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ABSTRACT 
Glowworm Swarm Optimization (GSO) is one of the optimization techniques, which need to be 
parallelized in order to evaluate large problems with high-dimensional function spaces. There are 
various issues involved in the parallelization of any algorithm such as efficient communication 
among nodes in a cluster, load balancing, automatic node failure recovery, and scalability of nodes 
at runtime. In this paper, we have implemented the GSO algorithm with the Apache Spark 
framework. Even though we need to address how to distribute the data in the cluster to improve 
the efficiency of algorithm, the Spark framework is designed in such a way that one does not need 
to deal with any actual underlying parallelization details. For the experimentation, two multimodal 
benchmark functions were used to evaluate the Spark-GSO algorithm with various sizes of 
dimensionality. We evaluate the optimization results of the two evaluation functions as well as we 
will compare the Spark results with the ones obtained using a previously implemented 
MapReduce-based GSO algorithm. 
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INTRODUCTION 
Optimization is a process whereby the best possible solution to a particular problem is being 
sought. Thinking in terms of function optimization, one is usually interested in finding the 
minimum or maximum value of a particular function. There a many different kinds of optimization 
algorithms and one subgroup belongs to the stochastic algorithms, namely nature-inspired 
algorithms. Nature-inspired algorithms are algorithms that are inspired by natural processes such 
as evolution or swarming behavior. Within the nature-inspired algorithm category there are two, 
namely evolutionary algorithm and swarm intelligence approaches (Engelbrecht, 2007). 
Evolutionary algorithms take inspirations of processes in nature such as natural selection, 
crossover and mutation. Examples of evolutionary algorithms are genetic algorithm, evolutionary 
strategy, genetic programming, etc. (Eiben, 1994).  

Swarm intelligence methods’ core concept is that interacting swarm members are exchanging 
information to achieve a particular goal, which then is used to find the optimum value of a 
particular problem. Particle swarm optimization is one of the swarm intelligence methodologies 
whereby the concept of finding food sources based on the birds’ current movement, the flocks’ 
best food source ever found, and an individual bird in the flock experiencing the best food source 



is used. In ant colony optimization, the actions of ants performed for example during the process 
of finding the shortest path is applied (Stützle, 2009). In particular, the ants’ indirect 
communication ability such as secreting pheromone on various paths is used in the algorithm. 
Another example of a swarm optimization algorithm is the bee colony optimization algorithm 
(Wong, Low, & Chong, 2008). In bee colony optimization, the concept of using local and global 
searching honeybees to build honeybee colonies is applied. 

Yet another swarm intelligence algorithm, inspired by the characteristics shown by glowworms, 
called Glowworm Swarm Optimization (GSO) (Krishnanand & Ghose, 2009a), has been 
introduced. To mimic goals such as attracting a mate during the breeding season, the glowworms 
govern the emission of light. Application areas of GSO are for example, hazard sensing in 
ubiquitous environments (Krishnanand & Ghose, 2008), robotics and portable sensor networks 
(Krishnanand & Ghose, 2005), and data clustering (Aljarah & Ludwig, 2013b). All these 
applications can make use of the GSO algorithm due to its simplicity and small number of 
parameters that are required for tuning (Krishnanand & Ghose, 2009a) (Krishnanand & Ghose, 
2008) (Krishnanand & Ghose, 2005). 

GSO has been applied to many different application areas, however, one area that GSO is well 
suited for are multi-modal function optimization (Barrera & Coello, 2009). The aim of multi-modal 
function optimization is to find all maxima (peaks) or minima (valleys) given some constraints. 
However, one problem multi-modal function optimization suffers from is the relatively long 
runtime of the algorithm when searching for the peaks/valleys. In particular, the running time of 
the algorithm is significantly increased when the peak count is increased for higher dimensional 
spaces. The count of swarm members is also increased in order to have a better chance to find all 
the peaks or valleys in higher dimensional spaces. One approach to speed up the processing is to 
divide the search into several groups as to carry out the optimization process. Thus, a parallelized 
solution is required to achieve the optimization task in a feasible amount of time. 

One solution that has been implemented using the MapReduce framework was proposed in 
(Aljarah & Ludwig, 2013b). The benefit of the MapReduce framework is that no knowledge of 
parallel programming is required to implement the parallelization. A conceptual understanding of 
MapReduce allows one to program a parallel implementation. Besides that, the MapReduce 
framework comes with built-in fault-tolerance, load balancing, and data locality. 

