
ENHANCED DISCOVERY OF WEB SERVICES
Using Semantic Context Descriptions

Simone A. Ludwig
School of Computer Science, Cardiff University, Cardiff, UK

Simone.Ludwig@cs.cardiff.ac.uk

S.M.S. Reyhani
Department of Information Systems and Computing, Brunel University, Uxbridge, UK

smsreyhani@ieee.org

Keywords: Context information, Semantics, Ontology, Web Service Discovery

Abstract: Automatic discovery of services is a crucial task for the e-Science and e-Business communities. Finding a
suitable way to address this issue has become one of the key points to convert the Web into a distributed
source of computation, as they enable the location of distributed services to perform a required
functionality. To provide such an automatic location, the discovery process should be based on a semantic
match between a declarative description of a service being sought and a description being offered. This
problem requires not only an algorithm to match these descriptions, but also a language to declaratively
express the capabilities of services. This paper presents a context-aware ontology selection framework
which allows an increase in precision of the retrieved results by taking contextual information into account.

1 INTRODUCTION

Recently, more and more organisations are
implementing IT systems across different
departments. The challenge is to find a solution that
is extensible, flexible and fits well with existing
legacy systems. Replacing legacy systems to cope
with the new architecture is not only costly but also
introduces a risk to fail. In this context, the
traditional software architectures prove ineffective in
providing the right level of cost effective and
extensible Information systems across the
organisation boundaries. Service Oriented
Architecture (SOA) (McGovern, 2003) provides a
relatively cheap and more cost-effective solution
addressing these problems and challenges.

One important factor in defining a new model of
Software Architecture is the ever-changing business
model. Modern day business constantly needs to
adapt to new customer bases. The ability to quickly
adapt to the new customer base and new business
partners is the key to success. Sharing IT systems
with other organisations is a new trend in the
business. For example, businesses like online
auctions are opening their systems to third party

organisation in an effort to better reach their
customer base. In this context, SOA offers benefit
and cost-effectiveness to the business. The process
of adapting to the changing business model is not an
easy task. There are many legacy systems, which are
difficult to make available to the new business
partners. These legacy systems might need to change
to support the new business functions and integrate
to the newly developed IT systems or integrate to the
IT systems of its partners'. The complexity of this on
the whole is what makes it a constant challenge to
organisations.

Dynamic discovery is an important component
of SOA. At a high level, SOA is composed of three
core components: service providers, service
consumers and the directory service. The directory
service is an intermediary between providers and
consumers. Providers register with the directory
service and consumers query the directory service to
find service providers. Most directory services
typically organise services based on criteria and
categorise them. Consumers can then use the
directory services' search capabilities to find
providers. Embedding a directory service within
SOA accomplishes the following:

• Scalability of services
• Decoupling consumers from providers
• Allowing updates of services
• Providing a look-up service for consumers
• Allowing consumers to choose between

providers at runtime rather than hard-coding
a single provider.

Although the concepts behind SOA were
established long before web services came along,
web services play a major role in SOA. This is
because web services are built on top of well-known
and platform-independent protocols (HTTP
(Hypertext Transfer Protocol) (HTTP, 2004), XML
(Extensible Markup Language) (XML, 2004), UDDI
(Universal Description, Discovery and Integration)
(UDDI, 2000), WSDL (Web Service Description
Language) (WSDL, 2004) and SOAP (Simple
Object Access Protocol) (SOAP, 2004)). It is the
combination of these protocols that make web
services so attractive. Moreover, it is these protocols
that fulfil the key requirements of a SOA. That is, a
SOA requires that a service be dynamically
discoverable and invokeable. This requirement is
fulfilled by UDDI, WSDL and SOAP.

However, SOA in its current form only performs
service discovery based on particular keyword
queries from the user. This, in majority of the cases
leads to low recall and low precision of the retrieved
services. The reason might be that the query
keywords are semantically similar but syntactically
different from the terms in service descriptions.
Another reason is that the query keywords might be
syntactically equivalent but semantically different
from the terms in the service description. Another
problem with keyword-based service discovery
approaches is that they cannot completely capture
the semantics of a user’s query because they do not
consider the relations between the keywords. One
possible solution for this problem is to use ontology-
based retrieval.

In this paper, ontologies are used for
classification of services based on their properties.
This enables retrieval based on service types rather
than keywords. This approach uses context
information to discover services using context and
services descriptions defined in ontologies.

