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Abstract—The field of side-channel analysis has made sig-
nificant progress over time. Side-channel analysis is now used
in practice in design companies as well as in test laboratories,
and the security of products against side-channel attacks has
significantly improved. However, there are still some remaining
issues to be solved for side-channel analysis to become more
effective. Side-channel analysis consists of two steps, commonly
referred to as identification and exploitation. The identification
consists of understanding the leakage and building suitable
models. The exploitation consists of using the identified leakage
models to extract the secret key. In scenarios where the model
is poorly known, it can be approximated in a profiling phase.
There, machine learning techniques are gaining value. In this
paper, we conduct extensive analysis of several machine learning
techniques, showing the importance of proper parameter tuning
and training. In contrast to what is perceived as common
knowledge in unrestricted scenarios, we show that some machine
learning techniques can significantly outperform template attacks
when properly used. We therefore stress that the traditional worst
case security assessment of cryptographic implementations, that
mainly includes template attacks, might not be accurate enough.
Besides that, we present a new measure called the Data Confusion
Factor that can be used to assess how well machine learning
techniques will perform on a certain dataset.

I. INTRODUCTION

Any device that contains a secret, such as a cryptographic
key, can be targeted by an adversary. One very powerful
class of attacks are side-channel attacks (SCAs) which aim
at breaking cryptographic secrets by exploiting physical infor-
mation while the device is processing sensitive data [1]. For
example, an adversary could monitor the running time [2],
the cache behavior, the power consumption [3], and/or the
electromagnetic radiation [4] of the device. The most powerful
type of side-channel attacks, so-called profiled side-channel
attacks, are even effective when only very few measurements
are available, thanks to an additional profiling phase. Within
this phase the adversary estimates advanced leakage models for
targeted intermediate computations, which are then exploited
to extract secret information from the device in the actual
attack phase. Template attacks (TAs) [5], most of the time
based on Gaussian noise assumption, are the most commonly
used profiled attacks in practice; they are also known to be the
most powerful from an information theoretic point of view. A
variant of TAs is the stochastic attack (SA) that uses linear
regression in the profiling phase [6].

Recently, another type of solutions that rely on machine
learning (ML) has been investigated [7]–[10]. These related
contributions highlight that ML-based side-channel attacks
are effective in various experiments. However, most of the
previous work has been conducted in scenarios that were more
or less disadvantageous for template attacks. In particular,
in [7], the authors showed that ML techniques can be advan-
tageous when only a limited number of profiling traces are
provided, rendering the estimation of probabilities in template
attacks not accurate enough. This effect was also confirmed
in [11]. Moreover, in [11] the authors addressed the problem of
dimensionality of side-channel traces and showed that machine
learning techniques are more efficient than template attacks
when a higher number of useless samples are considered.

a) Our Contributions: We make several contributions
in this paper. First, we show that even in unrestricted (but still
practical) scenarios machine learning techniques can be more
successful than template attacks. Accordingly, our work shows
that the traditional template attack scenario is not enough
when considering the worst case side-channel security threat.
In contrast to most previous work, the attackers are provided
with a sufficiently high number of traces in order to build
precise leakage models. We particularly show the importance
of a proper algorithm selection and parameter tuning phase
for machine learning techniques. Naturally, the importance of
tuning is well known, but in our opinion it has been slightly
overlooked in the area of side-channel attacks. As presented
here, our results show that proper parameter tuning can make
a difference between an average efficient attack and attacks
that even outperform template attacks.

All our experiments are conducted in practical scenarios
with three levels of noise and two multi-class scenarios. We
note that we use datasets that represent the de-facto standard in
the side-channel community and therefore we believe they are
representative for investigating the efficiency of ML methods
in side-channel analysis. Next, we discuss how the number of
features influences the success rate of the attack, where even
a small number of features can be enough if the algorithm
is properly tuned. Finally, we present a new measure that
can be used to estimate the potential efficiency of machine
learning approaches for SCA. This measure, the so-called Data
Confusion Factor can be used to differentiate among various
ML techniques but also to assess the influence of noise and
the influence of class distance to the successfulness of the



algorithms. We note that this measure is designed with the
specific goal of SCA analysis and is therefore not meant to be
readily plugged into different domains.

b) Road Map: The paper is organized as follows. In
Section II, we present basic notions on side-channel attacks.
In Section III-A, we briefly discuss the datasets we use and in
Section III-B we enumerate the machine learning techniques
utilized in this research. The results from the tuning phase
are given in Section III-C and from the testing phase in
Section III-D. In Section III-E, we present the Data Confusion
Factor measure and give results that support it as a relevant
measure. Afterwards, we discuss the influence of the number of
features in Section III-F. In Section III-G we apply our settings
to a template attack. Section III-H presents a discussion about
the results we obtained as well as some directions for future
work. We conclude the paper in Section IV.

