
A Differential Evolution Based Multiclass 
Vehicle Detector and Classifier for Urban 

Environments 
 

Deepak Dawar, Department of Computer Science, North Dakota State University, USA 
Simone A. Ludwig, Department of Computer Science, North Dakota State University, USA 

 
 

ABSTRACT 
Video analytics is emerging as a high potential area supplementing intelligent 

transportation systems (ITSs) with wide ranging applications from traffic flow analysis to 
surveillance. Object detection and classification, as a sub part of a video analytical system, could 
potentially help transportation agencies to analyze and respond to traffic incidents in real time, 
plan for possible future cascading events, or use the classification data to design better roads. 
This work presents a specialized vehicle classification system for urban environments. The 
system is targeted at the analysis of vehicles, especially trucks, in urban two lane traffic, to 
empower local transportation agencies to decide on the road width and thickness. We present a 
hybrid appearance model specifically designed for speedy foreground extraction in the given 
context. We use a simple motion cue based tracking algorithm, and stay clear of using 
probabilistic trackers. The main thrust is on the accurate detection and classification of the 
detected objects using an evolutionary algorithm. The detector is backed by a differential 
evolution (DE) based discrete parameter optimizer. We show that, though employing DE proves 
expensive in terms of computational cycles, it measurably improves the accuracy of the detection 
and hence the classification system. The system was tested on multiple real video footage during 
varied weather conditions from a camera mounted in urban areas achieving a peak classification 
accuracy of approximately 90%. 
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INTRODUCTION 

Vehicle detection and classification is currently a hot focus area in the myriad web of 
intelligent transportation systems (ITSs) with immense potential for traffic flow control, security, 
and surveillance to name a few. ITSs are embracing data driven techniques (Zhang et al., 2011) 
wherein the data related to traffic density, incidents, etc. are relayed back to users of the traffic 
systems thereby empowering them to make real-time decisions about routes thereby promoting 
efficiency. Road side regulations, increasing density of vehicles on roads, and costs of overlaying 
the roads are some of the supplementary and rather critical reasons calling for ever more efficient 
utilization of our transportation networks. Robust vehicle classification systems that are able to 
compute the number and type of vehicles plying on a particular road or highway, provide a part 
of the solution.  



Various vehicle detection and classification systems such as digital wave radars (Sharma 
et al., 2008), amplitude modulated laser radars (Mao et al., 2012), lidars (Levinson et al., 2011), 
magnetometers (Canoga, 2003) etc., have been proposed and some have been in continual use 
commercially with their inherent advantages and disadvantages. These systems can be broadly 
classified depending upon the type of sensors they use or on the basis of their installation vis a 
vis intrusive and non-intrusive. Most commonly used systems, use one or a combination of laser, 
piezoelectric, microwave, or video cameras. For example, inductive loop detectors are one of the 
most accurate and widely used systems for vehicle detection. But due to their intrusive nature, 
high equipment and installation costs, they are not often being applied (Middleton, Chara, & 
Longmire, 2009).  

Video based vehicle classification has recently emerged as a low cost alternative to 
conventional intrusive systems primarily owing to their low cost, non-intrusive nature of 
installation, and operation. For example, there has been extensive use of video based vehicle 
detection systems in surveillance (Tian et al., 2015), (Sivaraman & Trivedi, 2013), (Wang, 
2013). Other benefits include (Linda & Volling, 2003): 

• Freedom from extensive sawing residue and extensive cleaning after installation 
and continual maintenance. 

• Installation can be done year round. 
• No need for road closure for installation and maintenance thereby reducing the 

impact on traffic flow. 
• Ease of operation. 
• Provides rich data through which additional information and context can be 

approximated. 
• Vison based systems integrate well with other object detection systems. 

Their advantages notwithstanding, video based detection and classification systems have 
their own challenges, and pose many difficulties for researchers. Some of them may be 
categorized as (Tian et al., 2015): 

• Occlusion: Vehicles and other objects on roads can block each other in the camera 
view leading to a false count. 

• Rapid illumination changes: Weather changes may range from periods of very 
high brightness to very low intensities posing a problem for detection algorithms. 

• Vehicle edge/contour deformation: Due to various continual changes in scene, the 
vehicle may not be detected with a perfect boundary leading to misclassifications. 

• Multiplicity of vehicle types: There are highly varied types of vehicles ranging 
from a mid-sized sedan to transport trucks with different lengths, heights, and 
axles in between. Extracting individual features and correctly classifying vehicles 
becomes a challenge in this scenario. Add to that, pedestrian, bicycles and other 
objects, the problem becomes even more difficult. 

There are other barrages of problems that specific stages of the classification systems try to 
solve, and will be discussed later in this work. 

For solving complex real world problems, researchers have been looking into 
optimization techniques inspired by natural processes such as Darwinian evolution, social group 
behavior and foraging strategies. Nature-inspired search and optimization algorithms have seen a 



significant growth in the past few decades. There are two main categories of such algorithms: 
evolutionary computing methods and swarm intelligence algorithms. Evolutionary computing 
methods employ a population of individual solutions and uses an iterative process to 
improve/evolve the solutions to achieve a certain goal under given constraints. Swarm 
intelligence on the other hand is characterized by the collective behavior of decentralized and 
self-organized systems, representing a population of simple entities that interact locally with one 
another and with their environment. 

 
We propose a novel DE based vehicle detector and classifier (DEVEC) capable of 

classifying vehicles on highway and urban areas. DEVEC has a conventional vehicle detection 
architecture with the difference that an evolutionary algorithm (DE) is used for classification of 
vehicles using multiple cues including the axle count. We use Hough Transform, a parameter 
based feature detection method, to detect the axles. The quality of the detected circles is sensitive 
to appropriate settings of these parameters. Since the process is time consuming, it is not viable 
to adjust these parameters manually every time, thus, there is always a motivation to do a 
parameter search by attaching a machine learning algorithm to discover an optimized set. 

 
Differential Evolution (DE), first proposed in the work (Storn & Price, 1995), is a robust 

real parameter optimizer in the family of evolutionary algorithms. DE has become quite popular 
lately and has been subjected to rigorous analysis in the past decade. It has been applied to a 
multitude of benchmark problems to ascertain its efficacy, and at the same time has proved quite 
effective in solving a broad range of real life scientific and engineering problems (Das & 
Suganthan, 2011). DE secured first position among evolutionary algorithms at the First 
International Contest on Evolutionary Optimization in May 1996 (Storn & Price, 1996). One of 
the major reasons for its popularity lies in its simplicity as it works with a few control parameters 
namely the scaling factor (F), the crossover rate (Cr), and the population size (NP). 
 

We employ a modified DE algorithm as a discrete parameter optimizer to find the best 
suited parameters for accurate axle detection, which is a crucial part of our vehicle classification 
system. We show that the use of DE, apart from removing the need for setting Hough Transform 
parameters manually, also has the added advantage of improving the accuracy of the axle 
detection module, thereby improving the robustness of the overall classification system. On the 
other side, the process of finding the optimal Hough Transform parameters does add an extra 
computational cost making leading to the trade-off between speed and accuracy. 
 

The motivation of this work is three-fold: 
• As a proof of concept, we classify vehicles primarily based on the number of 

axles and distance between by mounting the camera sideways instead of a 
lamppost where the camera is conventionally mounted on the top. 