This paper has the following structure: Section 2
gives an account of related research. In section 3 the
framework is introduced showing the architecture
and the matching algorithm. Section 4 describes the
implementation of the prototype outlining the tools
used. In section 5, an application example
demonstrates the usability of the approach following
an evaluation in section 6. Section 7 concludes this
paper by summarising the findings.

2 RELATED RESEARCH

The Web Services Description Language
(WSDL) is an XML-based language used to describe
a Web service. This description allows an
application to dynamically determine a Web
service’s capabilities, which are for example, the
operations it provides, their parameters, return
values, etc. A UDDI repository is a searchable
directory of Web services that Web service
requestors can use to search for Web services and
obtain their WSDL documents. WSDL documents,
however, do not need to be published in a repository
for consumers to take advantage of them. They are
also obtainable through a Web page or an email
message.

The Universal, Description, Discovery and
Integration Extension (UDDIe) (Shaikhali, 2003),
takes an approach that relies upon a distributed
registry of businesses and their service descriptions
implemented in a common XML format. UDDIe
specifications consist of an XML schema for SOAP
messages, and a description of the UDDIe API
specification. Together, these form a base
information model and interaction framework that
provides the ability to publish information about a
broad array of Web services. It follows the same
specification and standards for the registry data
structure and API specification for inquiring and
publishing services from the registry. However,
there are slight changes and extensions in the data
structure and the API to improve and maximise the
usage of the registry. UDDIe defines four core types
of information that provide the kinds of information
that a technical person would need to know in order
to use partner’s Web services. These are: business
information; service information, binding
information; and information about specifications
for services. This information can be discovered by
discovery calls based on the later data types.

The Web Service Modeling Ontology (WSMO)
(Keller, 2004) provides the conceptual framework
for semantically describing web services and their
specific properties. The Web Modeling Language
(WSDL) is a formal language for annotating web
services with semantic information, which is based
on the WSMO conceptual framework. WSMO aims
to create an ontology for describing various aspects
related to Semantic Web Services, with the defined
focus of solving the integration problem. WSMO
also takes into account specific application domains
(e-Commerce and e-Work) to ensure the
applicability of the ontology for these areas.

Mandel and Sheila (Mandel, 2003) automated
web service discovery by using a semantic
translation within a semantic discovery service. The

approach uses a recursive back-chaining algorithm
to determine a sequence of service invocations, or
service chain, which takes the input supplied by
BPWS4J and produces the output desired by
BPWS4J. The translation axioms are encoded into
translation programs exposed as web services. The
algorithm invokes the DQL (DAML Query
Language) (Fikes, 2002) service to discover services
that produce the desired outputs. If the semantic
discovery service does not have a required input, the
algorithm searches for a translator service that
outputs the required input and adds it to the service
chain. As the process is recursive it terminates when
it successfully constructs a service chain, or the
profiles in the knowledge base are exhausted.

3 FRAMEWORK

As seen from the existing approaches the need
for more expressiveness of service descriptions was
stated revealing the limitation of a syntactic
approach to service discovery. To follow these
movements proposed by the related work towards a
semantic based approach for service discovery the
context-aware ontology selection framework is
proposed. This approach supplements the current
approaches by taking context attributes for the
service discovery process into account. Additional
requirements have driven this framework towards a
context-aware ontology selection framework
described in the following section.

3.1 Requirements

An advertisement matches a request, when the
advertisement describes a service that is sufficiently
similar to the service requested (Paolucci, 2002).
The problem of this definition is to specify what
“sufficiently similar” means. Basically, it means that
an advertisement and a request are “sufficiently
similar” when they describe exactly the same
service. This definition is too restrictive, because
providers and requesters have no prior agreement on
how a service is represented and additionally, they
have very different objectives. A restrictive criterion
on matching is therefore bound to fail to recognise
similarities between advertisements and requests.

Specific requirements for the context-aware
ontology selection framework are as follows:

1. High Degree of Flexibility and
Expressiveness
The advertiser must have total freedom to
describe their services. Different advertisers
want to describe their services with different
degrees of complexity and completeness. The

description tool or language must be
adaptable to these needs. An advertisement
may be very descriptive in some points, but
leave others less specified. Therefore, the
ability to express semi-structured data is
required.

2. Support for Subsumption
Matching should not be restricted to simple
service name comparison. A type system with
subsumption relationships is required, so
more complex matches can be provided
based on these relationships.

3. Support for Data Types
Attributes such as quantities and dates will be
part of the service descriptions. The best way
to express and compare this information is by
means of data types.