II. PROFILED SIDE-CHANNEL ANALYSIS

A. Background & Notations

Profiled side-channel analysis estimates the worst case
security risk by considering the most powerful side-channel
attacker. In particular, one assumes that an attacker is able
to possess an additional device of which he has nearly full
control. From this device he obtains leakage measurements
and is able to control the used secret key or at least knows
which one is used. Knowing the secret key enables him to
calculate intermediate processed values that involves the secret
key for which he is estimating models. These models can then
be used in the attacking phase to predict which intermediate
values are processed and therefore have conclusions about the
secret key. In the following, we consider side-channel attacks
on block ciphers for which a divide and conquer approach
can be utilized. Note that, as there exist operations within the
block cipher which manipulates each block/chunk (e.g., bytes
in Advanced Encryption Standard (AES)) independently and
most importantly involving only one block/chunk of the secret
key, an attacker only needs to make hypotheses about the secret
key block/chunk instead of the complete secret key at once.

More formally, let k∗ denote (a chunk of) the fixed secret
cryptographic key that is stored on the device and let t denote
(a chunk of) the plaintext or ciphertext of the cryptographic
algorithm. The mapping y maps the plaintext or the ciphertext
t ∈ T and the key k∗ ∈ K to a value that is assumed to
relate to the deterministic part of the measured leakage x. For
example,

y(t, k) = HW (Sbox[T ⊕ k]), (1)

where Sbox[·] is a substitution operation and HW the Ham-
ming weight. Generally, it is assumed that f is known to the
attacker. The measured leakage x can then be written as

x = ϕ(y(t, k∗)) + r, (2)

where r denotes independent additive noise and where ϕ
is a device-specific unknown deterministic function. In the
sequel, we are particularly interested in multivariate leakage
x = x1, . . . , xD, where D is the number of time samples, i.e.,
features (or attributes). Figure 1 displays one trace measure-
ment over 600 time samples during substitution operations as
in Eq. (1).

Fig. 1: Electromagnetic emanation over D = 600 time samples

Now, it is considered that the attacker has the following
information at his disposal to conduct an attack:

• profilng phase: N traces xp1 , . . . ,xpN , plain-
texts/ciphertext tp1 , . . . , tpN and the secret key k∗p ,
such that he can calculate y(tp1 , k

∗
p), . . . , y(tpN , k

∗
p).

• attacking phase: Q traces xa1 , . . . ,xaQ (indepen-
dent from the profiling traces), plaintexts/ciphertext
ta1 , . . . , taQ

In the attacking phase the goal is to make predictions about
y(ta1 , k

∗
a), . . . , y(taN , k

∗
a), where k∗a is the secret key on the

attacking device.

B. Template Attack

The template attack (TA) [5] is the most commonly used
profiled side-channel attacks, which we detail in the following.
The attack principle relies on the Bayes theorem, where
the time sample are assumed to be not independent, we
therefore deal with multivariate probability distributions. In
the profiling phase the probabilities P̂ (x|y(tp, k∗p)) for each
value of y(tp, k) are estimated based on the profiling traces
xp1 , . . . ,xpN . In the attack phase, the attacker estimates the
probability that y(ta, k∗a) occured using the bayes theorem:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
. (3)

Moreover, as he knows ta he can thus gain information about
the secret key k∗a.

A particular choice of the underlying distributions of
probabilities has been made in the original TA paper and has
been investigated in many follow-up papers (see e.g., [12]).
In particular, it is assumed that each P (x|y(t, k)) follows a
(multivariate) Gaussian distribution and is thus parameterized
by its mean and covariance matrix. The authors of [12]
propose to use only one pooled covariance matrix to cope with
statistical difficulties and thus a lower efficiency. Besides the
standard approach, we will additionally utilize this version of
the template attack in our experiments later on.

