
Comparison of Service Selection Algorithms for Grid Services: Multiple
Objective Particle Swarm Optimization and Constraint Satisfaction Based

Service Selection

Tapashree Guha and Simone A. Ludwig
Department of Computer Science

University of Saskatchewan
Canada

{t.guha,ludwig}@cs.usask.ca

Abstract

Grid computing has emerged as a global platform to sup-
port organizations for coordinated sharing of distributed
data, applications, and processes. Furthermore, Grid com-
puting has also leveraged web services to define standard
interfaces for grid services adopting the service-oriented
view. Consequently, there have been significant efforts to
enable applications capable of tackling computationally in-
tensive problems as services on the Grid. In order to en-
sure that the available services are optimally assigned to
the high volume of incoming requests, it is important to
have an efficient service selection algorithm. The algo-
rithm should not only increase access to the distributed ser-
vices, promoting operational flexibility and collaboration,
but should also allow service providers to scale efficiently
to meet a variety of demands while adhering to certain cur-
rent quality of service standards. This paper, proposes and
compares two service selection algorithms on the Grid: the
Multiple Objective Particle Swarm Optimization algorithm
using Crowding Distance technique (MOPSO-CD) to the
Constraint Satisfaction based Matchmaking (CS-MM) al-
gorithm.

1. Introduction

With the increase in complexity and scale of domain
problems in science and engineering, the last few decades
have seen a proportionate increase for the need of high per-
formance applications to solve and model these problems.
For example, in research areas like fluid dynamics, molecu-
lar dynamics, global climate modeling, etc., researchers are
depending on high performance applications to explore and
simulate interesting phenomena in these fields [14]. Addi-
tionally, due to the popularity of high-speed networks, and

the World Wide Web, there has been a significant effort for
providing these high performance applications as Web and
Grid services. These services are accessed remotely across
the network by the users, which not only promote seamless
execution of the jobs submitted by the users, but also enable
sharing of these services amongst various users. Few exam-
ples of high performance services that are available online
are: data mining, theorem proving and logic, parallel nu-
merical computations, etc. Moreover, for the high-demand
services, it will often be the case that the services are repli-
cated at multiple sites so that in a situation where there
is a large number of requests for the services, all the ser-
vice providers together can serve the client requests. There-
fore, in order to tackle the high volume of user requests for
these services dynamically, a high-performance computa-
tional resources is needed, to achieve the goals of executing
the client requests remotely, and efficiently.

The Grid, at the same time has rapidly emerged as the
dominant paradigm for wide area high-performance dis-
tributed computing. The basic purpose of the Grid is to
provide a service-oriented infrastructure that uses standard-
ized protocols, allow users to have seamless access, and the
coordinated sharing of geographically distributed comput-
ing resources providing various services. Also, as the Grid
computing paradigm is being rapidly deployed by both in-
dustry and researchers, it is enabling a new generation of
high performance applications to be developed that can be
seamlessly accessed by the users.

However, before utilizing these services to execute a
client request, a requester needs to select an appropriate ser-
vice provider from a service provider pool deployed on the
Grid. Once a service provider is selected, the site will assign
the appropriate number of resources to the request. Hence
it is seen that, these services necessitate an effective coordi-
nation of participating sites to handle the request(s). Most
importantly it gives rise to the need of a faster and accurate

selection process in order to accommodate the execution of
a wide spectrum of client requests. Otherwise, there might
be discrepancies in the way the requests are being served.

Furthermore, as mentioned in [9], for a faster and accu-
rate selection of service providers it is required, that the ser-
vice selection procedure complies with a particular Quality
of Service (QoS) metric as not meeting such criteria can im-
pose a significant impact on the accuracy of the results. The
QoS metric used should not only consider the characteris-
tics of the network linking all these service provider sites,
but should also be designed in the context of Grid services.
For efficient and satisfactory services, a user requesting a
particular service must identify a set of QoS requirements,
such as the bandwidth of the network, number of proces-
sors, the time duration for which the service is required,
and the expected cost the user is willing to pay, etc. At the
same time, a service provider also has its capability listed
in the form of a QoS metric. Among this QoS metric, some
are decided by the service providers themselves, such as the
cost, while others are provided by third party and network
managers [1].