The latest parallelization technology is Spark (Apache SparkTM, 2017). The Spark development 
was initiated by the UC Berkeley RAD lab that started as a research project in 2009. The main 
goal behind the development is to provide iterative in-memory computing support for MapReduce. 
Companies like Yahoo, Databricks and Intel are major contributors to the Spark development 
(Matei Zaharia, Holden Karau, Andy Konwinski, 2015). Spark is used for data intensive 
applications that companies such as Facebook work with (Apache Spark @Scale, 2017). 

Apache Spark can handle large sets of data and scale well by increasing the number of nodes at 
runtime. Apache Spark applications can be developed in various programming languages 
including Java, Python, Scala and R. A Spark application in general is mainly operated by a driver 
program that controls parallel operations on a cluster. A Resilient Distributed Dataset (RDD) is 
the main abstraction provided by Spark, which is a collection of elements that can be partitioned 



and distributed over a cluster of nodes for parallel processing. RDD provides reusability through 
caching capabilities and node failure recovery. 

In this paper, a parallel GSO algorithm is proposed using Apache Spark. The following 
contributions are presented implementing parallel glowworm swarm optimization on Spark 
(Spark-GSO): 

• Apache Spark concepts have been successfully applied to Glowworm Swarm Optimization 
to enable parallelization.  

• Higher dimensional multimodal functions have been evaluated in Spark-GSO and 
compared with the MR-GSO algorithm. 

The following sections in this paper are organized as follows: Background and Related work in 
the areas of parallel computing, MapReduce and parallel optimization algorithms are presented in 
Section 2. GSO, MR-GSO and the proposed Spark-GSO algorithm are presented in Section 3. The 
experiments with results are provided in Section 4 followed by conclusions.  

 

BACKGROUND 
Despite the fact that Genetic algorithms (optimization algorithm) can be used to solve difficult 
problems, they demand a lot of computational power and memory, thus the demand for 
computation in order to solve large-scale problems is increased (Venter & Sobieszczanski-
Sobieski, 2006) (Ismail, 2004). In order to achieve a speedup against the execution of genetic 
algorithms in a single processor, parallel algorithms utilize multiple processing nodes (Grama, 
2003). Several methods have been proposed to tackle the various challenges in implementing 
parallel optimization algorithms.  

Message Passing Interface (MPI) methodology has been extensively used for various algorithms 
for parallel computing (Snir, 1998). A master slave paradigm on a Beowulf Linux Cluster using 
the MPI library has been proposed by Ismail et. al in 2004 (Ismail, 2004). A parallel PSO algorithm 
based on MPI has been introduced by Venter and Sobieszczanski-Sobieski in 2005 (Venter & 
Sobieszczanski-Sobieski, 2006). Since MPI has a large function set, it makes programming MPI 
complex (Snir, 1998), while algorithms using MapReduce are easy to design and develop (Dean 
& Ghemawat, 2004), although finer granular level parallel processes can be reused in MPI. 
MapReduce uses a distributed file system such as HDFS (Hadoop Distributed File System) to 
achieve faster file access whereas the message-passing model is used for communication in MPI. 
When a node fails in MPI the processes are terminated, whereas fault-tolerance of nodes is 
automatically built-in using MapReduce. 

McNabb et al. in 2007 (McNabb, Monson, & Seppi, 2007) have created a model called MRPSO 
and implemented PSO with MapReduce. Radial basis benchmark functions have been used to 
verify and validate the efficiency of the execution of data-intensive optimization functions in 
MapReduce.  

  



In 2008, Jin et al. (Jin, Vecchiola, & Buyya, 2008) have successfully implemented genetic 
algorithms with MapReduce. They provided proof that a genetic algorithm can be parallelized 
using MapReduce. Later, it has been proved that designing and implementing an ant colony 
optimization (ACO) algorithm can be done using the MapReduce framework (B. Wu, Wu, & 
Yang, 2012). Later, ACO has been implemented for different optimization problems such as 0-1 
knapsack problem and the Travelling Salesman Problem (TSP) (B. Wu et al., 2012) to prove that 
larger problems can be solved using MapReduce. A MapReduce version of ACO applied to the 
Max-Min problem has been used (Tan, He, & Shi, 2012), which resulted in better results when 
compared to the sequential Max-Min ACO problem.  