III. EXPERIMENTS

In this section, we first provide an investigation of the ex-
perimental data. The second part presents results for supervised
machine learning attacks in comparison to the template attack.
In all experiments, we use 20 000 measurements for each
scenario where those measurements are selected uniformly at
random.



(a) Low noise (16 uniform classes) (b) Medium noise (16 uniform classes)

(c) High noise (16 uniform classes) (d) Low noise (9 binomial classes)

(e) Medium noise (9 binomial classes) (f) High noise (9 binomial classes)

Fig. 2: Estimated densities for each class (first time instance)

A. Experimental Data

To test our methods, we use the publicly available traces
of the DPA contest v4 [13]. The traces are captured while
executing a low-cost masking protection applied on AES.
However, as the mask is known, one can easily turn it into
an unprotected scenario.

The original traces have a (relatively) high signal-to-noise
ratio (SNR), which we label as the “low noise” scenario.
Additionally, we add independent Gaussian noise to be able to
investigate a medium and a high noise scenario. To calculate
the SNR we use the following expression:

var(signal)

var(noise)
=

var(y(t, k∗))

var(x− y(t, k∗))
. (4)

Furthermore, as described in the next sections, we are tar-
geting two different leakage models, which result in different
class properties. For case study with 9 classes we use 50
features, while for case study with 16 classes we use 100

features. In both cases we sort them in descending order of
correlation with the leakage model.

1) Uniformly distributed classes: The first case study tar-
gets a 4-bit intermediate variable that is loaded/manipulated
on the device. Accordingly, we classify it into 16 different
classes. Figures 2a-2c show the estimated density distributions
of the first most leaking time instance, i.e., the one with the
highest absolute correlation between x and y(k∗). For low
noise (see Figure 2a), most classes are distinguishable, whereas
for high noise, most of the density distributions are completely
overlapping (see Figure 2c). As expected, one can observe that
the higher the added Gaussian noise, the closer the distributions
become to Gaussian. The absolute value of correlation between
the time instances and the intermediate value is displayed in
Figure 3. For low noise, the correlation ranges between 0.65 –
0.8, whereas we have 0.2 – 0.52 for medium noise and 0.06 –
0.24 for high noise, which covers nearly the complete range.
For comparison, we also calculated the SNR, which is between
12 – 2, 1 – 0.1, and 0.12 – 0.02 for low, medium, and high
noise, respectively. Figure 4 shows the correlation between the



TABLE I: Parameter tuning results (accuracy) for SMO
PPPPPC

γ 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6

1.0 69.5 72.5 77.7 81.3 85.3 86.4 88.1 88.6 89.4

2.0 72.2 75.7 79.8 83.8 87.4 87.9 88.3 88.6 89.5

5.0 76.3 78.6 82.6 86.5 89.5 89.6 90 90.1 90.2

10.0 78.2 80.1 84.8 88.3 90.2 90.2 90.4 90.4 90.6

20.0 79.3 81.7 86.6 89.4 90.8 91 91.1 91.2 91.3

30.0 80.1 82.8 87.7 89.8 91.1 91.4 91.5 91.5 91.5

40.0 82.2 85.1 86.2 90.1 90.5 91.3 91.6 91.5 91.3

50.0 87.2 88.9 89.8 90.2 91.1 91.4 91.6 91.3 91.1

60.0 88.1 90.1 90.2 90.4 91.2 91.3 91.3 91.3 91.4

first and the remaining time instances. Naturally, we have a
high correlation between the time instances in the case of low
noise, while the traces are nearly uncorrelated in the case of
high noise.

2) Binomial distributed Hamming Weight classes: The
second case study targets the Hamming Weight (HW) of an
8-bit intermediate variable resulting in 9 binomially distributed
classes. In particular, we target the processing of the AES
S-box in the first round, i.e., HW (Sbox[t ⊕ k∗]) where t
is the first plaintext byte. As before, we show the densities
of each class (see Figures 2d to 2f), the correlation between
the traces and the leakage model (see Figure 5), and the
correlation between the first and the remaining time instances
(see Figure 6). For low noise, the classes are more separable
as the uniformly distributed classes. The correlation is slightly
higher for low noise and lower for medium and high noise,
with a SNR between 9 – 0.01, 0.9 – 0.01, and 0.12 – 0.01,
respectively.

