecedent and a consequent, respectively. The
ith particle’s velocity matrix is denoted as follows:

Vi =


vi1,1 vi1,2 ... vi1,n vi1,n+1

vi2,1 vi2,2 ... vi2,n vi2,n+1

... ... ... ... ...
vim,1 vim,2 ... vim,n vim,n+1

 (6)

where vij,k ∈ [Vmin, Vmax], j ∈ {1, 2, ...,m}, and the
velocity matrix has the same dimension as the position ma-
trix. Vmin and Vmax are the minimum and maximum values
allowed for the velocity, respectively. More specifically, we
use a change vector ~Vi, which is the change vector for the
ith particle with the same dimension as the velocity matrix.

~Vi =


v̂i1,1 v̂i1,2 ... v̂i1,n v̂i1,n+1

v̂i2,1 vi2,2 ... vi2,n vi2,n+1

... ... ... ... ...
v̂im,1 v̂im,2 ... v̂im,n v̂im,n+1

 (7)

The values of ~Vi are randomly assigned to 1, 2 and 3,
where 1, 2 and 3 are denoted as three directions. 1 is
denoted as the direction of the particle’s movement from
the current position to the local best position (Pbest). 2 is
denoted as the direction of the particle’s movement from
the current position to the global best position (Gbest). 3
is denoted as the direction of the particle’s movement from
the current position to another position at random within a
specified range. The three directions are randomly assigned
by following the ratios ω1, ω2, and ω3 (ω1 < ω2 < ω3).
As shown in Equation 8, the sum of the ratios should be
equal to one. By adopting the concept of change vector, the
velocity of the particle can be updated by considering the
local best position, global best position and random changes.
Precisely, as shown in Equation 9, for the ith particle, V1(t)
is the difference between the local best position and the



current position, while ~Vi consist of 1s, and the rest of the
values in the matrix are set to 0. Similarly, V2(t) is the
difference between the global best position and the current
position, while ~Vi consist of 2s. Values of V3(t) are randomly
assigned within a specified range (see Equation 10), while
values of ~Vi consist of 3s at the same positions. ⊕ denotes
a matrix addition.

ω1 + ω2 + ω3 = 1 (8)

V (t+ 1) = V1(t)⊕ V2(t)⊕ V3(t) (9)

V3(t) ∈ [Vmin, Vmax] (10)

After the velocity has been calculated, the particle’s
position can be computed as follows:

P (t+ 1) = P (t)⊕ V (t+ 1) (11)

1) Definition of Overall Fitness: We propose a rule
selection method where the number of classification rules
included in each rule set is fixed to a predefined number.
That is, each rule set with a specific number of rules (a rule
base) is a particle. Thus, the overall fitness function of the
rule set can be defined as follows:

F (S) = Coverage =
NCP (S)

|S|
(12)

where NCP (S) is the number of instances that have been
correctly classified in the data set S, and |S| is the number
of instances in the data set S.

2) Local Mutation Strategy: Since PSO, in general, can
easily get stuck in local optima, a local strategy need to be
devised that is run after a certain number of iterations has
elapsed. In particular, the local strategy that was devised
for DPSO-LS makes use of mutation. The proposed local
strategy refines the worst rule of the best rule base, i.e.,
the global best position, in order to improve the overall
performance every 20 iterations. Thus, for each selected
worst rule, we mutate one value of the antecedent randomly
within the constraints to see whether it improves the overall
performance or not. If it improves the performance, we stop
and replace the worst rule with the new rule. Otherwise, we
continue mutating randomly until we have found a new rule
or until we have mutated a maximum of 10 times.

The equation to measure the quality of every rule uses the
Laplace-corrected precision [17] equation, which is given as:

f =
1 + TP

1 + TP + FP
(13)

where TP is the number of True Positives, and FP is the
number of False Positives. The equation is also used to prune
the rules for which the f value is less than 0.1.