• Assessing the utility of including axle count as a feature for classification aids in 
discrimination of trucks having similar geometric features but have distinct axle 
count. 

• To maximize the model function representing the scene under consideration, we 
add an evolutionary algorithm namely Differential Evolution (DE).  
 



To our knowledge, no other vehicle detection and classification algorithm make use of an 
evolutionary algorithm detecting axles for vehicle classification. 

 
The rest of the paper is organized as follows. Section 2 describes a review of related work 

to tackle the vehicle detection and classification problem. In Section 3, we describe our DE 
based vehicle detector and classifier (DEVEC). Section 4 describes the experimental setup and 
shows the results obtained, and Section 5 concludes the paper with our findings. 
 

RELATED WORK 
 

A typical video based vehicle detection system is shown in Fig 1. First we provide a review of 
different techniques proposed to tackle problems associated with each stage. 

 
Figure 1: A typical vehicle detection system 

 
Vehicle Detection 

Detection is the primary step towards analysis of videos in an intelligent transportation 
system. The robustness of this step is quite critical as it feeds the higher sub systems like vehicle 
tracking and classification. The vehicle detection problem, in particular, has been approached 
through many different ways, and multiple methods have been proposed to achieve detection. 
These methods can be broadly classified into two classes: motion based and appearance based 
(Tian et al., 2015). 

Motion based detection methods aim to extract the vehicle information based on a 
comparison of the present pixel state with an assumed stationary (background) state of the 
system. The easiest way to perform motion based detection is frame differencing (Li & He, 
2011), (Park, Lee, & Park, 2007), (Nguyen & Le, 2008) wherein the pixel wise thresholded 
difference is calculated between two consecutive frames furnishing the output in terms of motion 
pixels, or what is generally referred to as the foreground. Although simple, this technique needs 
supplementation with other methods for dynamic motion, and the use of more information apart 
from just the difference of pixel is desirable.   

Background subtraction is another common motion based segmentation technique and 
one of the more widely used (Gupte et al., 2002). This method tries to build a background model 



of the scene based on the accumulated information. This background is then compared with the 
current video frame giving the motion information. There are other methods of background 
construction that do not assume a fixed background beforehand. For example, the background 
was constructed assuming a single Gaussian distribution in (Kumar, Ranganath, & Weimin, 
2003), (Morris & Trivedi, 2008). Every pixel is either classified as background or foreground 
based on its distribution. 

Other popular motion based segmentation techniques available in literature are Gaussian 
mixture models (GMM) (Stauffer & Grimson, 1999), (Zheng et al., 2006), (Sen-Ching & 
Kamath, 2004), (Haque, Mursheed, & Paul, 2008), (Zivkovic & Heijden, 2006), (Greggio et al., 
2010), (Zhao & Lee, 2009),  median filter (Cucchiara et al., 2003), (Mcfarlane & Schofield, 
1995), kernel density estimation (Elgammal, Harwood, & Davis, 2000), kalman filtering 
(Kalman, 1960), (Karmann, Brandt, and Gerl, 1990), and optical flow (Ottlik & Nagel, 2008), 
(Indu, Gupta, & Bhattacharyya, 2011). 

Appearance based detectors, in contrast with motion based detectors, use appearance 
features like color, texture, shape, etc., to extract the object of interest, in this case vehicles from 
the image or video directly. Coded descriptors based on features are utilized to model the 
appearance of vehicles. Local edge operators have been used in (Agarwal, Avan, & Roth, 2004), 
(Ma & Grimson, 2005). Recently, more sophisticated and robust feature descriptors have been 
proposed, detailed explanation of which, can be found in the recent survey paper (Smadi et al., 
2016). 

 
 
Vehicle Tracking 

Vehicle tracking is essentially a state prediction and data association problem. The idea is 
to recognize the vehicle in subsequent frames, locate its position, and ultimately obtain its 
trajectory. Vehicle tracking is sometimes merged with the detection task but may also be 
performed separately. There are many methods available in this literature that cater to this task 
and these methods can be broadly classified into three categories: model based, region based, and 
feature based tracking.  

Model based methods presume a predetermined 2-D or 3-D vehicle appearance model 
matching the presumed model with regions of motion in the sequence (Ottlik & Nagel, 2008). A 
multi view 3-D model that builds a 3-D model based on 2-D geometrical information was 
constructed using edge features by (Koller, Weber, & Malik). Other 3-D modeling techniques 
were proposed in (Lou et al., 2005) and (Buch, Velastin, & Orwell, 2011). 

Region based tracing on the other hand, aims to detect a vehicle’s silhouette contained 
within a geometric shape represented by multiple features like area, length, width, centroid, etc. 
The vehicle may be represented in terms of a feature vector with continuous updation. This 
vector is tracked through shape matching or data association in subsequent frames. To track 
highway vehicles, a graph based matching approach was used in (Lai, Huang, & Tseng, 2010). 
The information such as length and height of the convex hull was used in (Buch, Velastin, & 
Orwell, 2011) to track the vehicles, while in (Morris & Trivedi, 2008) centroid and velocity 
information was used. 



Feature based tracking is based on the combined use of simple features like edges with 
feature descriptors like SIFT, SURF, HOG, etc. For example, region based tracking was 
combined with SIFT in (Wang & Hong, 2012). Main advantages of feature based tracking is its 
ability to perform well in crowded areas but the challenge lies in choosing effective features.  

 
Vehicle Classification 

 Classification requires vehicles to be associated with a particular class. This has been 
achieved in the literature either by using shape features (height, aspect ratio, etc.) or appearance 
of the vehicle. The number of features used has a direct impact on the number of discriminant 
classes, and nature of the classifier needed.  
 

Authors in (Han et al., 2005) classify vehicles into car, SUV, and minibus by making use 
of the curve information associated with 3-D ridges. Their classifier achieved an accuracy of 
88%. A similar 3-D model based classifier was constructed in (Chen, Ellis, & Velastin, 2012) 
capable of discrimination between car, bus, van, and motorcycles with a classification accuracy 
of approximately 96%. Based on the contour information a classifier based on a combination a 
voting algorithm and Euclidian distance was proposed in (Negri et al., 2006) achieving a 
classification rate of 93%. Appearance based classifiers use information based on gradients, 
corners, etc. In (Zafar et al., 2007), a 2-D LDA technique was employed capable of classifying 
25 vehicle types with an accuracy of approximately 91%.  

 
 

 
PROPOSED APPROACH: DIFFERENTIAL EVOLUTION BASED VEHICLE 

DETECTOR AND CLASSIFIER (DEVEC) 
 

This work presents a Differential Evolution based vehicle detector and classifier (DEVEC) 
primarily designed for urban two lane traffic, but may be extended for multi lanes with a few 
modifications. A black box view of DEVEC is presented in Fig. 2. A detailed description of the 
individual stages is presented below.  

 
Figure 2: Differential evolution based vehicle detector and classifier (DEVEC) 

Video Preprocessor 
This is an optional sub-system. The main utility of this module is to reduce the video size 

(frame size) from the recorded/captured resolution to the one set by the user. The higher the 
resolution of the video, the greater is the computational cost. A low resolution video, however, 
will be detrimental in achieving good detection accuracy. Thus, the frame resolution should be 



kept within an acceptable range. Another optional sub-feature of this module is to automatically 
identify the road under consideration thereby extracting the region of interest (ROI) containing 
the potential vehicles. The subsequent steps operate on ROI extracted from the video frames.  
 