B. Supervised Machine Learning

In all machine learning experiments, we use the Weka
suite [14], v3.8, with default parameters set for all the methods,
unless mentioned otherwise later on. Since there are a number
of machine learning approaches one could use, we opted to
include the classifiers that are shown to be highly accurate
on a variety of datasets [15]. Hence, in our experiments, we
use Support Vector Machines (SVM, or more precisely Se-
quential Minimal Optimization – SMO) [16], Random Forest
(RF) [17], Rotation Forest (RTF) [18], and MultiBoost (MB)
algorithms [19]. We omit the details about those algorithms
due to the lack of space.

C. Parameter Tuning

We divide our datasets in a ratio of 2:1 where we take
the bigger set as the training set (2/3 of the data) and the
smaller set for testing (1/3 of the data). On the training set,
we conduct a 10-fold cross-validation with all the considered
parameters and report the averaged results of individual folds.
All the results in this section are presented as the accuracy (%)
of the classifier. In Tables I, IIa, and IIb, we present the results
for the tuning of the SVM, MultiBoost, and Rotation Forest
algorithms. For Random Forest we do not conduct a parameter

PPPPPit.
subc 3 4 5

10 83.5 83.6 83.6

50 87.2 87.3 87.3

100 88.1 88.2 88

200 88.4 88.5 88.5

300 88.6 88.7 88.6

(a) Parameter tuning results (accuracy) for MultiBoost

PPPPPit.
mpg 3 4 5

50 90.4 90.7 90.4

100 90.2 90.4 90.4

150 90.3 90.4 90.6

200 90.4 90.7 90.7

(b) Parameter tuning results (accuracy) for Rotation Forest

TABLE II: Parameter tuning results for MultiBoost and Rota-
tion Forest

tuning, but we use a setting with 300 trees, for which we obtain
a success rate of 86.5%. For each table, the best solution is
highlighted using a gray background in the corresponding cell.

For the MultiBoost algorithm, we tune the iterations (it)
and sub-committees (subc) parameters. For Rotation Forest,
we tune the number of iterations (it) and the maximal size of
the group of features (mpg). We use here only the radial-based
SVM where the most significant parameters are the cost of the
margin C and the radial kernel parameter γ. We opted to use
radial-based SVM on the basis of our previous experience as
well as the fact that it has only two important parameters that
need to be tuned.

The best results are obtained for the SMO algorithm, but
we note that this algorithm also shows significant variation
in the accuracy when using different parameters highlighting
the importance of a proper tuning phase On the other hand,
Rotation Forest gives only slightly worse results, but we
can observe that its behavior is quite robust when changing
parameter values. Therefore, if one has sufficient time to
conduct extensive tuning, SMO seems to be the best choice,
but if there is no time for a longer tuning phase, Rotation
Forest presents a viable choice. We note that these results
could possibly be even further improved by a more exhaustive
parameter tuning phase, where one would investigate larger
sizes, but that would come with the price of significantly longer
tuning for only slightly better results.

D. Testing

After we obtained the best parameter combinations in
the tuning phase, we use the best settings to conduct the
testing phase, with the results given in Table III. Note that
we abbreviate the dataset by combining the amount of noise
and the number of classes, e.g. Medium/9 denotes the dataset
with 9 classes and traces with a medium level of noise.



(a) Low noise (b) Medium noise (c) High noise

Fig. 3: Correlation between the traces and the leakage model (16 uniform classes)

(a) Low noise (b) Medium noise (c) High noise

Fig. 4: Correlation between the first and all instances (16 uniform classes)

(a) Low noise (b) Medium noise (c) High noise

Fig. 5: Correlation between the traces and the leakage model (9 binomial classes)

(a) Low noise (b) Medium noise (c) High noise

Fig. 6: Correlation between the first and all instances (9 binomial classes)

We give the results in the form ACC/F-Measure/AUC in
Table III. The first number represents the accuracy as it is
the value that is most often reported. In this paper, we use
the accuracy (success rate) as the primary criterion of the
algorithms’ successfulness, and only if such value is similar/the
same for several algorithms, we consider the F-Measure and
the AUC. We observe that the SMO algorithm is the best with
an accuracy of 91.1% for a scenario with low noise and 9
classes. However, the difference between the SMO and the
Rotation Forest algorithms is rather small and we can observe
that when the level of noise is higher, e.g. medium or high,
SMO even becomes the worst performing algorithm for the
binomial distributed Hamming Weight classes. This behavior
is also highly dependent on the distribution of the traces in the
training phase, i.e., if certain classes are significantly under-

represented, this can affect the final results. Note that one could
add weight factors to such classes to compensate, but we leave
that approach for future work.