B. DPSO-LS Classifier

The proposed algorithm includes four main phases: data
preprocessing phase, training phase, DPSO phase and testing
phase. As shown in Fig. 1, the DPSO-LS classifier includes
all the solid rectangles and excludes the red dashed rectan-
gles (these are only used for FDPSO-LS). The four phases
are described respectively as follows.

Figure 1. Processes of DPSO-LS based classifiers.

1) Data Preprocessing Phase: In this phase, firstly, we
need to remove instances that have unknown values since the
proposed system cannot handle these values. It is also known
that the proposed system can only handle numerical data, if
the class labels are non-numerical data, we convert it into
numeric values. Then, the data set is randomly partitioned
into 10 folds. 9 folds of the data is training data, which is
used in the training phase, and 1 fold of the data is testing
data, which is used in the testing phase.

2) DPSO-LS Phase: In this phase, the swarm is initial-
ized. The velocity and position of each particle in the swarm
are calculated. GBest and Pbest as described above are
calculated, and their values are updated after the velocity and
position have been updated accordingly. A local strategy is
applied every 20 iterations. If the stopping criterion has not
been met, Gbest and Pbest are forwarded to the training
phase to calculate the overall fitness (see Equation 12),



and individual fitness (see Equation 13). The DPSO-LS is
stopped when the maximum number of iterations is met. The
final Gbest is forwarded to the testing phase.

3) Training Phase: A rule base which is forwarded by
the DPSO-LS phase is used to classify the training data
set. The overall fitness and individual fitness are calculated
accordingly and are forwarded to the DPSO-LS.

4) Testing Phase: The final Gbest forwarded by the
DPSO-LS phase is used to classify the testing data set, and
the experimental measures are calculated.

C. FDPSO-LS Classifier

A modified classifier, called fuzzy DPSO-LS classifier
(FDPSO-LS), is implemented for both discrete and con-
tinuous data. A fuzzy partition with a simple fuzzy grid
is adopted. Fuzzy set theory and the concept of linguistic
variables, which were proposed by Zadeh [7], [8], have been
widely used in pattern recognition and fuzzy reasoning. The
use of the simple fuzzy partition method on classification
rule discovery has been introduced in [21]. Applications on
the fuzzy rule generation for control problems were proposed
in [34]. Moreover, several fuzzy approaches for partitioning
a pattern space were discussed in [35], [36]. Specially, for an
example of using the simple fuzzy partition method in Fig.
2, each attribute can be partitioned into three linguistic terms
(L = low, M = medium, H = high). Triangular membership
functions are used for the linguistic terms. In the proposed
method, each linguistic term is viewed as a candidate 1-
dimension fuzzy grid. Considering a two-class classification
problem as in Fig. 2, two antecedents with three membership
functions can be partitioned into 9 grids on a 2-dimension
plane. The closed circles and open circles denote the pattern
in class 1 and class 2, respectively.

However, in the case of an n-dimensional classification
problem, where each dimension has m linguistic terms, the
possible number of rules is mn. As the number of rules
rises, an efficient algorithm that can automatically find the
fuzzy rules is important and necessary.

Normally, several rules of the rule base are fired in the
fuzzy rule classification system. The predicted class for a
given instance is determined by the membership degree of
the input variables. Specifically, for each class k,

βClass k = argmax
k

∑
1≤i≤n

∏
1≤j≤m

µij (14)

where µij is the input membership degree of the ith rule of
the jth antecedent. The class that has the largest β value is
selected as the predicted class. Moreover, unlike the DPSO-
LS classifier, the rule that has the smallest β value is chosen
as the worst rule.

As shown in Fig. 1, FDPSO-LS has similar processes as
DPSO-LS, however, all the rectangles are used. The four
main phases of data preprocessing, training, DPSO-LS and
testing are similar to DPSO-LS. In the data preprocessing

Figure 2. An example of fuzzy partition

phase, besides the removal of unknown values and data
partitioning processes, a data normalization process is used
to normalize continuous data. Each column of the data set
is normalized between 0 and 1 using Equation 15:

Xi =
Xi −Xmin

Xmax −Xmin
(15)

where Xi is the ith value of the column. Xmin is the
minimum value of the column, and Xmax is the maximum
value of the column. The data set is partitioned into 10 folds.
9 folds of the data are used as the training data set, and the
remainder is used as the test data set for the implementation.