4. Matching Process should be Efficient
The matching process should be efficient
which means that it should not burden the
requester with excessive delays that would
prevent its effectiveness.

5. Flexible and Modular Structure
The framework should be flexible enough to
Web applications to describe their context
semantics in a modular manner.

6. Lookup of Matched Services
The framework should provide a mechanism
to allow the lookup and invocation of
matched services.

3.2 Architecture

The architecture shown in Figure 1 comprises of
clients, matchmaker, context and service ontologies,
registries, and web servers hosting the web services.

Figure 1. Matching Architecture.

The components are now explained in more

detail:
• Clients provide an interface for the users to

describe their service requests. The client also

lists the matches and provides the facility to
call the web services retrieved.

• Registries contain the service information.
Service descriptions are in the form of service
name, service attributes (inputs and outputs)
and service description.

• Web Servers host the web services.
• Matchmaker consists of the matching module

including the matching algorithm and a
reasoner for the ontology matching process.
The matching algorithm is explained in
further detail in the following section.

• Ontologies (context and services) describe
the domain knowledge such as book shop
services and provide a shared understanding
of the concepts used to describe services.
Contextual information is crucial to ensure a
high quality service discovery process
(Gruber, 1992).

Figure 2 shows the matchmaking steps as
processed by the matching algorithm.

Figure 2. Matchmaking Steps.

The interactions of a service request are the

following: The user contacts the matchmaker where
the matching algorithm is stored. The matchmaker
contacts the context ontology and reasons depending
on a set of rules defined. The same is carried out for
the services ontology. Having additional match
values the registry is then queried to retrieve
services descriptions which match the request and
returns the service details to the user via the
matchmaker. The parameters stored in the registry
are service name, service attributes, service
description and contact details. Having the URL of
the service the user can then call the web service and
interact with it.

3.3 Matching Algorithm

The main component of the context-aware
ontology selection framework is the matching
algorithm. The matching algorithm categorises the
matches into different classes. The different
matching degrees are as follows. Consider a user
request R and a service description S . In order to

rank the relevance of the match we classify the
matches into the following 5 categories:

• Exact match SR = : The request matches the
service exactly, i.e. all properties are a match.

• Plug-in match SR ⊂ : The service allows
more than the requester wants.

• Subsume match RS ⊂ : A subset of the
request is fulfilled.

• Intersection match φ≠∩ SR : The request is
partially fulfilled.

• Disjoint match φ=∩ SR : The request and
the service do not share any properties.

The following three categories can be derived
from classifying the types of matches that are
useful for the user:
1. Precise match: Exact and Plug-in match -

The service provides the requested
functionality or more.

2. Partial match: Subsume and intersection
match - The service is capable of providing
part of the requested functionality.

3. Mismatch: Disjoint match - The service is not
capable of providing the requested
functionality and therefore will not be
returned to the user.

CP: Context parameters
CA: Context attribute
SP: Service parameters
RS: Returned services descriptions
MS: Matched services

CP, SP ← read_Service_Request()

Context Matching:
load_Context_Ontology()
parse_Context_Ontology_and_Load_Rule_Set()
CA ← query_Ontology_for_Context(CP)

Service Matching:
load_Services_Ontology()
parse_Services_Ontology_and_Load_Rule_Set()
RS ← query_Ontology_for_Context(CA,SP)

Registry Lookup:
MS ← lookup_Registry(RS)

return MS

Figure 3. Pseudo Code of Matching Algorithm.

The algorithm shown in Figure 3 reads the

service request parameters (context attributes and
service attributes) from the client first. Then the
context ontology is parsed and rules are applied to
match the context keyword by providing the context
attributes. Having the context keyword and the
service attributes allows to query the services
ontology which in turn returns the service matches.
This list is then forwarded to the registry module
where the lookup is performed retrieving the
necessary contact details for each service.

3.4 Requirement Fulfilment

This framework is based on semantic service
descriptions and it fulfils the six requirements
specified in section 3.1 as follows.

Requirement 1 to 4 is fulfilled by the use of a
shared ontology and a reasoning engine to achieve
semantic matchmaking. Shared ontologies are
needed to ensure that terms have clear and consistent
semantics. Otherwise, a match may be found or
missed based on an incorrect interpretation of the
request. The matchmaking engine should encourage
providers and requesters to be precise with their
descriptions. To achieve this, the service provider
follows an XML-based description, which is the
ontology language OWL. To advertise and register
its services the service requester generates a
description in the specified OWL format. Defining
the ontologies precisely allows the matchmaking
process to be efficient. The advertisements and
requests refer to OWL concepts and the associated
semantics. By using OWL, the matchmaking process
can perform implications on the subsumption
hierarchy leading to the recognition of semantic
matches despite their syntactical differences between
advertisements and requests. The use of OWL also
supports accuracy, which means that no matching is
recognised when the relation between the
advertisement and the request does not derive from
the OWL ontologies. Complex reasoning needs to be
restricted in order to allow the matching process to
be efficient.