Vehicle Detector 

This component constitutes the backbone of the whole system. The reason for this claim 
is because correct vehicle classification is as good as vehicle detection. Vehicle detection, in our 
system, primarily consists of two basic steps: background construction/modeling and detection.  
 

In motion based segmentation and detection models, as in ours, a robust background 
plays a vital role in appropriate detection, as the motion pixels are extracted from the scene by 
subtracting it with the modeled background. There are many different background models for 
vehicle detection available in literature based on different techniques. (Kanhere & Birchfield, 
2008), (Chen & Zhang, 2006), (Wren et al., 2006) used single Gaussian to model the background 
while recently authors in (Barcellos et al., 2015) used a mixture of Gaussians. A consolidated 
review of such research was presented in a recent survey paper (Smadi et al., 2016).  

 
We propose a pixel-to-pixel based adaptive background construction model. Without 

assuming any distribution information about the background, this model compares the color 
RGB information of every pixel in the background with the current scene, and calculates a three 
dimensional Chi-Square metric. This metric is then compared with a threshold, which is 
determined adaptively and is continuously updated. This process is described in Algorithm 1. 

 



  
Algorithm BACKGROUND 

 Choose initial n training frames 

 Initialize distance vector V, with size n 

 Initialize threshold T as 0 

 For every frame i till n-1 frames 

  1) Compute mean M, and standard deviation SD, for RGB 

components of frame i 

  2) Update vector V as 

   V[i] = M + SD 

 End For 

 Compute T as: 

  T = mean(V) + standard_dev(V)  

 Update frame n as current background 𝐵!"##$%& 
 Update frame n as previous background 𝐵!"#$ 

 While video has frames 

  For every pixel p in frame I and background 𝐵!"##$%& 
1) Compute Chi-Square distance CS 

2) If CS ≥ T 

Classify p as foreground 

     Else 

         Classify p as background 

  End For 

  Update foreground pixel locations in 𝐵!"##$%& from 𝐵!"#$ 

  If no vehicle detected for 3 consecutive frames 

            Recalculate T and update current frame as 𝐵!"##$%& 
EndIf    

 End While 

End Algorithm 
 

 

Algorithm 1: DEVEC adaptive background construction 



To calculate the initial threshold T, n training frames are required. For every two 
subsequent frames I and I-1 in the training set, the Chi-Square distances of R, G, and B 
components are calculated as: 
	 𝑅! =	

(!! ! !!!!)!

!!! 	 (1)	

 
	 𝐵! =	

(!! ! !!!!)!

!!! 	 (3)	

Since we presume no information about the background color, all the differences are equally 
weighted to calculate the gradient of pixel differences G as: 
	 𝐺 = 𝑤!×𝑅! + 𝑤!× 𝐺! + 𝑤!×𝐵! 	 (4)	

   

with 𝑤! =  𝑤! =  𝑤! = 0.33. Based on the assumptions of scene color, different weights may 
be assigned to different color components but we presume no such information. 

After the initial gradient threshold G is determined, a new background is adaptively 
constructed. Figure 3 presents the adaptive determination of G for the first 72 frames of a 
particular video sequence. A gradient threshold G is then determined for every subsequent frame. 
Every current frame I is compared with the previous frame I-1 pixel by pixel, and differences 
between RGB components for every pixel p are calculated as: 
	 𝑅𝐺𝐵!"##(𝑝)	=	𝑤!× 𝑅! − 𝑅!!! + 𝑤!× (𝐺! − 𝐺!!!) + 𝑤!×(𝐵! − 𝐵!!!)	 (5)	

 

 
Figure 3: Change of gradient threshold during adaptive threshold calculation and updation 

	 𝐺! =	
(!! ! !!!!)!

!!! 	 (2)	



If 𝑅𝐺𝐵!"##(𝑝) for a pixel p exceeds the pixel gradient G, p is classified as a foreground 
pixel else it is considered as a background pixel. In the current form every pixel difference is 
compared with G, and a decision is made about the pixel’s class. Another version of this model 
can be constructed in which every pixel’s own gradient can be calculated and stored but this 
would require extra computation and storage. For our purposes the current form will suffice. 

 

Figure 4: A step by step description of adaptive background construction 

A previous background is maintained in the memory, which provides the pixels to current 
background under construction at locations where foreground pixels are detected. In this way the 
current background is updated continuously, and describes the current scene robustly. Figure 4 
depicts this process of adaptive background construction while classifying the vehicles as 
foreground and background.  

The pixel gradient threshold G is updated after 𝑥!"#$%& number of frames, which is a user 
defined number. As a word of caution, 𝑥!"#$%& should be under acceptable limits, as a low value 



of 𝑥!"#$%& would mean very high frequency of threshold calculation and updation, which may 
degrade the performance of the system. 

After the background construction, the next step is to detect vehicles from the scene using 
motion segmentation. Background subtraction is used to identify motion pixels as contours. With 
motion pixels, undesired noise is most certainly always detected. We use a simple noise 
suppressor algorithm to remove the unwanted noise, which increases the cost marginally in terms 
of computation cycles but has a desirable impact on the system’s fidelity. After that, a bounding 
box is fit around the detected contours. During the detection and tracking process, there is always 
a possibility that the vehicle being tracked splits up into different parts. For example, a single 
vehicle may split up into two unrelated and distinct parts, or a sub area capable of being 
identified as a new vehicle, or is formed inside the tracked vehicle itself, etc. Our algorithm is 
capable of resolving such anomalies and boost accurate detection. 

 

 
Figure 5: Vehicle detection process 

     

In essence, the bounding box creation is a hypothesis generation step. We employ a dual 
hypothesis verification process with soft and hard matches. As an initial soft match, this 
bounding box is matched with a basic car/truck template. If this criterion is satisfied, this patch is 
sent to a DE enabled axle detector for a hard match. We define a soft match as positive if only 
the basic feature matching threshold requirements are met which in this case are length, breadth, 
and contour area. A hard match involves determining the number of axles in the vehicle, and 
minimizing a vehicle model fitness function using DE. This two-step process improves the 
robustness of the detection module though at the expense of extra compute cycles. Algorithm 2 
depicts this detection process. 

 

 
 

 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Classification 
 After the soft detection of the vehicle that only checks for a minimum contour area, 
length and breadth of the bounding box, the relevant region is extracted from the current color 
frame, and sent to the DE based vehicle classifier module. The main emphasis of using this novel 
module is to investigate the feasibility of using axles to classify vehicles. Identifying axles in an 
image is essentially a circle detection problem. Circle detection holds high significance in image 
analysis as is evident from its vast applications in the manufacturing goods industry, military, 
etc. (Costa & Cesar, 2000). This problem has been tackled with different approaches most 
common of which are: 

• Deterministic - Hough Transform based methods (Yuen et al., 1989). 
• Geometric Hashing and template matching (Iivarinen	et al., 1997), (Jones et al., 1990). 
• Stochastic - Simulated annealing (Bongiovanni, Crescenzi, & C. Guerra, 1995), Genetic 

Algorithms (GA) (Roth & Levine, 1994) etc. 
 