For an efficient service selection method, it is necessary
that the algorithm is able to automatically discover services
and choose between a set of similar services. The algorithm
should be capable of handling two primary scenarios: 1) be
able to handle multiple client requests coming in at the same
time and 2) be able to handle situations where more than
one client is requesting a similar service. To incorporate the
second scenario, a QoS metric including parameters such as
availability, reliability, etc. of the service providers are es-
sential properties to consider, guaranteeing an efficient ser-
vice selection on the Grid.

This paper presents a swarm intelligence based approach
to select services on the Grid based on a QoS metric us-
ing the Multiple Objective Particle Swarm Optimization al-
gorithm with Crowding Distance technique (MOPSO-CD)
to find the best match between the client requests and
the service providers. This algorithm is compared with
an enhanced version of a classical matchmaking algorithm
known as the constraint satisfaction based matchmaking al-
gorithm (CS-MM); and experiments are performed and re-
sults of the same are presented.

The rest of the paper is structured as follows: In the next
section related work of this research is presented, Section
3 describes the approach chosen for the experiments, i.e., it
discusses the QoS metrics used, the CS-MM algorithm, and
the MOPSO-CD algorithm. In Section 4 the experiment
setup and the results are discussed, after comparing both al-
gorithms. Finally, in Section 5, the conclusion is presented.

2. Related Work

Service computings main goal is the provisioning of ser-
vices, such as services for high performance computing. As
the scope of high performance applications being deployed
as services on the Grid becomes wider, the need for an effi-
cient and sophisticated approach to deploy the service com-
puting infrastructure becomes even more evident. The ser-
vice selection is an important issue for the Grid as it defines
the process for locating service providers and retrieving ser-
vice descriptions [7]. The most prominent service discovery
method as discussed in the literature is the semantic match-
maker [6]. Essentially, the semantic matchmaker method
proposes a solution for service discovery on the Grid. This
framework is based on three selection stages which are con-
text, semantic and registry selection. Instead of only per-
forming service name matches which other common service
discovery systems are restricted to, the semantic matchmak-
ing framework provides a better service discovery process
by using service semantics stored in ontologies. The frame-
work permits Grid applications to specify the criteria with
their service request. These criteria are then matched with
those of the services available, and hence enable interoper-
ability in the matchmaking process [8, 9]. This matchmak-
ing process calls for optimization, especially when large
numbers of requesters are competing for similar kind of ser-
vices.

A significant amount of research has been conducted in
the area of service selection on the Grid. However, much
of the work is based on the accurate predictions of the com-
pletion times of jobs when selecting services for the jobs.
A scheduling algorithm that is driven by a user supplied ap-
plication deadline and a resource access budget is proposed
in [2]. The algorithm selects services in such as way that
user requirements are met (e.g. duration of execution), and
yet it keeps the cost of computation at the minimum. The
work in [11] provides a service selection in which, for each
user request, a scheduler selects a set of servers that can
handle the computation and ranks them based on the min-
imum completion time. On the other hand, [5] presents a
general-purpose service selection framework that supports
both single-service and multiple-service selection on the
Grid. Their work extends the Condor matchmaking frame-
work. All the above service selection methods specifically
concentrate on one main attribute i.e., completion time. In-
tuitively, it can be claimed that, by allowing users to specify
more characteristics of resources to be used, the flexibility
and usability of the entire service selection process can be
increased profoundly.

A classical matchmaking algorithm, as discussed in [9]
implements the service selection methods, based on five
generic QoS criteria for elementary services. The match
score for a requester-service pair is calculated based on

these five criteria. The algorithm considers the first request
from the list of requesters, scans the list of the services
discovered, and assigns the service with the highest match
score to the request. The selected service is then removed
from further consideration. Similarly, the best match score
for the remaining services is determined for the second re-
quester; then the corresponding service is removed from the
list of the services available. This goes on until each client
request is matched with a service.