The DPSO-LS phase is the same as for the DPSO-LS
classifier. However, in the training and testing phases, a
fuzzy inference process is added for the fuzzy reasoning
process. The Fuzzy Inference System (FIS) is a popular
computing system based on the concepts of fuzzy set theory,
fuzzy if-then rules, and fuzzy reasoning. It has been success-
fully applied to a wide variety of fields, such as automatic
control, data classification, expert systems, decision analysis,
etc. Due to its multidisciplinary nature, FIS is known by
numerous other names. However, we only concentrate on
the concept of the fuzzy IF-THEN rules.

The basic structure of a fuzzy inference process con-
sists of three modules: fuzzification, fuzzy rule base and
inference, and defuzzification. As shown in Fig. 3, a crisp
input is taken, the fuzzification module coverts the crisp
input into a fuzzy input using the fuzzy set theory. In the
second module, fuzzy rules are contained in a rule base and a



reasoning mechanism that performs the inference procedure
is included. Finally, a method of defuzzification to extract
a crisp output that represents a fuzzy set is needed by
the third module. Due to the way outputs are determined,
there are two types of inference systems: Mamdani and
Sugeno. Mamdani’s fuzzy inference system was among the
first control systems built using fuzzy set theory, which was
proposed in 1975 by Ebrahim Mamdani [37]. Sugeno, or
Takagi-Sugeno-Kang, was introduced in 1985 [38]. It is
similar to the Mamdani method in many respects, however,
the main difference between Mamdani and Sugeno is that
the Sugeno output membership functions are either linear
or constant. In this approach, only the Mamdani style of
defuzzification is considered.

Figure 3. Fuzzy inference process.

IV. EXPERIMENTS AND RESULTS

As mentioned above, the experiments are conducted for
three approaches: DPSO (without local strategy), DPSO-LS
and FDPSO-LS. The experimental setup for both approaches
are described in the following subsection followed by the de-
scription of the experimental results of both approaches. The
results of DPSO-LS and FDPSO-LS are listed, respectively,
followed by a comparison.

A. Experimental Setup

The experiments of the two approaches are conducted
on a number of datasets taken from the UCI repository
[39]. The experiments of the two approaches are evaluated
on an ASUS desktop (Intel(R) Dual Core I3 CPU @3.07
GHz, 3.07 GHz) Matlab Version 7.13. All measurements
of the two approaches are tested 10 times using 10-fold
cross validation [5]. Each data set is divided into 10 random
partitions. Nine partitions of the data set are used as the
training data, and one partition is selected as the test data.

B. Results of the DPSO-LS Approach

As far as the performance evaluation is concerned for
the proposed DPSO-LS algorithm, a comparison with other

rule classification algorithms JRip, PART and decision tree
algorithm J48 is performed. These three algorithms have
been implemented in WEKA (Waikato Environment for
Knowledge Analysis) [5]. The algorithms are summarized
as follows:

• JRip is a RIPPER rule learning algorithm [40]. JRip is
based on association rules with reduced error pruning
(REP), and integrates reduced error pruning with a
separate-and-conquer strategy. It is a very common and
effective technique found in decision tree algorithms.

• PART is created by Frank and Witten [41] for a partial
decision tree. PART combines the separate-and-conquer
strategy of RIPPER with the decision tree. It works
by building a rule and removing its cover until all the
instances are covered.

• J48 is a decision tree implementation induced by the
C4.5 algorithm, which is developed by Quinlan [4]. It
learns decision trees for the given data by constructing
them in a top-down way.

Table I
PARAMETERS AND THEIR VALUES OF THE DPSO AND DPSO-LS

ALGORITHMS.