A differential evolution algorithm has been implemented in MapReduce (Zhou & Chi, 2010) to 
improve scalability. The population is divided into several partitions, and the sub-population is 
updated by a task in each partition. This improvement resulted in faster execution time when 
compared to the traditional sequential version. 

Paduraru et al. (Paduraru, Melemciuc, & Stefanescu, 2017) implemented a genetic algorithm for a 
test function to evaluate the parallelization features capabilities. The PSO algorithm is 
implemented with a large amount of data (greater than 3 * 107 data-points have been executed and 
evaluated) which resulted in a better performance than the traditional approaches (K. Wu, Zhu, Li, 
& Han, 2017).  

Most of the MapReduce implementations above were used to optimize single objective functions. 
In (Aljarah & Ludwig, 2013a), GSO was used to deal with multimodal functions. The GSO 
algorithm was implemented using MapReduce (MR-GSO). The benefit of the parallel version of 
GSO is that higher dimensions can be executed (Aljarah & Ludwig, 2016) thus, achieving 
scalability and efficiency.  

Although Apache Spark is not as efficient as MPI, it reduces the gap in performance in terms of 
speed and scalability when compared with MapReduce (Big Data Analytics, 2015). Apache Spark 
on Hadoop provides various additional features such as failure and data replication management, 
runtime addition of new nodes, and also provides tools for easy implementation. At times, these 
features make Apache Spark more preferable over the MPI methodology. 

Performance on moderately sized datasets is substantially slower because of the overhead 
scheduling. In addition, there is no support for iterative computation in MapReduce, while 
excellent results are obtained in terms of scalability and performance using MLLIB libraries 
provided by Apache Spark (Meng et al., 2016) (Gopalani & Arora, 2015). MLLIB in Spark 
provides off-the-shelf algorithms for classification, regression, recommendation, clustering, etc. 
in conjunction to the use of streaming services for real-time analysis, which MapReduce does not 
provide (MLlib, 2017) (Spark Streaming, 2017) (Miryala, 2017).  

In this paper, we have taken the GSO algorithm and implemented it on Apache Spark as Spark-
GSO to improve the efficiency of GSO. The evaluation is done by comparing the optimization 
process, runtimes and speedup for both MapReduce (MR-GSO) and Spark (Spark-GSO). 

 

  



GLOWWORM SWARM OPTIMIZATION 
(Krishnanand & Ghose, 2005) have introduced a new swarm intelligence method called 
Glowworm Swarm Optimization (GSO) in 2005. Initially, the algorithm randomly places N 
glowworms in the workspace. Xi(t) is the position at time t in the function search space, Li(t) is the 
Luciferin level and rdi(t) is a local decision range for a glowworm i. Based on the objective 
function J, an objective value of an individual’s position is defined, which is associated with a 
luciferin level. 

A glowworm closer to the peak has a higher fitness value holding a higher luciferin level (emits 
more light) than the others. If a glowworm has a higher luciferin value than the neighboring 
glowworms within the local decision range, then they try to attract the other glowworms towards 
it. The glowworms with a lower luciferin value and within its local range move towards a 
glowworm with a high luciferin value. This is a continuous process and requires several iterations 
to complete the process of movement towards several peaks in the given search space. 

The GSO algorithm can be broadly divided into four stages:  

Initially, all the required variables for the optimization are declared and initialized. Then, the 
algorithm randomly deploys N glowworms in the given workspace. L0 (constant) is used to 
initialize the luciferin level for all glowworms. Finally, in the first stage, r0 is used to initialize 
both rd (local decision range) and rs (radial sensor range). 

The second stage deals with updating the luciferin levels. In this stage, the fitness is evaluated 
using the glowworm position (Xi). For all swarm glowworms, the luciferin levels are updated using 
the fitness values. The equation to update the luciferin level is based on:  

  (1) 
For a glowworm i, Li(t-1) and Li(t) are previous and updated luciferin levels, respectively, the 
luciferin decay constant is r, " r ∈ (0,1), luciferin enhancement fraction is g, and for iteration t 
and the current glowworm position, the objective function to measure the fitness is represented as 
J(Xi(t)). 

The third stage defines the glowworm movement in the search space. For each glowworm i, based 
on Li and Lj (luciferin level of another glowworm) and rd (local decision range), the glowworms 
neighbor group Ni(t) is extracted using: 

  (2) 
where the neighbor group is represented as Ni(t), one of the glowworms other than i is glowworm 
j, the Euclidean distance between the ith and the jth glowworm is dij, the local decision range for 
glowworm i is rdi(t), and the luciferin levels for the jth and ith glowworm are Lj(t) and Li(t), 
respectively. 