The advantage of this approach is that each service re-
quester is considered only once and hence avoids redun-
dancy in the service allocation process; while the disadvan-
tage lies in the fact that the client requesters later in the
list are very likely to get assigned to a service with a worse
match score. And the likelihood of a client request being as-
signed to poor service providers increases with the increase
in the number of requesters accessing similar kind of ser-
vices.

To overcome this disadvantage initially an enhanced ver-
sion of the matchmaking algorithm named as the CS-MM
algorithm is proposed. In this algorithm the requesters
are matched with a service after considering the entire list
of service providers, instead of considering it sequentially.
The problem of assigning the requesters appearing later in
the list to the inefficient services, was solved considerably
by changing the method of choosing the best matched ser-
vice from the service provider list. However, in order to
make the optimization process more efficient, and to pro-
duce better results under the circumstances where large
numbers of requesters are competing for similar kind of ser-
vices, the swarm intelligence based MOPSO-CD algorithm
was used.

The aim of this research work is to find an algorithm
which enables optimal selection of services on the Grid
while considering the following scenarios: 1) multiple
client requests have to be satisfied at the same time, 2) more
than one client can request a similar service, 3) the deliv-
ery of a service for each request should be guaranteed, and
4) the matching of client requests with service providers
should be optimized in order to avoid matching the requests
later in the list with a worse match score. This paper, pro-
poses two different approaches used to achieve the above
goal, shows experiments performed, and compares the re-
sults.

3. Proposed Approaches

The problem of service selection on the Grid consists
of finding an efficient algorithm which can match multiple
client requests and service providers efficiently, while op-
timizing the multiple objectives (the 5 QoS parameters) at
the same time. The problem at hand also includes: handling
more than one client request at the same time, satisfying

multiple clients requesting similar services, guarantying a
service for each request, and finally optimizing the assign-
ment process between the service requesters and the service
providers, so that none of the requests are compromised.

In this paper, two service selection algorithms for the
Grid, are proposed and compared: 1) the MOPSO-CD al-
gorithm and, 2) the CS-MM algorithm. Based on the as-
sumption that both the service requesters and the service
providers have certain QoS parameters, the algorithms im-
plemented finds the requester and service provider pairs
with the highest match score by using optimization tech-
niques.

The design of the approach taken to achieve the above
goal includes three primary steps: 1) Defining the QoS met-
ric for each requester and service, 2) Implementing the CS-
MM algorithm, and 3) Implementing the MOPSO-CD al-
gorithm.

3.1. QoS Metric

The QoS metric plays an important role for the service
selection on the Grid. It is especially helpful when there is
more than one similar service provider available for a partic-
ular client request. In this situation the QoS metric helps to
allocate the request to the most qualified service. The five
generic quality of service criteria considered in this work
are the same as in [9]. These QoS metric can be adopted
by all Grid and Web services. Although only five generic
QoS parameters have been considered for illustrating and
comparing the algorithms, new criteria can be added with-
out necessarily altering the service selection algorithm. In
this investigation, the quality criteria in the context of ser-
vices are: (1) execution price, (2) execution duration, (3)
reliability, (4) reputation, and (5) availability. The values
of these QoS parameters range from 0 to 1. Each requester
provides the QoS value of based on its requirement of how
the request must be executed, and each service provides the
value based on its capability to execute the task.

3.2. Constraint Satisfaction based Matchmaking
(CS-MM) Algorithm

In this research an assumption has been made that each
service and requester, have five QoS parameters, such as
service Si and requester Rj have the following QoS met-
ric [Si1, Si2, ..., Si5] and [Rj1, Rj2, ..., Rj5] respectively. It
is important to note that the values of these QoS attributes
range from 0 to 1. The five attributes of each service and
requester are recorded in two 2-dimensional matrices. The
orders of these matrices are n× 5, and m× 5, where n is
the number of requester and m is the number of services.