E. Data Confusion Factor

In previous sections, we show the efficiency of ML tech-
niques, but still that does not offer us any insight about the
difficulty of those scenarios for ML nor what scenario is the
most problematic for classification. Therefore, we develop a
new measure that can help us to estimate the difficulty of such
problems:



TABLE III: Testing results for the best algorithms’ settings
(ACC/F-Measure/AUC)

AlgorithmSMO MB RTF RF

Low/9 91.1/91.1/97.7 88.3/88.3/97.6 90.5/90.5/98.9 86.5/86.4/98.2

Med/9 38.5/38.4/76.1 41.6/39.6/76.4 44.3/42.8/80.2 40.7/37.6/77.7

High/9 25.3/24.7/58.6 28.5/23.5/58.4 29.1/24.0/62.0 28.1/21.7/60.8

Low/16 98.9/98.9/99.6 97.2/97.2/99.6 97.1/97.1/99.7 96.2/96.2/99.6

Med/16 52.5/52.2/92.9 43.1/42.6/90.2 48.0/47.2/93 41.1/39.7/90.9

High/16 23.5/23.0/78.8 19.8/17.7/72.9 22.3/19.5/78.8 19.1/15.5/73.4

DCF =
1

n× (n− 1)

n∑
i=1

n∑
j=1,i6=j

(1− |Avg −#classi
#all

|) (5)

×(#wrongj∈i
M

)n−HD(i,j),

where M :

M =

{
alli+j if alli+j 6= 0

#classi otherwise.
(6)

Here, n is the number of classes, Avg is the average
number of representatives per class, #classi is the number
of instances belonging to class i, and #all is the total number
of instances. The first part of the expression above serves as a
corrective factor for classes for which the number of instances
significantly deviates from the average. Next, #wrongj∈i
represents the number of instances of class j misclassified to
class i and alli+j is the number of instances belonging to
classes i and j. HD(i, j) represents the Hamming distance
between classes i and j and as we see, the bigger is that
difference, the larger is the influence of a certain summand.
This is because the misclassified instances belonging to a
class relatively far from the correct class (with respect to
HD) introduce more confusion than misclassified instances
belonging to neighbor classes. The DCF value assumes values
in the range [0, 1]. In general, the higher the value of DCF ,
the more difficult the separation between classes and the more
difficult the problem.

Note that DCF can be calculated both for supervised and
unsupervised machine learning techniques. The only difference
is whether the data will be calculated on the basis of testing
results (predictions) for supervised learning or on the basis
of clusters for unsupervised learning. There are two ways
to calculate DCF ; either over all pairwise comparisons for
a dataset, or only between classes. In the former case, the
comparison can be made only between datasets having the
same number of classes, while in the latter case the comparison
is always possible. The results for the former case and all
scenarios we investigate here are given in Table IV. We can
see that as one would expect, the higher the level of noise, the
more difficult the problem for ML.

However, from these data, we can observe that for the
binomial distributed Hamming Weight classes, the difference
between the low noise scenario and the medium noise scenario
is much more apparent than the difference between medium

TABLE IV: Data Confusion Factors

Algorithm SMO MB RTF RF

Low/9 6.52 ·
10−7

2.58 ·
10−6

4.89 ·
10−6

5.79 ·
10−6

Medium/9 1.59 ·
10−2

1.03 ·
10−1

9.58 ·
10−2

1.3·10−1

High/9 1.01 ·
10−1

2.42 ·
10−1

2.28 ·
10−1

2.44 ·
10−1

Low/16 9.99 ·
10−6

2.37 ·
10−8

2.37 ·
10−8

2.37 ·
10−8

Medium/16 1.05 ·
10−6

1.45 ·
10−5

1.5·10−5 5.3·10−5

High/16 1.16 ·
10−4

8.89 ·
10−4

1.17 ·
10−3

3.86 ·
10−3

and high noise scenarios. This is to be expected, as the low
noise scenario for Hamming Weigh classes is indeed much
easier to classify when compared to medium and high noise
scenarios. On the other hand, when working with uniformly
distributed classes, the difference in the confusion levels for
all three noise levels is much less obvious while still giving
advantage to the low noise setting. The reason for the low
difference is because the number of samples per class is almost
equal and the only factor contributing to the difference lies in
incorrect classification of the samples. Note that these findings
are also confirmed in Table III. Our new metric provides
interesting feedback already in the profiling phase to rate the
quality of ML performance, especially with regards to the
distribution of instances and their classes.