Paramete Values
Swarm Size 25

Maximum Iteration 100
(ω1, ω2, ω3) (0.2, 0.3, 0.5)

[Vmin, Vmax] [-1, 1]

Table I shows the parameters and their values used for
our DPSO, DPSO-LS and FDPSO-LS algorithms. Usually,
a large swarm size requires less iterations to reach conver-
gence in PSO. In our proposed algorithm, the swarm size
is chosen as 25, and the maximum number of iterations for
each run is set to 100. The description of the selected data
sets used are summarized in terms of number of attributes,
number of instances and number of classes as shown in
Table II. The 6 data sets are listed alphabetically, where data
set Breast-L and Breast-W are abbreviations for Ljubljana
Breast Cancer and Wisconsin Breast Cancer, respectively.
Measured are the rule size, the weighted average True

Table II
DATASETS USED FOR THE EXPERIMENTS.

Data Set Attributes Instances Classes
Balance-scale 4 625 3

Breast-L 9 286 2
Breast-W 9 699 2

Car 6 1728 4
Lymphography 18 146 4

Tic-Tac-Toe 9 958 2

Positive Rates (TPRs) and False Positive Rates (FPRs), as
well as the precision.

As we mentioned before, the DPSO can easily get stuck in
local optima. In order to see the performance improvements



of the local strategy, we compare DPSO (without local
strategy) with DPSO-LS (with local strategy) by running
them 10 times for 100 iterations each. The average coverage
of the 10 runs is listed in TABLE III. A corresponding
two-tailed Student’s t-test with a significance level of 5%
is applied. The results show that the proposed DPSO-LS
can achieve better coverage in all cases. However, DPSO-
LS only shows significant improvements in 3 of 6 cases.

Table III
AVERAGE COVERAGE OF DPSO AND DPSO-LS FOR 100 ITERATIONS.

Data Set DPSO(%) DPSO-LS(%) Significance
Balance-scale 77.27 ± 3.72 83.39 ± 3.20 Yes

Breast-L 82.57 ± 2.63 86.71 ± 1.07 Yes
Breast-W 91.43 ± 4.25 94.20 ± 4.30 No

Car 94.92 ± 5.06 97.30 ± 4.40 No
Lymphography 76.23 ± 3.51 80.10 ± 3.60 Yes

Tic-Tac-Toe 100.00 ± 0.00 100.00 ± 0.00 No

In Fig. 4, we see the coverage of DPSO-LS compared
to DPSO, JRip, PART and J48. Error bars are shown on
the histograms of the DPSO-LS and DPSO (for the other
algorithms, no variants were reported since they are not
captured by WEKA). In most cases, the DPSO-LS algorithm
has a higher coverage. Although the Breast-W data set
does not show better results, the values of the other four
algorithms are very close.
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Figure 4. Coverage of all algorithms.

For all rule mining algorithms it is necessary to test the
average rule set size to indicate the complexity of the rule
set produced by each algorithm. Table IV lists the size of the
rule set required for DPSO, DPSO-LS, JRip, PART, and J48.
As shown in the table, the JRip algorithm always requires
the least number of rules, while the PART algorithm requires
the most number of rules. J48 uses by far the most number
of rules with the exception of the Breast-L data set. The
number of rules for the proposed DPSO-LS algorithm is
less than the PART algorithm. Both DPSO-LS and DPSO
show comparable results in terms of rule size.

Table V lists the average weighted TPR, which is also
referred to as sensitivity. As shown in the table, the proposed

Table IV
AVERAGE RULE SIZE OF ALL ALGORITHMS.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 12 47 52 26.01±3.10 24.70±2.66

Breast-L 3 20 4 15.25±4.50 17.00±3.50
Breast-W 6 10 14 6.05±3.01 7.13±2.08

Car 49 68 131 43.20±5.20 44.18±4.17
Lymphography 6 13 21 11.15±2.50 9.40±3.06

Tic-Tac-Toe 9 49 95 35.3±3.76 38.80±1.70

algorithm, DPSO-LS, scores better than DPSO, JRip, PART
and J48 in terms of sensitivity.