The first step of this algorithm is to calculate the match
value for each QoS parameter of each requester-service

pair. The match value represents the distance between
QoS values of the requester-service pairs. The match
value MV(Rjx,Six) for the xth QoS metric for Rj and Si

requester-service pair is calculated as follows:

MV(Rjx,Six) = 1− (|Rjx−Six|
Rjx

) Eq (1)

Whereby the value of i and j, ranges from 1 to n and m re-
spectively, where n and m are the total number of services
and requesters at a certain time; x represents the QoS pa-
rameter; Rjx : represents the service requester Rj value for
the xth QoS parameter; Six: represents the service provider
Si value for the xth QoS parameter. The match value is
subtracted from 1, which means, the higher the value of
MVRjx,Six

the better is the match. The overall match score
MS(Rj ,Si) for the requester-service pair Rj and Si is cal-
culated as follows:

MS(Rj ,Si) =
∑n

x=1
MV(Rjx,Six)

n Eq (2)

Whereby the value of n is the number of QoS parameter
considered for the problem. In this case the value of n is set
to five. The CS-MM algorithm calculates the match score
for each requester-provider pair using equations (1) and (2).
It stores the match score value for each requester-service
pair in a MS matrix as follows:

MS =

MS11 MS12 . . . MS1m

MS21 MS22 . . . MS2m

.

MSn1 MSn2 . . . MSnm

 Eq(3)

Whereby the value of MSnm in the above matrix is the
match score of the nth requester and the mth service. Once
the matrix is formed, the highest value from each row is se-
lected. This value represents the best possible match of the
corresponding requester and service. In the event, where
more than one requester is assigned to a single service, con-
straint satisfaction problem algorithm [10] approach is ap-
plied. The constraint in this problem is to assign a single re-
quester to any service, without affecting the overall match
score of the requester-service pair significantly. This con-
straint is based on the assumption that a service can only
serve one requester at a certain time. And hence, in order
to satisfy this constraint the second highest match score for
the service-requester pair is considered, and is subtracted
from the highest value. The requester-service pair with the
minimum difference between these values is selected. This
process continues until each service is matched with a sin-
gle requester.

The strength of the algorithm lies in the fact that it
matches requesters with services in a fair fashion while op-
timizing the match score of each pair and it also avoids the
problem seen in the classical matchmaking algorithm, i.e.,
assigning the requesters later in the list with remaining ser-
vices, resulting in an inferior match score.

3.3. Multi Objective based Particle Swarm Opti-
mization Algorithm using Crowding Distance
(MOPSO-CD)

The MOPSO-CD algorithm is a swarm based artificial
intelligence algorithm, which takes inspiration from the so-
cial behavior of bird flocking or fish schooling behavior as
seen in nature. More about multi-objective particle swarm
optimization algorithms can be found in [3, 4, 12]. A brief
description of the MOPSO-CD algorithm used to optimize
the service selection methods on the Grid is given in this
section, however a more detailed description of this algo-
rithm can be found in [13].

Algorithm 1: MOPSO-CD Algorithm
Data: List of Requesters and Services.
Result: Non-dominated requester-service pairs.
begin

t←− 0 (Initialize iteration counter)
for 1 ≤ i ≤ n do

Randomly initialize P[i]
Initialize V[i] =0

for 1 ≤ i ≤ n do
Evaluate P[i]
Set Pbest of P[i]
Set Gbest of P[n]

while P [i] 6= 0 do
Compare each solution for dominance
A←− NDS
(NDS = non-dominated solutions in P[i])

while !max iterations do
Calculate crowding distance (CD) for P[i]
A←− SortAinDescendingorderofCD
for 1 ≤ i ≤ n do

Set Gbest in P[n]
Update matchscore for P[i]
if P [i] = NDS then

A←− NDS
Set Pbest of P[i]

t←− t + 1
end

The first step of the algorithm is to randomly initialize
all the particles in the swarm, with the list of services and
requesters along with their five QoS parameters. The ran-
dom initialization of this problem refers to randomly match-
ing the requesters and the services, and generating a match
score for the same. This step also includes initializing the
local best, i.e., the highest match score value amongst the
neighboring particles of each particle in the swarm, and
also finding the global best, i.e., the best match score value
amongst all particles in the swarm, for the current iteration.