After weighing the pros and cons of all these methods, we choose Hough Transform for our 
investigation. The main reason for this choice, apart from its good success rate and popularity, 
was its relative ease of use, simple setup, and open availability of relevant APIs for testing. The 
choice of Hough Transform as the circle detection method brings another challenge to the front. 
It is a parameterized method that works on thresholds. The quality and number of detected 
circles depend largely upon the parameter thresholds, which may vary given changing intensities, 
illumination of pixels, and other relevant features of the image. Manual settings of these 
parameters could prove difficult as these settings will have to be adjusted for different scenarios 
of traffic. To solve this problem, we use DE as the parameter optimizer, and attach it to the circle 
detection method.  

Algorithm DETECT 
 While video has frames 
  Perform background subtraction 
  Extract foreground pixels 
  Clean the background with a noise suppressor 
  Find contours in the cleaned background 
  Fit bounding boxes around contours 
  Soft match the boxes with a basic vehicle template 
  If soft match successful 
   Send the object for a DE enabled axle detector 
  End If 
 End While 
End Algorithm 

 

Algorithm 2: Vehicle detection process in DEVEC 



 Being a parameter based detection method, Hough Transform requires that the user 
provides some information about the circles that need to be detected. For example, the edge 
detector component requires a threshold to be set for the quality of edges detected. The higher 
this threshold, the fewer the number of circles that are detected. The important parameters for 
Hough Circle detection are: 

• Accumulator threshold 
• Edge detection threshold 
• Inverse ratio of resolution 
• Minimum distance between detected centers 
• Minimum radius of detected circles 
• Maximum radius of detected circles	

 
DE Optimizer 
 All the parameters mentioned in the previous section are integers. These parameters can 
be tuned manually for a given scenario but the same set may show less than satisfactory 
performance on other test subjects. Thus, there is always a motivation to automate the process, 
and for that reason we employ DE to perform the parameter search. This, of course will require 
more compute cycles but would, at the same, improve the accuracy and robustness of the system 
as a whole. DE is a simple real parameter optimization algorithm. It works through a cycle of 
stages as represented in Figure 6.  
 

 
 

Figure 6: Steps in Differential Evolution 

 
 
 
 
 
 



 
 
 

Presented below is the pseudo-code for DE algorithm.	 	

Pseudo-code for classical DE algorithm 
1. Read F, Cr and NP, G(no. of generations) 
2. Randomly initialize the population of NP vectors as P= { 𝑋!,! , 𝑋!,!…𝑋!",!} with 

each vector 𝑋!,!  = [𝑋!!! , 𝑋!,!! …𝑋!,!! ], distributed uniformly between its min and 
max value represented as 𝑋!"# = [𝑥!,!"#, 𝑥!,!"#…𝑥!,!"# ] and 𝑋!"#= [𝑥!,!"#, 
𝑥!,!"#…𝑥!,!"# ] where i ∈[1,NP]. 

3. While the stopping condition for the algorithm is not met 
Do 
      For each vector from 1 to NP 

3.1 Perform Mutation i.e. generate a donor 𝑉!!  for each target vector  𝑋!! ,  
as follows 
𝑉!!  = 𝑋!!,!!  + F × (𝑋!!,!!  − 𝑋!!,!! ) 

3.2  Perform Crossover i.e. generate a trial vector 𝑈!! for each target 
vector 𝑋!! as follows 
 𝑢!,!!   =  𝑣!,!!     if (𝑟𝑎𝑛𝑑𝑜𝑚!

! [0, 1] ≤ Cr or j = 𝑗!"#$ ) 
𝑥!,!!   Otherwise 

3.3 Perform Selection i.e. compare the fitness of trial and target vector 
and choose the more deserving candidate as follows 

   𝑋!!!!   =   𝑈!!   if f(𝑈!! ) <= f(𝑋!! ) 
   =  𝑋!!  if f(𝑈!! ) > f(𝑋!! ) 

                𝑤ℎ𝑒𝑟𝑒 𝑓 𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.  
        𝑒𝑛𝑑 𝑭𝒐𝒓 

3.4 Increase the generation count, set generation G+1 as G.  
end While 

 

We tested 5 DE variants to gauge their ability to perform this task effectively, and suggest the 
one that performs best in terms of number of function evaluations used. These variants differ in 
the way they create new solutions by tweaking the mutation strategies, and can be 
mathematically distinguished as: 
 
 “DE/Rand/1/Bin”: 
 

 𝑉!!  = 𝑋!!,!!  + F × (𝑋!!,!!  – 𝑋!!,!! ) (6) 

 

“DE/Best/1/Bin”: 

 𝑉!! 	=	𝑋!"#$,!! 	+	F	×	(𝑋!!,!! 	−	𝑋!!,!! )	 (7) 



  

       

“DE/RandToBest/1/Bin”: 

 𝑉!! 	=	𝑋!,!! 	+	F	×	(𝑋!"#$,!! 	−𝑋!,!! )	+	F	×	(𝑋!!,!! 	−𝑋!!,!! )	  (8) 

 “DE/Best/2/Bin”: 

 𝑉!!  = 𝑋!"#$,!!  + F × (𝑋!!,!!  − 𝑋!!,!! ) + F × (𝑋!!,!!  − 𝑋!!,!! ) (9) 

“DE/Rand/2/Bin”: 

 𝑉!!  = 𝑋!,!!  + F × (𝑋!!,!!  −𝑋!!,!! ) + F × (𝑋!!,!!  −𝑋!!,!! )  

(10) 

The indices 𝑟!, 𝑟!, 𝑟!, 𝑟! and 𝑟! are mutually exclusive, randomly chosen and are different from 
the base/target index i. 𝑋!"#$,!!  is the vector with best fitness in the generation G. F is the scaling 
factor already described above. 
 
 DE, being a real parameter optimizer, has to be modified to work with integer values. 
This essentially makes the task a combinatorial optimization problem. Truncating the real values 
to integer values seems a straight forward solution to this problem, but it has shown to be 
characteristically unstable in some cases (Onwubolu & Davendra, 2009). Many novel 
approaches have been proposed to make DE perform the combinatorial optimization task and 
have yielded good results (Onwubolu & Davendra, 2006). We utilize the approach suggested in 
(Onwubolu & Davendra, 2006) to convert integer values to float values and vise-versa, keeping 
all other properties of the DE variants unchanged. 
 
 In real world applications, in general, apart from the distance between the camera and the 
road, other calibration parameters are usually known to the designer. This may help in 
determining a region of interest of the image where the vehicles are most likely to be detected. It 
would be computationally prudent to perform the detection and analysis on this region instead of 
the whole frame. As this work is primarily focused on testing the axle detection, and counting 
approach (examining DE’s effectiveness at the same time), we have steered clear of having to 
specify the calibration parameters of the camera and the captured scene. Instead, we have used 
video sequences where the distance between camera and the road is not fixed. This approach, 
though being relatively computationally expensive, tests the robustness of the system, and DE in 
particular by expanding its search space.  
 