Table V
AVERAGE WEIGHTED TPRS (%) OF ALL ALGORITHMS.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 80.8 87.5 76.6 80.20±3.12 87.40±2.30

Breast-L 71.0 71.3 75.5 81.80±2.22 89.50±3.70
Breast-W 95.4 93.8 94.6 92.36±4.30 97.27±2.10

Car 86.5 95.8 92.4 93.50±3.10 98.84±1.33
Lymphography 77.7 76.4 77.0 73.30±3.26 80.50±4.40

Tic-Tac-Toe 97.8 94.3 84.6 100.00±0.00 100.00±0.00

The weighted average FRPs, which represent 1-
Specificity, are listed in Table VI. The FPRs of DPSO-LS are
less than the other algorithms except for the Lymphography
data set.

Table VI
AVERAGE WEIGHTED FPRS (%) OF ALL ALGORITHMS.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 16.4 9.7 17.3 15.01±3.25 8.70±2.20

Breast-L 48.9 54.2 52.4 25.80±4.30 16.00±7.20
Breast-W 4.4 8.0 6.4 1.20±0.18 0.50±0.01

Car 6.4 1.6 5.6 5.27±2.30 1.04±0.05
Lymphography 21.6 21 18.7 30.11±5.60 22.00±3.40

Tic-Tac-Toe 3.10 7.6 19.1 0.00±0.00 0.00±0.00

The weighted average precision values are compared
in Table VII. The precision of the DPSO-LS is always
better than DPSO, JRip, PART and J48, showing the largest
improvement on the Breast-L data set.

Table VII
AVERAGE WEIGHTED PRECISION (%) OF ALL ALGORITHMS.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 74.5 83.3 73.2 79.95±3.80 85.40±3.20

Breast-L 68.8 68.2 75.2 83.16±3.30 89.50±3.60
Breast-W 95.5 93.8 94.6 92.35±4.10 96.59±2.15

Car 88.1 95.9 92.4 93.76±3.30 99.10±1.20
Lymphography 76.5 76.6 77.6 71.31±5.12 78.57±5.80

Tic-Tac-Toe 97.8 94.2 84.6 100.00±0.00 100.00±0.00

C. Comparison and Results of DPSO-LS and FDPSO-LS
for Discrete Data Sets

In order to compare the performance of DPSP-LS and
FDPSO-LS on discrete data sets, a corresponding two-tailed
Student’s t-test with a significance level of 5% is applied.



As shown in Table VIII, only 2 of the 5 data sets show
significant improvements.

Table VIII
AVERAGE COVERAGE OF DPSO-LS AND FDPSO-LS IN 100

ITERATIONS.

Data Set DPSO-LS(%) FDPSO-LS(%) Significance
Balance-scale 77.27 ± 3.72 77.13 ± 2.50 No

Breast-L 82.57 ± 2.63 86.71 ± 1.07 Yes
Breast-W 91.43 ± 4.25 93.20 ± 2.30 No

Car 94.92 ± 5.06 97.30 ± 4.40 No
Lymphography 76.23 ± 3.51 80.10 ± 3.60 Yes

In Fig. 5, we see the average coverage of the DPSO-
LS compared to FDPSO-LS. Error bars are shown on the
histograms of both the proposed algorithms. In most cases,
the proposed FDPSO-LS algorithm has a higher coverage.
Besides the Balance-scale data set, FDPSO-LS achieves
better results for the other four data sets.
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Figure 5. Coverage comparison of DPSO-LS and FDPSO-LS.

In Table IX, the average rule size of DPSO-LS and
FDPSO-LS is compared. FDPSO-LS requires less number
of rules than DPSO-LS due to the usage of the linguistic
variables.

Table IX
AVERAGE RULE SIZE OF DPSO-LS AND FDPSO-LS IN 10 RUNS.