Requirement 5 is fulfilled as the framework
supports flexible semantic matchmaking between
advertisements and requests based on the ontologies
defined. Minimising false positives and false
negatives is achieved with the selection process,
where the request is matched within the appropriate
application context. The design of having context
and services ontologies separately allows a modular
design as it encapsulates the context knowledge
from the services knowledge. This allows other
applications to specify their service semantics
separate from the context semantics.

Requirement 6 is fulfilled by the usage of a
registry service. The registry service allows the
lookup of service details providing the user with the
service URL.

4 IMPLEMENTATION

The prototype implementation is shown in
Figure 4. The implementation is centred around the
context and services ontologies that structure
knowledge about the domain for the purposes of

presentation and searching of services. The
matchmaking engine performs the semantic match
of the requested service with the provided services.
This allows close and flexible matches of the
matchmaking process. This prototype is based on
Web services technology standards. The user
interface is developed with JSPs (Java Server
Pages). The communication from the JSPs with the
underlying process is done with JavaBeans. The
implementation of the Web services was done in
Java using WSDL, XML and SOAP. The UDDI
registry is used for the final selection stage which is
the registry selection. The actual service is matched
with the service request depending on the ontologies
loaded.

The heart of the portal implementation is the
semantic matchmaking. The OWL parser parses the
context and services ontologies. With a defined set
of rules the inference engine reasons about the
ontologies and with the matched results a lookup in
the UDDI registry is performed. The services get
then displayed in the user portal, where the user can
select the appropriate service from the list.

For the context and services ontologies OWL
was chosen as it provides a representative notion of
semantics for describing services. OWL allows
subsumption reasoning on concept taxonomies.
Furthermore, OWL permits the definition of
relations between concepts. For the inference engine
rules were defined using the JESS (Java Expert
Systems Shell) language (JESS, 2004). The JESS
API (Application Programming Interface) is
intended to facilitate interpretation of information of
OWL files, and it allows users to query on that
information. It leverages the existing RDF API to
read in the OWL file as a collection of RDF triples.

Figure 4. Prototype Implementation.

JESS was chosen as a rule-based language for

the prototype as it provides the functionality for
defining rules and queries in order to reason about
the ontologies specified. It supports the development
of rule-based expert systems which can be tightly
coupled to code written in the portable Java

language. JESS is a forward chaining production
system that uses the Rete algorithm (Forgy, 1982).
The Rete algorithm is intended to improve the speed
of forward-chained rule systems by limiting the
effort required to recompute the conflict set after a
rule is fired. Its drawback is that it has high memory
space requirements.

In the prototype implementation, queries
depending on the specified ontology and service
definition structure are specified. These get called
whenever a search request is performed by the user.
The search request is given by search parameters the
user specifies. If datatypes, in JESS syntax
PropertyValue, of a defined class should be
found then the defquery in Figure 5 is invoked.

(defquery query-for-class-of-a-given-property
"Find the class to a given property."
 (declare (variables ?class))
 (triple
 (predicate "http://www.w3.org/2000/01/rdf-
 schema#domain")
 (subject ?class)
 (object ?x)
)
)

Figure 5. JESS Query.

With such queries, reasoning about classes of the

ontology is achieved by the matching module. The
context ontology is parsed by a OWL parser. The
attributes and classes of OWL describe the concept
of the ontology. The service request is being
matched semantically by parsing the context and
services ontology and the application of the rules
defined. The OWL code facilitates effective parsing
of service capabilities through its use of generic
RDF(S) symbols compared with OWL specific
symbols. With a defined set of rules an inference
engine reasons about the value parameters parsed
from the ontology. Other queries implemented
include sub-classing, datatype, object and functional
properties.