The match score in this case is calculated using equations
(1) and (2) mentioned in the previous section. In classical
particle swarm optimization terms, these match scores are
referred to as the (potential) solutions, and each particle in
the swarm represents one of the potential solutions to the
problem.

In the next step the non-dominated solutions, i.e., the so-
lutions that are not dominating any other solution in the
list of the potential solutions are found and are stored in
an archive. The crowding distance values of each non-
dominated solution in the archive list are calculated, and
are sorted according to the descending order of the crowd-
ing distance.

After the list has been sorted, for each non-dominated
solution the new match scores are computed based on the
value of the global best particle of the iteration. The match
score of each requester-service pair is updated to a higher
value by matching it with a better service (where possible),
whereby optimizing the whole assignment process. This
continues until the maximum number of iterations has been
reached. Unlike as mentioned in [13], no mutation opera-
tors has been included in this algorithm, as the QoS metric
of requesters and services are fixed, and cannot change over
a period of time. A brief pseudo code of the algorithm is
given in Algorithm 1.

4. Experiments and Results

The results presented in this section, reflects the effi-
ciency of both algorithms to assign requesters to services
based on their QoS metric. The comparison of these algo-
rithms is based on two sets of measurements: 1) the aver-
age fitness score achieved for the given service requester
and service provider set, and 2) the execution time of both
algorithms. The experiments were run on an DELL INSP-
IRON 6400 laptop, with Intel Core Duo Processor, 1 GB
RAM, and 100 GB HDD. The measurements were repeated
10 times and the average value was taken for each point.

Figure 1 plots the variance of the average fitness score
versus the number of iterations, keeping the requester-
service pairs fixed at 50-50, 100-50, and 50-100 respec-
tively for the MOPSO-CD algorithm. From this graph it
can be concluded that the algorithm performs efficiently by
achieving an average fitness scores of 0.89, 0.75, and 0.96
at 3500 iterations for 50-50, 100-50, and 50-100 requester-
service pairs respectively. It can also be concluded that the
increase of the global best values in the initial iterations is
more rapid than in the later ones, and that the value of the
global best for all three cases tends to stabilize after 3000
iterations.

Figure 1 also shows a similarity between the converging
behaviors of the 50-50 and 50-100 requester-provider cases.
Initially, in both the scenarios the average fitness score os-

Figure 1. Average fitness score vs. number
of iterations of MOPSO-CD algorithm.

cillates between very close ranges of approximately 0.6 and
0.85. However, approximately after 1300 iterations the 50-
100 requester-provider case, starts outperforming the 50-50
case. The reason why the average fitness in case of the 50-
100 requester-service pair is higher than the 50-50 one, is
explained in the next few paragraphs.

Figure 2 on the other hand reflects the average values of
the fitness score for 50-50, 100-50, and 50-100 requester-
service pairs for the CS-MM algorithm. From this graph
it can be concluded that the algorithm achieves a fitness
score of 0.74, 0.62 and 0.93 for 50-50, 100-50, and 50-100
requester-service pairs respectively. Comparing the aver-

Figure 2. Average fitness score for re-
questerservice pairs of CS-MM algorithm.

age fitness scores achieved by both algorithms it is seen that
the MOPSO-CD algorithm achieves a better average fitness
score than the CS-MM algorithm. A graphical represen-

tation of this comparison is shown in Figure 3. From the
graph it can be inferred that the MOPSO-CD outperforms
the CS-MM algorithm significantly in the case of 50-50 and
100-50 requester-service pairs, whereas the average fitness
scores achieved for the 50-100 requester-service pairs are
comparable for both algorithms.