The fitness function for DE to optimize is kept simple. There is a cost associated with 
circles, which are detected but are not aligned horizontally within a certain threshold. This 
addition of cost is based on the assumption that all the axles of the vehicle are likely to be 
horizontally aligned. The special case of raised axles is not considered here. Another cost is 
added if the radii of the detected circles differ more than a certain set threshold. This again is 
based on the assumption that all the axles of a vehicle are more likely to be of the same radius. 



There is a minimum distance between the centers that is specified and a cost is added if some 
circles are found to be closer than that distance. This is done to discourage DE from finding 
circles that are very close to each other. In mathematical form our model is represented as: 

 
 
 𝑓 𝑥 = 𝐶! !× 𝑔 𝑥 + ℎ 𝑥 + 𝑟 𝑥   (11) 

𝑤here 

 
𝑔 𝑥 = !

!!!∈
+ 𝐶! − 𝐶! 	  

(12) 

 
ℎ 𝑥 = !

!!!∈
+ 𝐶! − 𝐶! 	  

(13) 

 
𝑟 𝑥 = !

!!!∈
+ 𝐶! − 𝐶! 	  

(14) 

and 

𝐶! - maximum number of axles/circles to be detected in a frame; in our case it is 
set to 10 

𝐶! - total number of circles detected in a frame 
𝐶! - number of horizontally aligned circles detected 
𝐶! - number of detected circles having almost same radius 
𝐶! - number of circles having their centroids satisfactorily distant from each other 
∈   - a very small number to avoid divide-by-zero error 

There certainly can be many more sophisticated ways to improve this model but for our purposes 
we have kept it simple. Another reason for keeping the fitness function quick to compute is to 
make the classification process time efficient. 
 

 



Figure 7: Axle detection using DE 

  
Classifying vehicles based on the number of axles, and distance between them does away 

with the need to compute other attributes of the vehicle like area, solidity, depth, etc. Computing 
these additional features may improve the classification accuracy but not without increasing the 
computational cost. Also, the length of a vehicle can be fairly approximated as the distance 
between the farthest axles.  
 

Our approach also does away with the need for employing a specialized classification 
algorithm as there are only few features involved. We use a simple Decision Tree classifier. The 
current decision classes that we have experimented on are shown in Figure 7. As is clear from 
the figure, employing axle count information is crucial, in fact necessary to correctly distinguish 
between Truck Type I and II, Truck Type III and IV, Truck Type VI and VII, as they have 
similar geometric features but different axle counts. It should be noted that for this scheme to be 
fruitful in a production environment, the distance between the camera and the road needs to be 
fixed beforehand which should be considered a part of the camera calibration process. We, 
however, have experimented with varying distances as already mentioned and for the reasons 
stated in the previous section. 

 

 
 

Figure 8: Vehicle outlines and their associated classes. Axle count information is necessary to 
distinguish between Truck Type I and II, Truck Type III and IV, and Truck Type V and VI 

 



Tracking 
 After the vehicles are detected, tracking is performed on them to ascertain their 
positions in the next frame. In other words, the trajectory of the vehicle during the course of its 
existence in the video is determined through tracking. This is an important operation if the 
correct count of the vehicles is to be obtained. If the vehicles are not tracked properly, the 
redetection of the same vehicle in the next frame may be surmised as a new vehicle, which in 
turn would result in over-counting.  
 We perform detection and tracking separately where we first detect vehicles in every 
frame, and then associate current vehicle data with data from the previous frame, and update the 
vehicle’s location and features iteratively. We take advantage of the fact that any detected 
vehicle is not likely to be present in only one frame. This method is an example of region based 
tracking mechanism (Mandellos, Keramitsoglou, & Kiranoudis, 2011), (Lai, Huang, & Tseng, 
2010) where the vehicle contour is detected and fitted inside a rectangular box. This box and 
contour, in our system, is characterized by edges, contour area, and box coordinates. Data 
association and template matching is then performed to track the vehicles in consecutive frames 
to track them. A local memory containing the features, and other relevant data is maintained for 
every vehicle that is detected. The features are updated during tracking as the vehicle moves 
from frame to frame. This way the vehicle appearance in the memory stays in sync with the 
current state of the vehicle. This continuous updation is vital since the vehicle appearance is 
prone to edge, and area deformation while in motion. 
 

EXPERIMENTATION AND RESULTS 
 

 In this section, we discuss the performance of DEVEC tested on multiple real time, 
primarily urban two lane traffic scenarios. Apart from evaluating the system for its speed, correct 
vehicle count, and classification accuracy, the major thrust of the evaluation is on the 
performance of Differential Evolution (DE) as an optimizer applied to this scenario. Moreover, 
given the current setting and to gauge the performance of DE, the system was tested with and 
without the DE optimizer.  
 
 As discussed in the previous section, the main utilization of DE is to find and locate the 
number of correct axles of the vehicle by minimizing a fitness function. The information on the 
number of axles, distance between the farthest axles supplemented with height, width, and 
contour area of the vehicle was used to classify the vehicle in one of the listed classes. The 
system was initially tested with manual settings of hough transform parameters and then with 
five popular variants of DE, on vehicles isolated from multiple video sequences.  
 

The videos were recorded on a two lane road, and the traffic flow was chosen to be 
moderate. Table 1 presents the first set of results comparing the system’s classification 
performance with and without the DE optimizer. It lists the performance on 20 different vehicles 
isolated from a single video sequence with the number of axles of each vehicle. A single fine-
tuned manual setting of hough parameters was used all along the tested videos. The number 1 
denotes the correct identification of number of axles by the system using the manual settings, and 
a 0 means that the system failed to identify the correct number of axles with the given parameters 
leading to a misclassification. 

 



It is important to mention that after a vehicle is detected, the rectangular region around it 
is extracted, and may be examined either by a pre-determined circle detector or the DE optimizer 
module. This extracted vehicle region from the frame may measure as less than 40×30 pixels. 
This presents a problem when it comes to detecting circles in such a confined image space. To 
maintain the practicality of the context and achieve good circle detection, hough parameter 
thresholds are highly relaxed. This has the effect of detecting many more circles and in these 
cases many false positives are generated. It is this challenge that DE has to overcome with 
correct circle detection, and remove unwanted circles by minimizing the fitness function. 
 

As for DE, it was allowed to search the space for optimal hough parameters thereby 
minimizing the energy/fitness function. For all the five variants, the fitness function value 
obtained is listed in the corresponding columns. If the DE variant was able to identify the correct 
number of axles, it is signified with a 1 alongside the fitness value, and 0 otherwise. As for the 
control parameter settings of DE, we fixed the crossover rate (Cr) to 0.9 and scaling factor (F) to 
0.5, and population size (NP) to 50 as suggested in (Qin & L, 2013). The maximum number of 
function evaluations was set to 200.  

 
Our results show that the DE/Rand/1/Bin strategy emerges as the best DE strategy among 

the ones tested, reaching an accuracy of approximately 90% in all video sequences tested. All the 
five different variants tested in this paper have their own distinct characteristics in the way they 
affect the generation of new solutions and impact the overall search process. For example, 
DE/Best/1/Bin tries to search around the best solution achieved so far thereby moving towards 
the solution very quickly and in many cases converging prematurely. This strategy looses 
diversity of the population quite fast as compared to the other variants. DE/Rand/2/Bin on the 
other hand is known to create diverse solutions due to the presence of two differential vectors. 
This diversity leads to very slow convergence. All in all, no single strategy is perfect for all 
problems, and their success is partially dependent on the nature of problem. In this case, 
DE/Rand/1/Bin proves to be a better strategy, primarily due to its balanced and simple approach 
towards the search process. It is also relatively slow but manages to maintain good diversity of 
solutions throughout the search process. 