5 APPLICATION EXAMPLE

An application scenario was chosen to
demonstrate the usability of the approach. It is
assumed that many e-shopping web services are
available on the Web. These can be any kind of
services e.g. Amazon, eBay, etc., wrapped as web
services offering different goods to buy such as
Books, Bikes and CDs. It is furthermore assumed
that in most cases a client searches for a service not
knowing the service name. The user only specifies a
service request with a few keywords describing the
service needs. For this scenario a context ontology
was created supplying the categories of services for

e-shopping. The context ontology contains
categories representing Food, Clothes, Bikes, Cars,
Shoes, Books and CDs. The underlying classes
contain many associative relations to each of the
categories. Each of the classes belonging to one of
the categories contains attributes describing the class
further. E.g. class Business (belonging to context
Books) contains the attributes computer, reading,
etc. For a special application domain two identical
attributes in more than one class could be
eliminated. However, if context ontologies would be
reused from other sources this ambiguity can not be
disqualified. The prototype implementation solves
this problem by taking the additional context
parameters into account to eliminate the “wrong”
context. If the user only specifies one context
parameter which matches two categories then the
prototype returns a mismatch statement.

The context ontology is written in OWL (OWL,
2004) description containing class (<owl:Class
rdf:ID="Services"/>) and subclass
(<rdfs:subClassOf rdf:resource="#Services"
/>) relationships. An OWL ontology is made up of
several components, some of which are optional, and
some of which may be repeated. OWL constructs are
presented in a structured format including RDF
triples as shown below.

The structure of the e-shopping services
ontology is the following: The first level contains
the corresponding categories of the context
ontology. The second level represents the actual
service implementation with the attributes below.
For example, one service specification outlines the
Books web service. Different service
implementations are BookBuy, Bookshop, BuyBooks,
Books and BookSale.

In the services ontology not only class
(<owl:Class rdf:ID="Services"/>) and subclass
(<rdfs:subClassOf rdf:resource="#Services"
/>) relationships are declared but also data type
property relationships (<owl:DatatypeProperty
rdf:ID="Price">) describing the attributes of the
service.

In order to demonstrate how the process from
service request to service response works is shown
next. The user issues a service request consisting of
context and service attributes. The context attributes
(e.g. computer and reading) are taken first and the
context ontology is queried using these search
attributes resulting in the context keyword Books
which is used for the service search part. The
services ontology is then reasoned by using the
context keyword and the service attributes specified
in the service request query. The retrieved services
are BookBuy, Bookshop, BuyBooks, Books and
BookSale. After these services are matched the

service details are retrieved from the registry and
returned to the user.

6 EVALUATION

The evaluation is done by calculating precision
and recall rates. Precision is the fraction of
advertised services which is relevant, i.e. the highest
number is returned when only relevant services are
retrieved. Recall is the fraction of relevant services
which has been retrieved, i.e. the highest number is
returned when all relevant services are retrieved.

For the evaluation of precision and recall values
a comparison of a keyword-based approach with the
prototype approach was conducted. The focus for
this evaluation was on book services.

Table 1: Relevant Services.

 service1 service2 service3 service4 service5
context
attributes

computer
reading

title heading name writing title
author writer authors maker composer
number issue no product id
category class family concept category
price cost amount worth value
publisher owner proprietor publisher owner

service
attributes

pages page
number

page pages pages

Table 1 shows the relevant services. All

attributes shown in the table are the service attribute
parameters used for this evaluation. Matches are
indicated in bold.

Table 2: Irrelevant Services.

 service6 service7 service8 service9 service10

context
attributes

graph
picture
title issue name product composer
number owner proprietor pages id
price isbn issn book value
pages drink shop meal pages
book pixel colour point book
shop font paragraph space food

service
attributes

colour space bold font colour

Table 2 shows the irrelevant services. The

attributes indicated in bold match with the extended
context ontology taken for this experiment, however
the context parameters do not match the Book
category. The number of service attributes is the
same for relevant and irrelevant services.

The context parameters define the category of
the service which results in the two tables (Table 1
and 2) being relevant services and irrelevant
services. The user wants to find Book shop services
and specifies a service request 1 (context
parameters: computer, reading; service parameters:

title, author, number, category, price, publisher,
pages) with the parameters specified for service 1 in
Table 1. Service request 2 is specified with the
parameters of service 2 (Table 1) and so on. The
context parameters of the service request are always
computer and reading.

Table 3: Matches of Service Requests.

 Number of
relevant
services

Keyword-
based
approach

Prototype
implementation

Request 1 5 3 relevant
3 irrelevant

5 relevant

Request 2 5 2 relevant
1 irrelevant

5 relevant

Request 3 5 1 relevant
1 irrelevant

5 relevant

Request 4 5 3 relevant
3 irrelevant

5 relevant

Request 5 5 3 relevant
4 irrelevant

5 relevant

Table 3 shows the request and the matches

comparing the keyword-based approach with the
prototype approach. It shows that only the keyword-
based approach returns irrelevant matches as the
prototype was customised.