It is important to note that for the above measurements
the number of iterations for the MOPSO-CD algorithm was
fixed to 3000, as it can be seen from Figure 1, that the aver-
age fitness scores follows a stable trend after that. A more
detailed comparison of the average fitness scores achieved
by both algorithms is presented in a tabular format in Table
1. It is seen that for MOPSO-CD the average fitness scores
for 50-50, 100-50, and 50-100 requester-service pairs stabi-
lizes at approximately 0.89, 0.96 and 0.75 respectively for
3000 iterations, while the average fitness scores for CS-MM
algorithm for the three scenarios is 0.74, 0.62 and 0.93 re-
spectively.

Furthermore, the following conclusions can be drawn
from the results obtained. Firstly, the average fitness
scores of 0.93 and 0.96 for the CS-MM algorithm and the
MOPSO-CD algorithm respectively confirms that the av-
erage fitness scores achieved during the 50-100 requester-
service pair scenario is the highest, compared to the other
two scenarios of 50-50 and 100-50 requester-service pairs.
This can be explained on the basis that, in the scenario
where there are more services available for a set of re-
questers, each requester has an option of getting its job as-
signed to a service choosing from a larger pool of services.
In this case, each requester can choose one service provider
from a set of two service providers. In this situation, a re-
quester is more likely to get assigned to a service provider
with the desired QoS metric, and hence the average fitness
score achieved is higher for both algorithms compared to
the other two cases.

Secondly, looking at the percentage increase in the av-
erage fitness score values of the MOPSO-CD algorithm in
comparison with the CS-MM algorithm, a conclusion can
be drawn that, in the 50-100 requester-service pair scenario
both the average fitness scores are comparable. In this case
the increase in the average fitness score using the MOPSO-
CD algorithm in comparison to the CS-MM algorithm is
only 3.23%. Furthermore, in the situation of 50 services for
100 requesters, although both algorithms could match only
50 requesters at a time (as the experiments considers only
static allocations of the requests) the average fitness scores
achieved by the MOPSO-CD is approx. 27.41 % better than
that of the CS-MM algorithm. This scenario is essentially
similar to cases where 50 requester and 50 services pairs
are optimized. It can be seen that the MOPSO-CD outper-
forms the CS-MM algorithm in a significant way by 20.27
%. Amongst the three scenarios, these are the two scenario
in which maximum optimization needs to be done, as there

Figure 3. Average fitness score for re-
questerservice pairs of CS-MM and MOPSO-
CD algorithm (at 3000 iterations).

are equal numbers of services available for each single re-
quester and hence the competition between the requesters to
assign their jobs to a service is very high. The assignment
process also becomes difficult during these two scenarios
because more than one client might have requested a simi-
lar kind of service, which makes the optimization process a
necessity, in order to satisfy all the requesters unbiasedly.

Table 1. Comparison of fitness score

Requester- Service pairs Fitness Score

CS-MM MOPSO-CD
50-50 0.74 0.89

100-50 0.62 0.79

50-100 0.93 0.96

Also, considering that the highest value of the fitness can
only be 1, the experimental results confirm that the aver-
age fitness score achieved for all three scenarios, in case
of MOPSO-CD at 3000 iterations is 0.88, while the aver-
age fitness score value achieved by the CS-MM algorithm
is 0.76, which is approximately 15.6 % less than the former
one. These results strongly support the hypothesis that us-
ing the MOPSO-CD algorithm to optimize the process of
assigning requesters to services can achieve high accuracy
in terms of better and unbiased matches, in comparison to
the CS-MM algorithm.