 
Apart from the mutation strategy and as is true with any evolutionary algorithm, the 

control parameter settings play an important part in the performance of DE. Conducting a large 
scale control parameter analysis for this scenario is out of the scope of this work. We 
nevertheless experimented with multiple population sizes to see if that actually impacts the 
system’s performance. The motivation is to investigate if a lower value of the population size 
NP, and for that matter fewer function evaluations, produces the same results as shown in Table 
1, or would a higher NP produce better results. NP cannot be too high so as to exacerbate the 
performance making the system untenable. At the same time, it cannot be too low as this might 
seriously degrade the accuracy. In essence, this problem presents the classical accuracy versus 
speed dilemma and we try to find the critical and harmonious set of parameters that lead to 
acceptable performance on this particular problem. The results are enumerated in Table 2. 

 
 

 



Table 1: A comparison of five variants of DE in detecting the number axles and their centers in 
20 frames isolated from multiple video sequences. The values presented indicate the 
best/minimum value obtained by the variant along with a binary number (successful detection is 
represented as 1 and 0 otherwise). 

Vehicle 
No. 

No. 
of 

Axles 

Manual 
Setting 

DE/Best/1/Bin DE/Rand/1/Bin DE/RandToBest/1/Bin DE/Best/2/Bin DE/Rand/2/B
in 

1 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

2 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 52.00(1) 

3 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 36.33(0) 

4 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

5 5 0 36.33(0) 25.00(1) 25.00(1) 36.33(0) 29.00(0) 

6 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

7 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

8 4 0 36.33(0) 36.33(0) 29.00(1) 29.00(1) 29.00(1) 

9 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 36.33(0) 

10 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

11 5 0 36.33(0) 25.00(1) 25.00(1) 25.00(1) 29.00(0) 

12 2 0 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

13 2 1 154.00(0) 203.00(0) 52.00(1) 154.00(0) 154.00(0) 

14 2 1 52.00(1) 52.00(1) 52.00(1) 52.00(1) 52.00(1) 

15 4 0 36.33(0) 29.00(1) 36.33(0) 29.00(1) 29.00(1) 

16 5 1 36.33(0) 25.00(1) 25.00(1) 36.33(0) 29.00(1) 

17 4 0 36.33(0) 29.00(1) 36.33(0) 29.00(1) 29.00(1) 

18 2 1 52.00(1) 52.00(1) 36.33(0) 36.33(0) 52.00(1) 

19 2 1 52.00(1) 52.00(1) 36.33(0) 52.00(1) 52.00(1) 

20 2 0 52.00(1) 52.00(1) 36.33(0) 36.33(0) 52.00(1) 

- Wins 10 13 18 13 15 14 

 Suc. 
Rate 
(%) 

50 65 90 65 75 70 

 
 

 

 
 



Table 2: Effect of increasing NP and function evaluations on success rate. Saturation point is 
reported at 40-60 combination 

Population	size	(NP)	 Success	Rate	(%) Saturation	FE’s 

10 70 60 

20 75 50 

30 85 50 

40 90 60 

50 90 70 

60 90 70 

70 90 85 

80 90 90 

 
We performed the optimized parameter search with population sizes ranging between 10 

and 80 with increments of 10. It is shown that the success rate of a population size improves with 
an increase in function evaluations. But after a certain point, increasing the population size does 
not improve the success rate. On similar lines, an increase in function evaluations does not offer 
an added advantage after a certain limit since the success rate saturates. We found that the best 
set of control parameters that lead to the highest accuracy (90%), among the combinations 
compared, is: F=0.5, Cr=0.9, NP=40 with 60 FEs. Increasing NP above this value does not yield 
better results. If this critical point can be deduced theoretically, it may be used as an effective 
indicator of the extra computational budget that the DE optimizer module may consume in the 
system.   

 
Figure 9, for the lack of space, visually depicts a part of the results obtained for manual 

settings (left aligned in the sub-figures) as compared to DE/Rand/1/bin optimized set (right 
aligned in the sub-figures) discovered, for 7 different vehicles sourced from multiple video 
sequences. Axles detected by both methods are represented by solid white circles. 

 
 
 
 
 
 
 
 

 



 

Figure 9: Results obtained through manual settings (third column) of Hough Transform 
parameters vs the best settings obtained for DE/Rand/1/bin (fourth column) 



Table 3 and 4 summarize the cumulative results of the DEVEC as a confusion matrix. 
The system was tested on three videos of approximate duration of 10 minutes each. This by no 
means is an exhaustive test for our system but as a proof of concept the sample size is assumed 
to be good enough. In total, the video sequences contained about 302 vehicles to be classified 
into seven classes. It must be recorded that, since the feature set is small (length, width, contour 
area, axles), the classification performance is less a test of the decision tree classifier, and more 
of a test of correct feature detection. 

 
DEVEC shows excellent performance while detecting the passenger vehicles achieving a 

precision of 0.90 for this class of vehicles. The precision for truck types I, II, III, and IV is also 
decent with all classes having a value above 0.80. The system however shows a less than 
satisfactory performance on large trucks having five or more axles. One reason as to why 
DEVEC does not accurately distinguishes between these two classes is the immense edge 
discrepancies on and along the close axles of these trucks, which prohibits them from being 
detected. As a consequence, being of the same height, and width, truck type VI is classified as 
truck type V. Another reason of low precision and recall might be the limited number of truck 
type V, and VI samples present in the corresponding videos.  

 
 
 

Table 3: Confusion matrix for cumulative vehicle count across three video sequences. PV stands 
for passenger vehicle. 

 Predicted	Class 

Ac
tu
al
	C
la
ss

 

 PV /	Truck	
Type	0 

Truck	Type	
I 

Truck	Type	
II 

Truck	
Type	III 

Truck	
Type	IV 

Truck	
Type	V 

Truck	
Type	VI 

PV /	Truck	
Type	0 

134 5 0 0 0 0 0 

Truck	Type	
I 

14 60 3 0 0 0 0 

Truck	Type	
II 

0 8 31 2 0 0 0 

Truck	Type	
III 

0 0 4 23 2 0 0 

Truck	Type	
IV 

0 0 0 5 18 0 0 

Truck	Type	
V 

0 0 0 0 2 9 2 

Truck	Type	
VI 

0 0 0 0 0 3 6 



 
 
 

Table 4: Confusion matrix for individual classes 

 Precision Recall 

Passenger	Vehicle 0.90 0.96 

Truck	Type	I 0.82 0.77 

Truck	Type	II 0.81 0.75 

Truck	Type	III 0.82 0.79 

Truck	Type	IV 0.81 0.78 

Truck	Type	V 0.75 0.69 

Truck	Type	VI 0.75 0.66 

 
 
 

 
On a manual inspection of the test video sequences, a total of 326 vehicles were counted. 