The best neighbor is identified from the existing neighbor group by applying the roulette wheel 
method on the probability-based values. By applying the roulette wheel selection method, only 
higher probability glowworms in the neighbor group have a good chance to be chosen as the best 
neighbor. The probability calculation is done by: 



 

 

(3) 

where for glowworm i, a neighbor from neighbor group Ni(t) is represented as j. The glowworm i 
does not update its location if the denominator in the equation becomes zero (case where no 
neighbors are found). 

At the end of third stage, based on the selected neighbor position, the position of the current 
glowworm is updated which is the following: 

 

 
(4) 

Here, the new and old positions for glowworm i is represented as Xi(t) and Xi(t-1), respectively, 
the step size constant is s, and the distance between the ith and the jth glowworm is dij. 

The final stage deals with updating the local decision range. This adds flexibility while formulating 
a neighbor group in the successive iterations. To update rdi, the following equation is used: 

 
 (5) 

Here for glowworm i, the new and previous local decision range are represented as rdi(t) and rdi(t-
1), respectively, the radial sensor range constant as rs, model constant as b, constant to govern 
neighbor count as nt, and the number of neighbors as Ni(t). 

 

PROPOSED SPARK GSO ALGORITHM (SPARK-GSO) 
Initially, a swarm of glowworms of a specific size is created. In the swarm, each glowworm is 
associated with a random positional vector (Xi) in the given search space and is generated using 
uniform randomization. For each Xi vector, the fitness is calculated using the objective function J. 
Using Equation (1), the luciferin level (Li) is evaluated for each glowworm with the provided 
default luciferin value L0, J(Xi), and other constants. The initial local decision range, r0, is used as 
a local decision range rd for the first iteration. Once the entire swarm is initialized with the updated 
information, the glowworms are added to a list. This list is used, broadcasted, and updated during 
every iteration of the algorithm. 

In the next phase of Spark-GSO, the iterative process of RDD operations is performed. Each 
iteration (RDD action) updates the glowworm swarm and the updated swarm is used as the input 
for the next iteration for processing.  

Before the transformations are applied, the entire swarm is sent to each task using a broadcast 
variable, a feature provided by Spark is to send and cache an object on each node before starting 
the tasks. The broadcast variable is initialized and broadcasted as a list of glowworms for the 
processing in the mappers, which is required to calculate the Euclidian distance between each 
worm in the swarm. The GSO constants such as b, r, g, s, rs, nt which are used in the process of 
movement of the glowworm swarms are retrieved. 

There are two mapper transformations used in the architecture. The first transformation is used to 
find the best neighbor from all the glowworms in the swarm. To find the neighbors, an O(n2) 



algorithm is used. The algorithm involves calculating the Euclidian distance and the luciferin level 
comparisons between the given glowworm and all the other glowworms in the search space to 
locate a neighbor group as given in the Equation 2. Once the neighbor group is found, Equation 3 
is used to find the best neighbor in that group. A technique called roulette wheel selection method 
is used to find the best neighbor. At the end of the first transformation, the best neighbor is attached 
to the original glowworm. Finally, the glowworm with an attached neighbor glowworm is emitted 
(returned) for further processing in the second transformation. The first transformation algorithm 
is outlined in Algorithm 2.  

The second transformation picks up the glowworm swarm with each glowworm attached with a 
best neighbor glowworm. This transformation mapper is used to update the luciferin level Li for 
each glowworm by evaluating the fitness for the new glowworm position. In this phase, the 
glowworm and its best neighbor position (Xj) is extracted at the start. Using Equation 4, the next 
step is to update the glowworm positional vector. Then, the fitness is evaluated for the new 
positional vector for the luciferin level calculation using Equation 1. In the last step before emitting 
the new glowworm, rdi is calculated using Equation 5. Finally, the glowworm with the updated 
information is emitted. The second transformation algorithm is outlined in Algorithm 3. 

Then, an Apache Spark action Collect is implemented in the driver class. As Spark transformations 
are “lazy”, no transformation is applied until the action is implemented. The collect supplies the 
actual updated glowworm swarm to the driver program. At the end of each iteration, the updated 
glowworm swarm is collected and broadcasted for the next iteration processing. Also, this updated 
glowworm is used for RDD operations in the next iteration. 