Data Set DPSO-LS(%) FDPSO-LS(%)
Balance-scale 24.70 ± 2.66 7.12 ± 2.10

Breast-L 17.00 ± 3.50 10.24 ± 3.07
Breast-W 7.13 ± 2.08 7.08 ± 2.30

Car 44.18 ± 4.17 14.12 ± 4.40
Lymphography 9.40 ± 3.06 5.60 ± 3.60

Table X shows the average weighted TPR of DPSO
and FDPSO-LS. FDPSO-LS does not show improvements
compared to DPSO-LS for discrete data sets. FDPSO-LS
scores slightly better on 2 out of 5 data sets.

As shown in Table XI, FDPSO-LS has a smaller FPRs in
most cases except for the Car data set.

In terms of average weighted precision, FDPSO-LS does
not show improvements compared to DPSO-LS on the
discrete data sets except for Lymphography as shown in
Table XII.

Table X
AVERAGE WEIGHTED TPRS OF DPSO-LS AND FDPSO-LS IN 10 RUNS.

Data Set DPSO-LS(%) FDPSO-LS(%)
Balance-scale 87.40 ± 2.30 88.13 ± 3.12

Breast-L 89.50 ± 3.70 86.71 ± 2.70
Breast-W 97.27 ± 2.10 95.7 ± 2.30

Car 98.84 ± 1.33 93.80 ± 3.45
Lymphography 80.50 ± 4.40 83.80 ± 2.60

Table XI
AVERAGE WEIGHTED FPRS OF DPSO-LS AND FDPSO-LS IN 10 RUNS.

Data Set DPSO-LS(%) FDPSO-LS(%)
Balance-scale 8.70 ± 2.20 1.65 ± 2.80

Breast-L 16.00 ± 7.20 7.42 ± 1.07
Breast-W 5.00 ± 1.20 4.10 ± 2.23

Car 1.04 ± 0.05 5.80 ± 2.18
Lymphography 22.00 ± 3.4 16.50 ± 2.34

Overall, with respect to discrete data sets, FDPSO-LS
does not significant good improvements in most cases. One
reason is that it does not efficiently normalize discrete data
sets using liguistic terms. Usually, it causes overfitting and
decreases the accuracy. For example, for the Balance-scale
data set each attribute has either 3 or 4 discrete values,
and FDPSO-LS uses 3 membership functions. When we
normalize the attribute values into 3 membership function,
the data does not partition well for the attributes having small
discrete values.

D. Results of FDPSO-LS Approach for Continuous Data Set

As far as the performance evaluation for the proposed
FDPSO-LS is concerned, a comparison with other rule
classification algorithm FURIA is performed. FURIA is
short for Fuzzy Unordered Rule Induction Algorithm which
extends the well-known RIPPER algorithm [42]. FURIA
learns unordered fuzzy rule sets instead of rule lists. It
includes a number of modifications and extensions to deal
with uncovered examples.

The description of the selected data sets used are summa-
rized in terms of number of attributes, number of instances,
and number of classes as shown in Table XIII. The 5 data
sets are listed alphabetically.

Measured are also the rule size evolved, the weighted
average TPRs and FPRs, as well as the precision.

In order to observe the performance, we compared FURIA
with FDPSO-LS by running both algorithms 10 times for
100 iterations each. The average coverage of the 10 runs
is listed in TABLE XIV. The corresponding two-tailed
Student’s t-test with a significance level of 5% was applied.
The results show that the proposed FDPSO-LS can achieve
better coverage in most cases except for the glass data set.
However, FDPSO-LS only shows significant improvements
for 2 of the 5 data sets.

In Fig. 6, we see the average coverage of the proposed
FDPSO-LS compared to FURIA. Error bars are shown
on the histograms of the proposed FDPSO-LS. For most



Table XII
AVERAGE WEIGHTED PRECISION OF DPSO-LS AND FDPSO-LS IN 10

RUNS.

Data Set DPSO-LS(%) FDPSO-LS(%)
Balance-scale 85.40 ± 3.20 82.10 ± 2.50

Breast-L 89.50 ± 3.60 85.71 ± 3.32
Breast-W 96.59 ± 2.15 96.70 ± 4.30

Car 99.10 ± 1.20 97.30 ± 2.40
Lymphography 78.57 ± 5.80 82.80 ± 3.41

Table XIII
DATASETS USED FOR THE PROPOSED FUZZY RULE-BASED SYSTEM

USING DPSO-LS.