DEVEC was able to detect 302 vehicles achieving a decent detection accuracy of 92%. One 
reason for misdetection of vehicles was the almost similar color configuration of the background 
and the passing misdetected vehicles, though this was a rare observation. In some circumstances, 
vehicles that moved very slowly, became a part of the background itself thereby generating no 
motion pixels through the background subtraction method. One method of improving the 
detection further would be to use more scene cues for the background construction than just the 
color information. 
 
 

CONCLUSION 
 

This work presents DEVEC, an axle count based vehicle detector and classifier capable 
of detecting and classifying vehicles on a two lane urban environment. We use an adaptive 
threshold updation technique to compare two subsequent frames, and then employ the 
background subtraction method to extract motion pixels from a video sequence. Axle 
information is utilized to perform classification of vehicles. Axle detection is performed with 
Hough Transform, a parameterized feature detection method. The working parameters set of 
Hough Transform is dependent on the image data, and type of problem being addressed. With 
changing weather conditions and scene outlook, manually setting these parameters is tedious, 
and as shown in this work often produces less than satisfactory results. To circumvent this 
problem, we therefore use a combinatorial version of Differential Evolution to optimize the 
parameter set yielding much higher accuracy as shown by the results we achieved. Five different 
variants of DE were tested initially, and it was observed that DE/Rand/1/bin is most suitable for 
this task reaching a steady success rate of 90% while excluding the false positives. To further 
improve the speed and accuracy of the system, we further investigated DE/Rand/1/bin. For this 



we tested this variant with multiple population sizes (NP) – FEs combinations. We found that 
F=0.5, Cr=0.9, and NP=40 with 60 FEs yields an accuracy of around 90%, and increasing NP 
further does not yield any better results. Due to speed considerations, as of now, our current 
system is suited to be used as an offline vehicle classifier. To make the system perform as an 
online classifier, we will in the future work, consider making some changes. For example, by 
careful camera calibration, it is possible to specify a region of interest in the test frame where the 
probability of finding the axles is quite high given various assumptions about inclination of the 
road. This will reduce the computing load considerably. If there is enough information available 
about the scene, it is possible to initialize DE with good values to begin with. These and other 
modifications are planned as future work. Moreover, background construction that uses most of 
the compute cycle need to be refined further. For example, a Gaussian mixture model type pixel 
classification could be used instead of the per-pixel comparison to speed up the classification 
process. 
 

In addition, the novel DEVEC presents some advantages as well as challenges. For 
example, it does away the need for a shadow removal module, as the camera is mounted 
sideways. This camera view also restricts the field of view. Occlusion has been handled 
successfully in moderate traffic. The speed of the system remains an issue as the frame 
processing rate currently achieved stands at 13 frames per second on average. This is not yet 
suitable for online classification. Future work includes developing an improved and speedy 
background construction algorithm to improve the frame rate. A parallel version of DE may also 
be investigated to identify the axles quickly. 
 
 

REFERENCES 
3M Canoga Application Note (2003). Canoga Vehicle Detection System. Accurate Vehicle 
Detection at Intersections Using 3M Canoga M702 Non-Invasive Microloops TM-2003-11. 

Al-Smadi, M., Abdulrahim, K., & Salam, R. (2016).  Traffic Surveillance: A Review of Vision 
Based Vehicle Detection, Recognition and Tracking, International Journal of Applied 
Engineering Research, 11(1), 713-726. 

Agarwal, S., Awan, A., & Roth, D. (2004) “Learning to detect objects in images via a sparse, 
part-based representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
26(11), 1475-1490. 
 

Bongiovanni, G., Crescenzi, P., & Guerra, C. (1995). Parallel Simulated Annealing for Shape 
Detection. Computer Vision and Image Understanding, 61(1), 60-69. 

Buch, N., Velastin, S. A., & Orwell J. (2011). A Review of Computer Vision Techniques for the 
Analysis of Urban Traffic. IEEE Transactions on Intelligent Transportation Systems 12(3), 920-
939. 



Chen, X. & Zhang, C. (1997). Vehicle classification from traffic surveillance videos at a finer 
granularity. Advances in Multimedia Modeling, 772-781. Springer Berlin Heidelberg.  

Chen, Z., Ellis, T., & Velastin, S. (2012). Vehicle detection, tracking and classification in urban 
traffic. In 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), 
951-956. 

Costa L. F. D., & Cesar Jr., R. M. (2000). Shape Analysis and Classification. CRC Press, Inc. 
Boca Raton FL, U.S.A,  

Cucchiara, R., Grana, C., Piccardi, M., & Prati, A. (2003). Detecting moving objects, ghosts, and 
shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
25(10), 1337-1342.  

Das, S., & Suganthan, P. N. (2011). Differential evolution - A survey of the state-of-the-art. 
IEEE Transactions on Evolutionary Computation, 15(1), 4-31. 

Elgammal, A., Harwood, D., Davis, L. S.  (2000). Non-parametric Model for Background 
Subtraction. In 6th European Conference on Computer Vision. Dublin, Ireland. 

Engelbrecht, A. P. (2014). Fitness Function Evaluations: A Fair Stopping Condition? IEEE 
Symposium Series on Computational Intelligence, 1-8. 

Greggio, N., Bernardino, A., Laschi, C., Dario, P., & Santos-Victor, J. (2010). Self-adaptive 
Gaussian mixture models for real-time video segmentation and background subtraction. In Proc. 
IEEE 10th International Conference on Intelligent Systems Design and Applications(ISDA), 983-
989. 

Gupte, S., Masoud,O., Martin, R. F. K. & Papanikolopoulos, N. P. (2002). Detection and 
classification of vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37-47. 

Haque, M., Murshed, M. M., & Paul, M. (2008). Improved Gaussian mixtures for robust object 
detection by adaptive multi-background generation. IEEE 19th International Conference on 
Pattern Recognition (ICPR), 1-4.  

Iivarinen, J., Peura, M., Srel, J., & Visa, A. (1997). Comparison of combined shape descriptors 
for irregular objects. In 8th Proc. British Machine Vision Conf., Cochester, UK, 430-439. 

Indu, S., Gupta, M., & Bhattacharyya, A. (2011). Vehicle tracking and speed estimation using 
optical flow method. Int. J. Engineering Science and Technology, 3(1) 429-434. 

Jones, G. A., Princen, J., Illingworth, J., & Kittler, J. (1990). Robust estimation of shape 
parameters. In Proc. British Machine Vision Conf., 43-48. 



Kalman, R. E. (1960).  A new approach to linear filtering and prediction problems. Journal of 
Fluids Engineering, 82(1), 35-45 

Kanhere, N. K., & Birchfield, S. T. (2008). Real-time incremental segmentation and tracking of 
vehicles at low camera angles using stable features,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 9, no. 1, pp. 148-160, 2008.  

Karmann, K. P., Brandt, A.V., & Gerl, R. (1990). Moving object segmentation based on adaptive 
reference images. In Proc. of 5th European Signal Processing Conference, 2, 951-954. 

Koller, D., Weber, J., & Malik, J. (1994). Towards realtime visual based tracking in cluttered 
traffic scenes. In Proc. of the IEEE Intelligent Vehicles, 201-206. 

Kumar, P., Ranganath, S., & Weimin, H. (2003). Bayesian network based computer vision 
algorithm for traffic monitoring using video. In Proc. Int. IEEE Conference on Intelligent 
Transportation Systems, 1, 897-902. 