 

 

Algorithm 1 Spark Driver Program 

 

 

main() 

 List swarm = createSwarm() 

 RDD = SparkContext.Parallelize(swarm)  

 for each iteration in numberOfIterations 

  SparkContext.broadcast(swarm) 

  RDD.map(mapper1) 

  RDD.map(mapper2) 

  swarm = RDD.collect() 

function createSwarm() 

 return List of glowworms 



 

Algorithm 2 Transformation Mapper 1 

 

function mapper1(Glowworm) 

 broadcastSwarm = read (BroadcastVariable)  

 for each glowworm in BroadcastSwarm do  

  Xj=extractPosition(glowworm) 

  Lj=extractluciferin(glowworm) 

  EDist=returnEDistance(Xi,Xj ) 

  if (EDist <rdi and Lj >Li) then 

   NeighborsGroup:add(j) 

  end if 

 end for 

 if (NeighborsGroup:size() > 0) then 

  for each glowworm j in NeighborsGroup do 

   //calculate the probabilities from 

   the NeighborsGroup using Equation (2) 

   prob[j]=calculateProbability(i,j) 

  end for 

 end if 

 nj=selectBestNeighbor(prob) //using roulette wheel selection 

 Glowworm.setNeighborSize(NeighborsGroup.size()) 

 Glowworm.addNeighbor(nj) 

 return Glowworm 

end function 



 

Algorithm 3 Transformation Mapper 

 

EXPERIMENT AND RESULTS 
In this section, we provide the details about the computing environment and the benchmark 
functions used for the experiments as well as give a brief description of the MR-GSO algorithm. 
We also discuss the optimization quality, running time of the measurements for the MR-GSO and 
Spark-GSO algorithms.  

Environment 
We executed the MR-GSO and Spark-GSO algorithms on the Wrangler Hadoop cluster hosted by 
the Texas Advanced Computing Center (TACC). Each node of the Wrangler cluster has 24 cores 
(Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz), and 128 GB of memory. The Hadoop 
environment, which we have used is Hadoop 2.6.0-cdh5.7.1 to run the MR-GSO algorithm, while 
Apache Spark version 2.1.0 is used to execute the Spark-GSO algorithm. 

function mapper2(Glowworm) 

 Glowworm newGlowWorm 

 if(neighborSize != 0) 

  //Extract the neighbor glowworm information from the attached 
glowworm  

  extractNeighbor(Glowworm) 

 else 

  //Make the existing glowworm as new glowworm 

  newGlowWorm = Glowworm 

 end if 

 //calculate the new position for glowworm using Equation (4) 

 newX=calculateNewX(Xi,Xj ) 

 //update luciferin level for glowworm i using objective function 
formula J 

 newJx=calculateNewJx(newX) 

 //update luciferin level for glowworm  using Equation (1) 

 newL=calculateNewX(Li,newJx) 

 //calculate the new rd for glowworm using Equation (5) 

 newrd=calculateNewrd(rdi,nbSize) 

 newGlowWorm.update(newX,newJx,newL,newrd) 

 return (newGlowWorm) 

end function 



Benchmark Functions 
We have used two multimodal benchmark functions to evaluate the MR-GSO and Spark-GSO 
algorithms. The description of the benchmark functions is as follows (Li, Engelbrecht, & 
Epitropakis, 2013) (Liang, Qu, Suganthan, & Chen, 2014):  

F1: A highly multimodal function called Equal-peaks-B, which can be spanned into an m-
dimensional search space is chosen as Function F1. The Equal-peaks-B function has equal function 
values at all local maxima. When Xi, i= 1,….,m, is considered as a multidimensional vector, the 
function search space used is  (-P ≤ Xi ≤ P). The function has 2m peaks and the definition is: 

 
 

(6) 

F2: The Rastrigin function is a highly multimodal function, which is generally used for 
optimization algorithms as a performance test problem. The minima and maxima of locations are 
regularly distributed in this function. Due to its large number of local minima and large search 
space, this function has difficulty in achieving the solution. When Xi, i= 1,….,m, is considered as 
a multidimensional vector, the function search space used is (-1≤Xi ≤1). The function has 2m peaks 
with the following definition: 

 
 

(7) 

 
Evaluation Measures 
The Peaks Capture Rate (PCR) and the average minimum distance from each glowworm to the 
peak locations (Davg) are used to determine the optimization quality (Krishnanand & Ghose, 
2009b). If the distance of three nearest glowworms to a peak is less than or equal to e, then we say 
that the peak is captured. As recommended by Krishnanand et al. (Krishnanand & Ghose, 2009b), 
e=0.05 is used in our experiments.  