F. On the Influence of the Number of Features.

Next, we take the best performing algorithm from the
previous test (SMO with C = 40 and γ = 0.4) and we
investigate how the algorithm behaves when the number of
features changes. In order to do so, we use a feature selection
mechanism that enables us to sort the features in accordance to
their relevance. For the feature selection, we use the InfoGain
method. InfoGain is a commonly used filter-based feature
selection method that evaluates the worth of an attribute
by measuring its information gain with respect to the class
attribute [20]. In this experiment, we use 5%, 10%, 20%, 30%,
40%, 50%, and 100% of the highest ranking attributes for
further analysis, and the results are shown in Table V.

The results show us that SMO is able to reach a relatively
high accuracy even if it uses only 20% of the features. We note
that when the level of noise is higher, the difference in results
for various numbers of features that are used diminishes. This
shows us that in many real-world settings where the level of
noise is high, we do not need to use a high number of features
to obtain a good success rate. A reason could be that simple
models tend to be more successful in cases where accuracy
is low or even just slightly better than guessing the majority
class. Naturally, this comes under the assumption that we are
indeed using the most relevant features.



TABLE V: Feature selection results (accuracy) for SMO

% of fea-
tures

5 10 20 30 40 50 100

Low/9 53.4 55.3 74.7 77 80.1 83.5 91.1

Medium/9 32.9 35.5 40.6 42.1 43.6 42 38.5

High/9 27 27.7 28.4 29.2 29.1 29.3 25.3

Low/16 51.4 54.3 71.8 83.4 93.6 96.3 98.9

Medium/16 25 30.1 35.1 37.4 37.4 40.1 52.5

High/16 12.8 15.4 17.5 18.5 18.9 18.3 23.5

TABLE VI: Accuracy for the template attack (standard and
pooled)

% of features 5 10 20 30 40 50 100

Low/9 16.42 31.15 64.61 67.78 74.60 73.85 70.08

Low/9 pooled 12.89 26.39 60.77 65.70 72.23 71.28 71.00

Medium/9 9.16 14.55 27.13 30.05 35.12 39.23 38.78

Medium/9
pooled

6.41 11.94 25.89 27.32 33.57 37.29 39.19

High/9 5.21 11.97 15.05 17.51 20.19 21.39 24.99

High/9 pooled 2.36 5.11 8.80 9.25 11.76 13.98 14.76

Low/16 42.01 52.72 59.19 67.00 71.55 78.12 93.47

Low/16
pooled

42.05 51.41 57.86 66.84 72.03 79.12 93.39

Medium/16 15.41 21.46 27.14 29.27 31.95 33.24 36.36

Medium/16
pooled

14.96 22.14 28.85 31.48 34.30 36.93 45.13

High/16 8.80 9.27 11.32 12.20 13.22 14.49 17.74

High/16
pooled

9.06 9.78 11.94 13.10 14.43 16.18 22.74

G. Template Attack

To be able to directly compare our results, we used the
same settings as in the previous subsection, i.e., the profiling
set contains 2/3 of the data and the rest is used for classi-
fication. Table VI lists the accuracy of the standard template
attack and the pooled version (see Sect. II) using 5%, 10%,
20%, 30%, 40%, 50%, and 100% of features. Interestingly,
and which has not been noted yet, using 9 binomial distributed
classes we observe that the pooled version is not as efficient as
the standard approach, whereas for the uniformly distributed
16 classes the accuracy is increased. Compared to SMO, the
accuracy of the template attack is worse for all levels of noise
and number of classes. The highest difference occurs in the
case of low noise with 9 classes where we have an accuracy
of 91.1% for SMO and 73.44% for the template attack.

H. Discussion

In this paper, we give an extensive analysis of machine
learning techniques used in side-channel analysis. Our results
confirm previous work that reports the applicability of machine
learning techniques, but we observe that such techniques are

much more powerful than usually considered. In fact, for a
number of scenarios, the machine learning approach yields
the best results even compared to template attacks even when
provided with a relatively high (but still practical) number of
profiling traces.