Figure 6 shows the results of the precision and
recall values. The precision and recall results of the
keyword-based approach range between 20% and
70%, whereby the prototype approach achieved a
precision and retrieval rate of 100% in this
experimental setup. As the recall and precision rates
from the prototype show higher values than the rates
from the keyword-based approach, it shows that the
user receives a better subset of services that are
relevant and in addition, the user receives no
services that are irrelevant.

Figure 6: Evaluation of Precision and Recall Values.

Due to the fact that this research is conducted in

a limited application domain, the set of advertised
services, query and ontology are highly adapted and
therefore a result of 100% is retrieved. In a real-
world application scenario this correlation might not
always be that high, especially if a context ontology
from third-parties is used.

The accomplished result of service matches does
not state that in every application scenario always
values of 100% are achieved but it indicates the
improvement in quality of service discovery results
by using this semantic approach. Precision and recall
measures showed the increase of quality of service
matches, which was achieved by the customisation
of the context and services ontologies.

7 CONCLUSION

The use of contextual information results in a
better service discovery process due to an increased
precision of the matched services. The contextual
information enhances the expressiveness of the
matching process, i.e. by adding semantic
information to services, and also serves as an
implicit input to a service that is not explicitly
provided by the user. The prototype approach
facilitates interoperability as the context and service
properties are defined and specified in associated
ontologies. Re-writing of code or interface wrapping
does not need to be done in order to make systems
interoperable. The development and maintenance is
much easier due to the modular structure and
encapsulation of context matching, service matching
and registry selection. Whenever a service is added
only an entry in the services ontology needs to be
included and the service details need to be registered
in the registry. The rules defined in the reasoning
engine do not need to be modified and the service
discovery process is not affected at all when adding
services. This is a very important feature for modern
information systems, and especially in the area of
Web services, where interoperability is a major
issue.

A drawback of this approach is that users
registering services need to know the category their
services belong to. Cases where a service falls into
more than one category need to be registricted in
order to allow an automatic and precise discovery
and selection of service matches.

REFERENCES

McGovern, J., Tyagi, S., Stevens, M., Mathew, S., 2003.
The Java Series Books - Java Web Services
Architecture. Chapter 2, Service Oriented
Architecture.

HTTP - Hypertext Transfer Protocol, 2004. W3C,
http://www.w3.org/Protocols/.

Extensible Markup Language (XML), 2004. W3C.
http://www.w3.org/XML/.

UDDI Technical White Paper, 2000.
http://www.uddi.org/pubs/Iru_UDDI_Technical_Wh
ite_Paper.pdf.

Web Services Description Language (WSDL), 2004.
Version 1.1, W3C.
http://www.w3.org/TR/wsdl.

SOAP Version 1.2, 2004. W3C.
http://www.w3.org/TR/soap/.

ShaikhAli, A., Rana, O., Al-Ali, R., Walker, DW., 2003.
UDDIe: An Extended Registry for Web Services.
Proceedings of the Service Oriented Computing:
Models, Architectures and Applications, SAINT-
2003, Orlando, USA.

Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M.,
Fensel, D., 2004. WSML Deliverable – WSMO Web
Service Discovery, WSML Working Draft.

Mandell, D.J., McIlraith, S.A., 2003. A Bottom-Up
Approach to Automating Web Service Discovery,
Customization, and Semantic Translation.
Proceedings of the 12th International World Wide
Web Conference, Workshop on E-Services and the
Semantic Web(ESSW'03), Budapest.

Fikes, R., Hayes, P., Horrocks, I., 2002. DAML Query
Language, Abstract Specification.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.,
2002. Semantic Matching of Web Services
Capabilities. Proceedings International Semantic
Web Conference (ISWC 02).

Gruber, T.R., 1992. ONTOLINGUA: A Mechanism to
Support Portable Ontologies, Version 3.0, Technical
Report KSL 91-66, Knowledge Systems Laboratory,
Department of Computer Science, Stanford
University.

JESS, Java Expert Systems Shell, 2004.
http://herzberg.ca.sandia.gov/jess/.

Forgy, C.L., 1982. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem.
Journal of Artificial Intelligence; 19-17-37.

W3C Working Draft, 2004. “Requirements for a
Web Ontology Language”.
http://www.w3.org/TR/webont-req/.