The Peak Capture Rate (PCR) is calculated using: 

 
 

(8) 

 
The average minimum distance, Davg, to the peak locations is calculated using: 

 

 
(9) 

where the number of glowworms in the swarm is N, the Euclidian distance between glowworm i 
and peak j is represented as dij, and the number of available peak locations is represented as Q. 

When high PCR and low Davg values are achieved, it is considered as the best result. For example, 
if the result achieved has a low PCR, it means the glowworms are gathered at a few peaks only 
ignoring the rest of the peaks, which is not a good solution. While when PCR is close to 100%, it 
means that the glowworms are actually gathered at all the peaks available, and a low Davg means 
the glowworms are actually gathered very close to the peaks, which is an optimal solution. 



The experiments which we executed uses the default GSO settings as specified in (Krishnanand & 
Ghose, 2009b). We used r (luciferin decay constant) = 0.4, g (luciferin enhancement constant) = 
0.6, b (constant parameter) = 0.08, nt (number of neighbors’ limit) = 5, L0 (Luciferin rate) = 5.0, s 
(step size) = 0.03. The rd (local decision range) and rs (radial sensor range) values are adjusted 
depending on the function chosen. In our executions, rd is constant throughout the optimization 
process such that rs = rd = r0.  

 
MR-GSO Algorithm 
The MR-GSO algorithm is implemented based on the work published by Aljarah and Ludwig 
(Aljarah & Ludwig, 2016). The implementation of Spark-GSO is similar to MR-GSO except with 
some modifications to make use of features available in Spark. In MR-GSO, the glowworms in 
the swarm are initially written to the distributed file system with the <Key, Value> structure. The 
key-value structure is described in Figure 1.  

 
Figure 1 Representation of Glowworm in MR-GSO Algorithm 

Here, during each iteration a MapReduce job is executed which produces the updated swarm, 
which is used for the next iteration. The mapper is used for finding the neighbor group and the best 
neighbor from the workspace. The mapper emits the current glowworm and the best neighbor 
glowworm as <Key, List of Values> at the end. Once the reducer is started, the emitted <Key, List 
of Values> pairs from the mapper is consumed and the update of the Luciferin level is carried out. 
The Glowworm positional vector is also updated in the reducer and a newly updated glowworm is 
emitted at the end. More details can be found in (Aljarah & Ludwig, 2016). 

  



RESULTS 
To evaluate and compare both MR-GSO and Spark-GSO algorithms, various experiments have 
been conducted measuring PCR, Davg, running time and speedup for both the Equal-peaks-B and 
the Rastrigin benchmark. 

The optimization quality for the Spark-GSO algorithm for the F1 function with 2 dimensions is 
shown in Figure 1. For each swarm size varying from 10,000 to 60,000, PCR and Davg for every 
iteration have been evaluated and presented. Although we can see that the minimum distance is 
reduced at each iteration, we cannot see any significant improvement in Davg when the swarm size 
is increased. Also, for the 2-dimensional glowworms swarm, we cannot see a significant 
improvement in PCR when the swarm size is increased as the PCR converges to 100% at the lowest 
swarm (10,000) size (Figure 2(b)).  

  
Figure 2 Spark-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

Figure 3 represents the optimization quality for the MR-GSO algorithm for the F1 function with 2 
dimensions. Similar to Spark-GSO, the PCR converges at the second iteration for a swarm size of 
10,000 and Davg significantly reduces at each iteration until the first 60 iterations, and shows a slow 
reduction after that. There is no visible difference between Spark-GSO and MR-GSO for Davg in 
Figures 2(a) and 3(a). 

  
Figure 3 MR-GSO: Equal-peaks-B (F1) 2-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 



The optimization quality for the Spark-GSO algorithm for the F1 function with 4 dimensions is 
shown in Figure 4. Here, we can see that the average minimum distance is almost equal for all 
swarm sizes and low values are achieved over time (iterations). However, the PCR values 
convergence rate to 100% varies for each glowworm swarm size. From Figure 4(b), we can see 
that the PCR converges to 100% at the 42nd iteration for a swarm of 10,000 glowworms, while the 
PCR converges to 100% at the 25th iteration for a swarm of 60,000 glowworms.  

