
State Specialization in a Service Discovery Ontology: A Financial Services Business Grid

David Bell
Department of Information

Systems and Computing
Brunel University

UK
David.Bell@brunel.ac.uk

Simone A. Ludwig
School of Computer Science

Cardiff University
UK

Simone.Ludwig@cs.cardiff.ac.uk

Mark Lycett
Department of Information

Systems and Computing
Brunel University

UK
Mark.Lycett@brunel.ac.uk

Abstract

Investment Banking requires a diverse set of
supporting systems in order to operate in a range of
markets from corporate mergers to trading options on
weather. The challenge to this community is the ability
to adapt to new business requirements in an effective
manner, utilizing their network of capabilities in a
flexible and dynamic way. A semantic approach to
capability discovery can combine many strategic
perspectives in a pragmatic yet easily usable form. The
use of richer explicit knowledge, that is system
readable, provides the basis for discovering
capabilities on this exemplar Business Grid - "the grid
of services". Current research of semantic capability
description in the Grid community has tended to focus
on resource selection rather than service discovery.
This research explores the practical usage of Grid
services in the financial market sector. The approach
demonstrates the need for distributed and phased
semantic service discovery (with capabilities described
and stored in a dynamic ontology).

1 INTRODUCTION

Investment banks house a diverse set of systems
segregated by product, process or geographical focus.
The product range include Foreign Exchange, Interest
Rates, Fixed Income (Bonds), Commodities (from Oil
to Weather) and Derivatives. Action is then required to
bring together capabilities resident in several products,
processes or geographical focused systems. The
challenge to these organizations is to be able to adapt
to new business requirements in an effective way,
utilizing their capabilities in a flexible manner. The
size of the inventory directs this research away from
centralized knowledge engineering and use; and
toward strategies for service knowledge segmentation.
Focusing ones thinking on process and performance
directs this analysis.

Grid infrastructure, with its Web Services layer,
provides an infrastructure for exposing stateless and

stateful organizational capabilities for re-use and novel
re-configuration. The logical next step, with a service
oriented inventory, is to identify practical methods for
the discovery of these capabilities in the support of
sporadic business need. Existing methods such as
UDDI (Universal Description Discovery and
Integration) [1] and MDS (Monitoring and Discovery
Service) [2] were discounted due to the limitation of a
string matching syntactic approach [3]. We have
chosen a semantic approach to service discovery;
investigating the practicalities of semantic technology
in Financial Services (FS). The experiments explore
the performance impact of top down conceptual
models and bottom up state models; with results
directing a novel phased combination of the two
ontology formation mechanisms.

The remainder of this paper is organized as follows.
In section 2 related work which motivates the research
executed is presented. Section 3 shows the financial
service architecture and describes the components
used. In section 4 the implementation of the prototype
is described with the tools used. Section 5 shows the
performance graphs for two phases of experimentation.
A conclusion is given in section 6 which summarizes
the findings and suggests some further improvements.

2 RELATED WORK

Many general strategies have been proposed to
address the issues of adapting to new business
requirements in an effective way, utilizing these
capabilities in a flexible manner. Social sciences have
proposed organizational learning (OL), with tacit-
explicit conversion of knowledge. This focus on
knowledge flow, whilst often not computer readable,
provides a basis for supporting improved inter silo
decision making, clearly highlighted in Nonaka’s
knowledge spiral [4]. Alternatively, technology
organizations have recently refocused on the use of
workflow to orchestrate the execution of capabilities
within the system inventory (an example being
BPEL4WS [5]). One problem here is that no single

person, or pre-formed grouping, can bridge the wide
conceptual knowledge gap between the macro and
micro perspectives. Chen et al. [6] add, “such
initiatives (WSFL, XLANG, BPEL4WS) generally
focus on representing service compositions where the
flow of process and the bindings between services are
known a priori…”. The upfront knowledge needed to
create workflows for new, sporadic requirements is
fragmented within the organization making the
complete, top-down modeling of flows extremely
difficult.