Lai, J. C., Huang, S. S., & Tseng, C. C. (2010). Image-based vehicle tracking and classification 
on the highway. In International Conference on Green Circuits and Systems (ICGCS), 666-670. 

Lai, J. C., Huang, S.S., & Tseng, C.C. (2010). Image-based vehicle tracking and classification on 
the highway. In International Conference on Green Circuits and Systems (ICGCS), 666-670. 

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J., Langer, D., 
Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M., & Thrun, 
S. (2011). Towards fully autonomous driving: Systems and algorithms. In Proc. IEEE Intelligent 
Vehicle Symposium, 163–168. 

Li, Q. L., & He, J.F. (2011). Vehicles detection based on three-frame-difference method and 
cross-entropy threshold method. Computer Engineering, 37(4), 172-174. 

Linda, S., & Volling, M. T., (2003). Paradigm is shifting in vehicle detection. IMSA journal 
featured article. Retrieved May 6th, 2016, from 
http://www.imsasafety.org/journal/jf03/janfeb3.htm 

Lou, J., Tan, T., Hu, W., Yang, H., & Maybank, S. J. (2005). 3-D model-based vehicle tracking. 
IEEE Transactions on Image Processing, 14(10), 1561-1569. 

Mandellos, N.A., Keramitsoglou, I., & Kiranoudis, C. T. (2011). A background subtraction 
algorithm for detecting and tracking vehicles. Expert Systems with Applications, 38(3), 1619-
1631. 

Ma, X., & Grimson, W. E. L. (2005). Edge-based rich representation for vehicle classification,” 
in Proc. IEEE 10th International Conference on Computer Vision, 2, 1185-1192. 



Mao, X., Inoue, D., Kato, S., & Kagami, M. (2012). Amplitude-modulated laser radar for range 
and speed measurement in car applications. IEEE Transactions on Intelligent Transportation 
Systems 13(1), 408-413. 

McFarlane, N.J., & Schofield, C.P. (1995). Segmentation and tracking of piglets in images. 
Machine vision and applications, 8(3), 187-193. 

Middleton, D., Chara, H., & Longmire, R. (2009). Alternative vehicle detection technologies for 
traffic signal systems. Technical Report. Retrieved May 5th, 2016, from 
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-5845-1.pdf 

Morris, B. T. & Trivedi, M. M. (2008). Learning, modeling, and classification of vehicle track 
patterns from live video. IEEE Transactions on Intelligent Transportation Systems, 9(3) 425-
437. 

Negri, P., Clady, X., Milgram, M., & Poulenard, R. (2006). An oriented-contour point based 
voting algorithm for vehicle type classification. In 18th International Conference on Pattern 
Recognition, 1, 574-577. 

Nguyen, P.V., & Le, H.B. (2008). A multi-modal particle filter based motorcycle tracking 
system. In PRICAI 2008: Trends in Artificial Intelligence, 819-828. Springer Berlin Heidelberg. 

Onwubolu, G. & Davendra, D. (2006). Scheduling flow shops using differential evolution 
algorithm. European Journal of Operations Research, 171(2), 674-692.	

Onwubolu, G. & Davendra, D. (2009). Differential Evolution: A Handbook for Global 
Permutation-Based Combinatorial Optimization. Springer-Verlag, Heidelberg. 

Ottlik, A., & Nagel, H. H. (2008). Initialization of model-based vehicle tracking in video 
sequences of inner-city intersections. International Journal of Computer Vision, 80(2) 211-225.  

Park, K., Lee, D., & Park, Y. (2007). Video-based detection of street parking violation. In Proc. 
International Conference on Image Processing, Computer Vision, and Pattern Recognition 
(IPCV), 152-156. 

Qin, A. K., & Li, X. (2013). Differential Evolution on the CEC-2013 Single-Objective 
Continuous Optimization Testbed. IEEE Congress on Evolutionary Computation, Cancun, 
Mexico, 1099-1106. 

Roth, G., & Levine, M. D. (1994). Geometric primitive extraction using a genetic algorithm. 
IEEE Trans. Pattern Anal. Machine Intell, 16(9), 901-905. 

Sen-Ching, S. C., & Kamath, C. (2004).  Robust techniques for background subtraction in urban 
traffic video. International Society for Optics and Photonics in Electronic Imaging, 881-892.  



Sharma, A., M. Harding, B. Giles, D. Bullock, J. Sturdevant, & S. Peeta (2008). Performance 
Requirements and Evaluation Procedures for Advance Wide Area Detectors. Submitted to the 
Transportation Research Board for publication and presentation at the 87th Annual Meeting, 
Washington, D.C. 

Sivaraman, S., & Trivedi, M. M. (2013). Looking at vehicles on the road: A survey of vision 
based detection, tracking, and behavior analysis. IEEE Transactions on Intelligent 
Transportation Systems, 14(4), 1773-1795. 

Stauffer, C. & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time 
tracking. In Proceedings of  IEEE Conference on Comput. Vis. Pattern Recog., 2, 252. 

Storn, R. M. & Price, K. V. (1995). Differential evolution - A simple and efficient adaptive 
scheme for global optimization over continuous spaces. International Computer Science 
Institute, Berkeley, CA, USA, ICSI Technical Report 95-012. 

Storn, R. M. & Price, K. V. (1996). Minimizing the real functions of the ICEC 1996 contest by 
differential evolution. In Proc. IEEE International Conference on Evolutionary Computation, 
842-844. 

Tian, B., Morris, B. T., Tang, M., Liu, Y., Yao, Y., Gou, C., Shen D., & Tang, S. (2015). 
Hierarchical and Networked Vehicle Surveillance in ITS: A Survey. IEEE Transactions on 
Intelligent Transportation Systems, 16(2), 557-580. 

Wang, X. (2013). Intelligent multi-camera video surveillance: A review. Pattern Recognition 
Letters, 34, 3-19. 

Wang, Z., & Hong, K. (2012). A new method for robust object tracking system based on scale 
invariant feature transform and camshaft. In Proc. 2012 ACM Research in Applied Computation 
Symposium, 132-136. 

Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. P. (1997). Pfinder: Real-time tracking 
of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 
780-785. 

Yuen, H. K., Princen, J., Illingworth, J., & Kittler, J. (1989). Comparative study of Hough 
transform methods for circle finding. Image Vision Comput., 8(1), 71-77. 

Zafar, I., Edirisinghe, E. A., Acar, S., & Bez, H. E. (2007). Two-dimensional statistical linear 
discriminant analysis for real-time robust vehicle-type recognition. In International Society for 
Optics and Photonics Electronic Imaging, 6496. 



Zhang, J., Wang, F. Y., Wang, K., Lin, W. H., Xu, X., & Chen, C. (2011). Data-driven 
intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation 
Systems, 12(4), 1624-1639. 

Zhao, S.L., & Lee, H. J. (2009). A spatial-extended background model for moving blobs 
extraction in indoor environments. Journal of Information Science and Engineering, 25(6), 1819-
1837. 

Zheng, J., Wang, Y., Nihan, N. L. & Hallenbeck, M. E. (2006). Extracting roadway background 
image: Mode-based approach. J. Transp. Res. Board, 1944(1), 82-88. 

Zivkovic, Z. & Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the 
task of background subtraction. Pattern recognition letters, 27 (7), 773-780.  
 