The next set of experiments compare the execution time

Figure 4. Execution time (ms) vs. number of
requesters-service pairs of MOPSO-CD algo-
rithm.

of the two algorithms. Figure 4 shows the variance of ex-
ecution time in milliseconds versus the different number of
requester-service pairs, for the MOPSO algorithm, keep-
ing the maximum number of iterations fixed to 3500, while
Figure 5 shows the variance of the execution time for the
CS-MM algorithm. The reason behind choosing 3500 iter-
ations as a benchmark is that after 3000 iterations the par-
ticles starts converging. The number of requester-services
pairs was varied from 50 requester-service pairs to 1000
requester-service pairs, in order to get a fair distribution.

In case of the MOPSO-CD algorithm, 100, 500 and 1000
requester-service pairs resulted in execution times of 7359,
34282 and 70094 ms respectively, while for the CS-MM al-
gorithm the execution times for the same requester-service
pairs resulted in 169, 395 and 654 ms respectively.

The equation to calculate the execution time for the
MOPSO-CD algorithm and the CS-MM algorithm is y =
66.265x + 748.15 = [ms] and y = 0.5424x + 111.06 =
[ms] respectively. Table 2 illustrates the comparison of the
execution time in ms for 200, 400, 600, 800, 1000 requester-
service pairs. From Figure 4 and 5 it can be concluded that
with the increase in the number of the provider-requester
pairs, the execution time increases linearly. From Table 2
it can inferred that CS-MM is faster than the MOPSO-CD
algorithm. And, the execution time comparison with the
number of requesters for both the MOPSO and the CS-MM
algorithms has a linear distribution. This significant differ-
ence in speed of the MOPSO-CD and the CS-MM algorithm
can be explained on the basis, that the MOPSO-CD algo-
rithm follows the rules of the swarm intelligence algorithm,
versus the fact that CS-MM uses simple calculations.

Explaining further, in case of MOPSO-CD algorithm the
problem entities (in this case it is the requester-provider

Figure 5. Execution time (ms) vs. number of
requester-service pairs of CS-MM algorithm.

pairs) are represented as swarms. And the total execution
time of the of this algorithm can be attributed to the fact
that, each swarm migrates around the solution space keep-
ing a track of its own as well as its neighbors fitness score,
updates its own fitness score by a factor based on its knowl-
edge about the global best swarm for the current iteration -
to find the global optimal solution, while the CS-MM algo-
rithm matches the requester-service pairs based on a series
of simple algebraic and arithmetic calculations, which is not
very computationally intensive.

Table 2. Percentage difference of execution
time

Requester- Service pairs Execution time (ms)

MOPSO-CD CS-MM
100-100 14422 229

200-200 27813 334

300-300 40812 432

400-400 51640 534

500-500 70094 654

Looking at the results, it can be concluded that even
though the MOPSO-CD takes longer than the CS-MM al-
gorithm to compute, it matches the provider-service pairs
with a higher fitness score hence the match process is more
optimized, avoiding any biased matches.

5. Conclusions

The Grid is a high performance computing paradigm,
which is rapidly emerging as a suitable platform to de-
ploy distributed applications. The feasibility of this type
of supercomputing has already been demonstrated by the
large number of applications deployed on the Grid. To in-
crease the effectiveness and applicability of these high per-
formance applications on the Grid, having an efficient ser-
vice selection algorithm has become mandatory. Service se-
lection is one of the basic components of a Grid system, to
discover qualified service providers for different Grid users.
A service selection algorithm should be efficient to ensure
unbiased allocations of requesters to the service providers.
To achieve efficiency, the service selection algorithm should
match the services and requesters in a way which optimizes
the entire allocation process.