Similar research in the Grid area was addressed by
Deelman et al. [7] with their workflow generator and
Tangmurarunkit et al. [8] with their resource selector.
The workflow generator addresses the problem of
automatically generating job workflows for the Grid.
Deelman et al. have developed two workflow
generators. The first one maps an abstract workflow
defined in terms of application-level components to the
set of available Grid resources. The second generator
takes a wider perspective and not only performs the
abstract to concrete mapping but also enables the
construction of the abstract workflow based on the
available components.

The ontology-based resource selector exploits
ontologies, background knowledge, and rules for
solving resource matching in the Grid. The aim being
to overcome the restrictions and constraints of resource
descriptions in the Grid. In order to make the
matchmaking more flexible and also to consider the
structure of VOs the framework consists of ontology-
based matchmakers, resource providers and resource
consumers or requesters. Resource providers
periodically advertise their resources and capabilities
to one or more matchmakers using advertisement
messages. The user can then activate the matchmaker
by submitting a query asking for resources that satisfy
the request specification.

Even though research on workflow and semantic
resource selection has been introduced to the grid, it
has been resource centric and not focused on service-
orientation. In the financial market sector the challenge
is being able to adapt to new business requirements in
an effective way, utilizing these capabilities in a
flexible manner. A semantic approach to capability
discovery can combine OL and IT (Information
Technology) in a pragmatic yet easily usable form,
using general service profile ontology to support
heterogeneity. It was with the aim of evaluating this
technology that a business oriented discovery
architecture was designed. The use of richer explicit
knowledge, that is system readable, provides the basis

for discovering capability on the Business Grid – “the
grid of services” [9]. Our own generalized ontological
service model was chosen – combining top-down
human and bottom-up computer derived knowledge.
OWL-S [10] was discounted due to (a) the
impracticality in searching many distinct service
profiles, (b) our need to reason across the whole
inventory is better supported by a combined profile
ontology and (c) discovery does not require much of
the synthesis oriented baggage.

3 FINANCIAL SERVICE ARCHITECTURE

The business architecture of financial service
applications are often segmented by product, process
or geographic concerns; impacting service architecture
design. Application re-use strategies will align behind
the appropriate segment and additional development
will be needed to close any recognizable gaps.
Challenges may occur when factors dictate a particular
strategy change or with misalignment to underlying
segments. This may involve moving into a new market
or developing a new business product from existing
parts. The brittle nature of application integration is
then replaced with that of brittle service integration.
This is often caused by the static nature segmentation,
service decomposition and registries. An alternative
approach is to adopt a loosely coupled view of service
description and categorization allowing more dynamic
service groupings. It is with this strategy in mind that
application system capabilities were replicated as
stateful grid services in order to provide virtual
services ready for exploitation via re-use or re-
configuration.

In order to investigate the prototype, existing
capabilities from a group of systems spanning product,
process and geographical dimensions were extracted.
The capabilities were explicitly described using OWL
(W3C Web Ontology Language [11]) – see section 3.
These same capabilities were exposed as grid services.
In order to investigate dynamic discovery, three use
cases were chosen to explore the applicability of
semantic searching. (1) Searching for trades executed
with a particular counterpart, (2) Valuing a portfolio of
interest rate derivative products and (3) Valuing an
option based product.

These three core use-cases were chosen because
they provide examples of three distinct patterns of use.
Use-case 1 requires data access to several systems,
aggregating results into a composite portfolio. Use-
case 2 uses a relatively standard, unique capability,
whereas Use-case 3 may use one of several alternative
capabilities. Extending our human derived ontological

model with state knowledge is investigated with three
further use case – each involving various granularities
of business state. The three state use cases comprise:
(A) Risk Management where 10 books each hour are
cached in the underlying grid service, (B) Pricing a
Low Volume Product where 40 new trades per hour
are cached in the underlying grid service and (C)
Pricing a High Volume Product where 200 new trades
per hour are cached in the underlying grid service.