Naturally, such high success rate comes with the price that
one needs to investigate several ML techniques as well as
to conduct a rather long parameter tuning phase. In Table I,
we see how the success rate can go from 69% to more
than 91%. This shows that a proper tuning phase, which has
previously been omitted in the state-of-the-art, is mandatory
in order to give a fair and realistic comparison between ML
techniques and template attacks. Furthermore, Rotation Forest
algorithm performs only slightly worse when compared to
SVM, but we see that its success rate is quite consistent with
different parameter values. We believe that Rotation Forest
actually should be considered particularly interesting to the
SCA community since it uses PCA on each subset of features.
As far as we are aware, Rotation Forest was not previously
investigated in SCA.

One can ask how many features are usually needed to ob-
tain a certain success rate for ML techniques. In Section III-F,
we use the best performing ML algorithm and investigate the
success rate for several datasets. We note that features need
to be sorted based on the InfoGain criterion before being
used since otherwise it could happen that we try to conduct a
classification with features that have the least information. As
an interesting example, we mention the case where ML uses
5% of the features, which amounts to only 3 features. We see
that even for such an extreme case, ML is able to reach a good
success rate, e.g. more than 53% for dataset with low noise
and 9 classes.

Another interesting fact can be observed thanks to the
different investigated scenarios: (1) uniform vs (2) binomial
distributed. First, we show that ML techniques are efficient
in both settings. But actually what is interesting is that for all
techniques (all ML, TA, and SA), the accuracy of 16 uniformly
distributed classes is higher than for 9 binomial ones, even
though (2) has a higher SNR (and correlation) than (1) (see
Figures 3 and 5). We believe that this is mainly due to the
distributions of the values. Looking at the accuracy for each
class separately we observe that for (2) we have a lower
accuracy for the less populated HW classes (for all techniques).
To cope with this circumstance, ML even offers techniques to
tune the training set further to compensate for those kind of
effects, which should be even more beneficial compared to TA
and SA, which is an interesting aspect for future work.

The results obtained with the Data Confusion Factor mea-
sure can offer additional level of confidence in the performance
of ML techniques. Moreover, this measure fills the gap since it
clearly quantifies the difficulty of the problem with regards to
the level of noise and the number of classes. The measure has
two contributing parts. The first part penalizes the data sets that
have classes with a larger number of instances than the average
class in the set as these are more difficult for the classifiers
to handle, while the second part deals with instances that are
wrongly classified. As a future work, we plan to explore the
direct connection between DCF and the success rate of side-
channel attacks. Furthermore, we plan to extend the measure



Fig. 7: Success rate for the low noise scenario using 9 HW
classes

to be able to compare the results among different number of
classes scenarios.

The next goal will be to link the accuracy we achieved in
Table V to the rate of success of finding the correct secret key.
Similar to the template attack, the presented ML techniques
can be adapted to output not only the most likely class, but
also the probabilities for each class. Accordingly, using this
feature and the maximum-likelihood approach, one can easily
extend the ML techniques to efficiently guess the secret key.
Figure 7 plots the success rate of the low noise scenario for
9 HW classes using 50 points in time resulting in over 10 000
experiments. One can see that SMO is more efficient than TA
and SA, where the difference between TA and SA is rather
small. Recall that we achieved an accuracy of 91.1%, 73.44%,
and 72.48% for SMO, TA, and SA, respectively. Needless to
say, with low noise all three methods reveal the secret key
using a low number of measurements. This gives a motivation
that the difference in accuracy found in our studies directly
impacts the success rate of side-channel analysis.

One interesting future field of research would be to inves-
tigate the behavior of various deep learning algorithms for this
problem.

IV. CONCLUSIONS

This paper demonstrates the application of several state-
of-the-art machine learning methods for side-channel analysis.
Given a proper tuning, we show that even in an unrestricted
scenario, i.e., using a sufficient number of profiling traces, ML
techniques are able to be more efficient than template attacks.
In case of limited resources (e.g., computing power, storage),
we furthermore investigate the performance of all techniques
when only a subset of features or points in time are used.

Finally, we present a novel measure called the Data Con-
fusion Factor that provides a measure of successfulness for
machine learning techniques. This measure is a preliminary
but promising step to link the outcome of ML techniques with
the success rate of side-channel analysis within the profiling
phase, which opens a completely new research topic for SCA.
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