This paper compared the Multiple Objective Parti-
cle Swarm Optimization algorithm using Crowding Dis-
tance technique (MOPSO-CD) to the Constraint Satisfac-
tion based Matchmaking (CS-MM) algorithm. It showed
that using the MOPSO-CD algorithm for selecting services
deployed on the Grid for several requesters accessing it
achieves a higher match score than using the matchmaking
algorithm. The reason behind the efficiency of the MOPSO-
CD algorithm can be attributed to the three key features of
the algorithm. Firstly, the algorithm uses an external repos-
itory or archive of non-dominated solutions found in pre-
vious iterations and hence it can keep track of all the non-
dominated solutions of previous generations. Secondly, be-
cause it uses the crowded comparison operator, which ba-
sically computes the average distances of each solution be-
tween the neighboring solutions, it acts as a diversity oper-
ator and diversifies the search in the problem space. And
thirdly, the particles in the swarm keep track of the local
best solution and global best solution, and use this informa-
tion to find the optimal match score. These characteristics
of the MOPSO-CD, along with the experimentation results
verifies, that the MOPSO-CD algorithm, which is a swarm
intelligence based optimization technique, proves to be a
powerful and accurate method to handle multi-objective op-
timization problems such as the one of service allocation.

After analyzing the experiment results of both the ap-
proaches it is recommended that if the execution time
plays an important role, then the CS-MM approach of ser-
vice selection should be used. However, if the accuracy
is paramount, the MOPSO-CD approach outperforms CS-
MM by a wide margin and therefore should be chosen.

6. Acknowledgement

The authors wish to acknowledge NSERC (Natural Sci-
ences and Engineering Research Council), for partly fund-

ing this research work.

References

[1] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail. G-
QoSM: Grid Service Discovery Using QoS Properties. Spe-
cial Issue on Grid Computing, Computing and Informatics
Journal, 21(4):363–382, 2002.

[2] R. Buyya and M. Murshed. A Deadline and Budget Con-
strained Cost-Time Optimisation Algorithm for Scheduling
Task Farming Applications on Global Grids. Arxiv preprint
cs/0203020, 2002.

[3] C. Coello, C. Lechuga, S. de Computacion, and
M. CINVESTAV-IPN. MOPSO: a proposal for multiple ob-
jective particle swarmoptimization. Proceedings of the 2002
Congress on Evolutionary Computation, 2002. CEC’02., 2,
2002.

[4] X. Hu and R. Eberhart. Multiobjective optimization using
dynamic neighborhood particleswarm optimization. Pro-
ceedings of the 2002 Congress on Evolutionary Computa-
tion, 2002. CEC’02., 2, 2002.

[5] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and eval-
uation of a resource selection framework for Grid applica-
tions. Proceedings of 11th IEEE International Symposium
on High Performance Distributed Computing, 2002. HPDC-
11 2002., pages 63–72, 2002.

[6] S. Ludwig and S. Reyhani. Introduction of semantic match-
making to grid computing. Journal of Parallel and Dis-
tributed Computing, 65(12):1533–1541, 2005.

[7] S. Ludwig and S. Reyhani. Semantic approach to service
discovery in a Grid environment. Web Semantics: Science,
Services and Agents on the World Wide Web, 4(1):1–13,
2006.

[8] S. Ludwig and P. van Santen. A Grid Service Discov-
ery Matchmaker based on Ontology Description. EuroWeb
2002.

[9] S. A. Ludwig and S. Reyhani. Selection algorithm for grid
services based on a quality of service metric. 21st Interna-
tional Symposium on High Performance Computing Systems
and Applications, 2007. HPCS 2007., pages 13–13, May
2007.

[10] B. Nadel. Constraint satisfaction algorithms 1. Computa-
tional Intelligence, 5(3):188–224, 1989.

[11] H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of Ninf: towards a global computing infrastruc-
ture. Future Generation Computer Systems, 15(5-6):649–
658, 1999.

[12] K. Parsopoulos and M. Vrahatis. Particle swarm optimiza-
tion method in multiobjective problems. Proceedings of the
2002 ACM symposium on Applied computing, pages 603–
607, 2002.

[13] C. Raquel and P. Naval Jr. An effective use of crowding
distance in multiobjective particle swarm optimization. Pro-
ceedings of the 2005 conference on Genetic and evolution-
ary computation, pages 257–264, 2005.

[14] J. Weissman. Adaptive Resource Selection for Grid-Enabled
Network Services. Proceedings of the Second IEEE Interna-
tional Symposium on Network Computing and Applications,
2003.