  
Figure 4 Spark-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 5 represents the optimization results for the MR-GSO algorithm for the F1 function with 4 
dimensions. From Figure 5(b), it shows that the difference in achieving a low Davg is almost similar 
to the Spark-GSO execution. PCR converges to 100% at the 47th iteration using MR-GSO (Figure 
4(b)) while it is achieved at the 42nd iteration for Spark-GSO (Figure 4(b)), which is a minute 
difference.  

  
Figure 5 MR-GSO: Equal-peaks-B (F1) 4-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 6 and Figure 7 represent the optimization quality for the F1 function with 6 dimensions for 
the Spark-GSO and MR-GSO algorithm, respectively. In both, Spark-GSO and MR-GSO, the 
average minimum distance is better for the swarm size with 60,000 glowworms than the smaller 
swarm sizes. For both algorithms, the PCR does not converge to 100% when the swarm size is 



10,000. For the rest of the swarm sizes, the PCR converges to 100% for 6 dimensions. The Spark-
GSO algorithm captured 98.4% of the peaks, while MR-GSO captured 95.3% of peaks in the 
search space. 

  
Figure 6 Spark-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 7 MR-GSO: Equal-peaks-B (F1) 6-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

Figure 8 and Figure 9 represent the optimization quality for the F1 function with 8 dimensions for 
Spark-GSO and MR-GSO, respectively. In both, Spark-GSO and MR-GSO, the average minimum 
distance is better for the swarm size with 60,000 glowworms than the smaller swarm sizes, and for 
a 10,000 sized swarm the Davg is considerably larger. For both algorithms, the PCR does not 
converge to 100% irrespective of the swarm size. Spark-GSO and MR-GSO captured only around 
5% peaks for swarm of 10,000 glowworms after 200 iterations, while for a swarm of 60,000 
glowworms only around 70% peaks are captured. 

 



  
Figure 8 Spark-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 9 MR-GSO: Equal-peaks-B (F1) 8-dimensional optimization process, iterations=200, 
r0=2.0 (a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

For the Rastrigin (F2) function with 2, 4, 6 and 8-dimensions, the optimization quality results for 
both Spark-GSO and MR-GSO are represented in Figures 10 to 17. For the 2-dimensional 
glowworms swarm of various sizes, 100% of the peaks are captured at the 1st iteration for both 
Spark-GSO and MR-GSO (Figure 10(b), Figure 11(b)). Spark-GSO achieved 100% PCR at the 
10th iteration for 10,000 glowworms with 4 dimensions, while MR-GSO achieved the same at the 
13th iteration. The same has been achieved at the 7th iteration for 60,000 glowworms for both 
algorithms (Figure 12(b), Figure 13(b)). For the 6 dimensions, the maximum peaks capture rate is 
98.4% after 200 iterations with a swarm of 10,000 for Spark-GSO and MR-GSO, while for 60,000 
glowworms it is achieved at around the 22nd iteration (Figures 14(b) and 15(b)). For both Spark-
GSO and MR-GSO with 8-dimensions, not even a single peak is captured for a glowworms swarm 
of 10,000. But when using 60,000 glowworms, 85.9% of the peaks are captured for the Spark-
GSO algorithm while only 63.2% of the peaks are captured when the MR-GSO algorithm is 
executed (Figures 16(b) and 17(b)). 

 



  
Figure 10 Spark-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 11 MR-GSO: Rastrigin (F2) 2-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  

Figure 12 Spark-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 



  
Figure 13 MR-GSO: Rastrigin (F2) 4-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 14 Spark-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 15 MR-GSO: Rastrigin (F2) 6-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

 



  
Figure 16 Spark-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

  
Figure 17 MR-GSO: Rastrigin (F2) 8-dimensional optimization process, iterations=200, r0=0.5 
(a) Average Minimum Distance. (b) Peaks Capture Rate. 

 

We have executed both Spark-GSO and MR-GSO on a 2, 4, 8, 16 and 32 node cluster to compare 
the running times and speedup results. Figure 18 represents the running times and speedup results 
of Spark-GSO and MR-GSO on various number of nodes in a cluster. As we increase the number 
of nodes the running times decrease for both Spark-GSO and MR-GSO. Also, we can observe that 
the running times actually increase when the swarm size increases. Finally, we can conclude that 
the running times of the Spark-GSO algorithm are less than the ones of the MR-GSO algorithm.  