Data Set Attributes Instances Classes
Breast-W 9 699 2

Glass 10 214 7
Haberman’s Survival 3 306 2

Iris 4 150 3
Pima Indians Diabetes 8 768 2

data sets, the proposed FDPSO-LS algorithm has a higher
coverage. Besides, for the glass data set FDPSO-LS obtains
higher coverage for the other data sets.
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Figure 6. Coverage comparison of the proposed FDPSO-LS and FURIA.

Table XV lists the size of the rule set required for FDPSO-
LS and FURIA. As shown in the table, the number of rules
for the proposed FDPSO-LS is less than for the FURIA
algorithm for most data sets. The reason is that the proposed
FDPSO-LS reduces the rule size since it uses the local
strategy. The values after ± are standard deviations of the
corresponding results.

Table XVI lists the average weighted True Positive Rates
(TPRs), which are also referred to as sensitivity. As shown in
the table, the proposed algorithm, FDPSO-LS, scores better
than FURIA for most data sets in terms of sensitivity except
for the Glass data set.

The weighted average FPRs, which represent 1-
Specificity, are listed in Table XVII. The FPRs of the
proposed FDPSO-LS are less than FURIA, which indicates
that FURIA has a higher false positive rate.

The weighted average precision values are compared
in Table XVIII. The precision of FDPSO-LS is always
better than FURIA, showing the largest improvement on the

Table XIV
AVERAGE COVERAGE OF FURIA AND FDPSO-LS FOR 100

ITERATIONS.

Data Set FURIA(%) FDPSO-LS(%) Significance
Breast-W 94.71 95.20±1.30 No

Glass 70.56 69.70±2.20 NO
Haberman’s Survival 72.55 75.02±2.40 Yes

Iris 94.67 95.56±1.70 No
Pima Indians Diabetes 74.48 80.60±2.30 Yes

Table XV
AVERAGE RULE SIZE OF FDPSO-LS AND FURIA.

Data Set FURIA(%) FDPSO-LS(%)
Breast-W 15 7.12±2.10

Glass 16 9.40±3.20
Haberman’s Survival 4 7.20±2.40

Iris 5 4.00±1.70
Pima Indians Diabetes 5 7.70±2.30

Haberman’s Survival and Pima Indians Diabetes data sets.

V. CONCLUSION

In this study, we have proposed two classifiers: DPSO-LS
and FDPSO-LS. Both classifiers are based on the proposed
DPSO-LS algorithm, which uses a rule base to represent
a ‘particle’ that evolves the rule base over time. DPSO-LS
is implemented as a matrix of rules, representing IF-THEN
classification rules, that have conjunctive antecedents and
one consequent. In addition, a local mutation search strategy
was incorporated in order to take care of the premature
convergence of PSO. The DPSO-LS classifier was applied
on discrete data sets based on the IF-THEN classification
rules, while the FDPSO-LS is based on the concept of
fuzzy IF-THEN rules and is applied to both discrete and
continuous data sets.

Experiments were conducted using 6 discrete data sets
and 5 continuous data sets that are taken from the UCI
repository. Our DPSO-LS algorithm was compared against
DPSO, JRip, PART and J48. In addition, FDPSO-LS was
compared against FURIA. Measures used were rule size,
TPRs, FPRs, and precision. The experimental results re-
vealed that DPSO-LS achieves better performance for most
data sets than FPSO-LS applied to discrete data sets. On
the other hand, FDPSO-LS obtains better performance when
applied to continuous data sets compared to FURIA.

As for future work, it would be interesting to compare
the Pittsburgh approach with the Michigan approach. More-
over, FDPSO-LS has shown improved results compared to
FURIA, which could still be improved by minimizing the
number of rules and deleting replicated rules. Furthermore,
the proposed FDPSO-LS can be further improved by apply-
ing discrete data sets with larger ranges of attribute values.
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