The speedup results for both Spark-GSO and MR-GSO for various swarm sizes executed on 
various nodes are represented in Figures 18(b), 18(d) and 18(f). As we can see, the speedup of the 
MR-GSO algorithm is closer to the linear speedup only when 2, 4 and 8 nodes are used when 
compared to the Spark-GSO algorithms speedup for 100,000 glowworms swarm. The speedup 
diverges after 8 nodes. For 200,000 glowworms, the speedup for both Spark-GSO and MR-GSO 
is comparatively closer to the linear speedup until 16 nodes than when N=100,000. When 300,000 
glowworms are used, MR-GSO is very close to the linear speedup until 16 nodes and diverges a 
little after that. But for Spark-GSO, we can see that the divergence is larger than that of the MR-
GSO for N=300,000. 



  
(a) Running Time N=100,000 (b) Speedup with N=100,000 

  
(c) Running Time N=200,000 (d) Speedup with N=200,000 

  
(e) Running Time N=300,000 (f) Speedup with N=300,000 
Figure 18 Equal-peaks-B function running time and speedup results for 4-dimensional glowworms 



  
a) Running Time for 1,000 dimensions b) Speedup with 1,000 dimensions 

  
c) Running Time for 2,000 dimensions d) Speedup with 2,000 dimensions 

  
e) Running Time for 3,000 dimensions f) Speedup with 3,000 dimensions 

Figure 19 Equal-peaks-B running time and speedup results for N=10,000 swarm size 

 



We have executed Spark-GSO for a higher dimensional swarm of size 10,000 to test the scalability 
of the algorithm on 2, 4, 8, 16 and 32 nodes and obtained running times and speedup results. Figure 
19 represents the running times and speedup results of Spark-GSO on various number of nodes 
with various dimensions and the fixed swarm size of 10,000. As we increase the number of nodes, 
the running times decrease running Spark-GSO. Also, we can observe that the running times 
increase when the number of dimensions of the swarm increases (as shown in Figure 19 a) to f)). 

 

CONCLUSION 
Many different parallelization frameworks have been introduced in the past. Spark is one such 
framework that is designed in a way that allows for easy implementation. In order to parallelize an 
algorithm using the Spark framework one does not need to deal with any parallelization details 
besides the logic of the algorithm itself.  

In previous research work, the Glowworm Swarm Optimization (GSO) algorithm was parallelized 
using MapReduce (MR-GSO). In this paper, we have parallelized the GSO algorithm using 
Apache Spark (Spark-GSO) applied to multimodal function optimization. Apache Spark 
eliminates the read and writing operations of intermediate files onto a hard disk, which MapReduce 
uses. Furthermore, Spark-GSO parallelizes the algorithm using two transformations and a single 
action. 

For the experimentation, two multimodal benchmark functions were used to evaluate the Spark-
GSO algorithm with various sizes of dimensionality (2 to 8) as well as various swarm sizes (10,000 
to 60,000). Furthermore, we compared the Spark-GSO results with the ones obtained using the 
MapReduce-based GSO algorithm. The optimization results, running times, and the speedup were 
evaluated and compared with the MR-GSO results. The results can be summarized as follows. 
There is a difference in the convergence of the optimization results comparing the Spark and 
MapReduce implementations. Spark-GSO converges to the solution in general a little bit faster 
than MR-GSO, which is especially noticeable for larger dimensions. For both benchmark 
functions, the optimization results are very similar for 2 and 4 dimensions, but then show for the 
higher dimensions (6 and 8); most significant for 8 dimensions. In terms of the running time of 
Spark-GSO and MR-GSO using up to 32 compute nodes, Spark-GSO is expectantly faster than 
MR-GSO for all swarm sizes tested. The speedup obtained however is better for MR-GSO than 
Spark-GSO. We have also executed Spark-GSO for higher dimensions (1,000, 2,000 and 3,000) 
to show that our algorithm is indeed scalable to higher dimensions. 

As for future work, the basic RDD operations have been used and implemented to complete the 
algorithm, however in future we can use the concepts like Data-Frames in Spark to achieve even 
faster run-times. Furthermore, experiments with even larger dimensionality and population sizes 
will be conducted. 
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