3.1 Requirements

The use of a standard registry usually involves
syntactically matching a request to an available service
[3]. Furthermore, constraints imposed by specific
information models on what and how service
information can be stored can also limit applicability.
The global financial organization has common
terminology at the generalized level, which becomes
more specialized when describing capability within a
product, process or geographical context. These
differences, together with relationships, need to be
made explicit if capabilities are to be better identified.

3.2 Description of FS Service Components

Geographical coverage of the Investment Banking
systems motivated the high level of middleware and
knowledge flexibility. The matching algorithm may be
deployed on one of four tiers; the client, a front line
hosting server, a grid node or with the knowledge base.

Figure 1. SEDI4G Architecture

The Semantic Discovery for Grid Services

architecture (SEDI4G) (depicted in Figure 1),
influenced by the changing network economics
highlighted by Jim Gray [12], allows placement of the

discovery services and knowledge across the network
with associated selection and combination. Several FS
applications where mined for capabilities (e.g. Object
methods in a C++, .NET or Java based systems).
Capabilities were exposed capabilities as stateful grid
services. An example is trade pricing of Interest Rate
Swap and Interest Rate Option products; resident in
both trading and risk management systems. The
resulting service sets cover trade execution, price
calculation, risk management, settlement and credit
risk. The use of de facto business terminology and
object generalization resulted in certain terms requiring
additional analysis. An example is the use of the term
“trade” to describe the various states of the trade –
planned, new, live and dead. These class
specializations were recognized and made explicit
manually in the first phase. The second phase of
investigation extracted dynamic state without human
intervention. The discovery process begins by
identifying which components are required to carry out
a semantic search. This choice involves placement
concerns (represented by the grey flexible services and
data in Figure 1). Thus, Step 1 involves the selection
of which discovery control service (SDCS), knowledge
base and matching service best fit the user
requirement. This information is sent to SDCS together
with the search parameters (2). SDCS then calls the
KB based matching service (3) that in turn loads the
KB and rules (5). The matching is carried out and
returned to SDCS for use in one of the client
components (4). The SDCS service can optionally
provide the resource properties, the dynamic state of
each service, alongside the service choices (6). These
same properties are monitored by the SSMON service
(7). This monitoring service contains simple heuristics
that determine when a specialized description is
required (8). The initial specialization rules are time
based, an example being a stable state for x minutes.

KB: Knowledge Base
RETE: RETE Object
URL: URL of ontology
RS: returned services
MS: matched services
KBInitialisation:
RETE ← create_Rete_Object()
read_Jess_Rules_And_Facts()
run_Rete_Infer_Rules_And_Facts()
KB ← load_OWL_Resource(URL)
runRete_Apply_Semantics()
SearchRequest:
for all searchWords do

RS ← search_Ontology_For_Service(URL)
end for
 MS ← remove_Ambiguous_Services(RS)
return MS

Figure 2. Pseudo Code of Matching Algorithm

The matching algorithm comprises two steps; the
initialization of the knowledge base and the actual
search request. During the initialization phase the
ontology is loaded and the facts and rules are applied
using the Rete algorithm [13]. During the search
request the ontology is reasoned depending on the
specified Jess queries and the matched services are
returned. Figure 2 shows in more detail how the
matching algorithm works.

4 IMPLEMENTATION

The prototype system was implemented using
Protégé (with OWL Plugin) and used to build three
service KBs – OWL files (small, medium and large).
The discovery algorithm is a grid enabled web service.
The control web service is a Java web service that
directs control to the discovery algorithm which then
generates either; (a) XML for return to the client, (b)
HTML for thin client usage and (c) a JDNC data file.

Figure 3. Service Search and Selection

The lack of common service discovery systems

showed a lack of expressive service description and the
lack of infrastructures for defining common service
descriptions across enterprises and customers [14].
This is supported by the generalization of concepts
used to describe capability. To provide an enhanced
discovery for the FSs, the prototype is supported by a
matching mechanism which allows for a more efficient
service discovery by using a FS ontology described in
a semantic language and a reasoning engine that uses
the ontology [15]. The flexibility in capability
categorization and multi-placement support address
many of the limitations exhibited by static data models
and centralized repositories.

OWLJessKB [16] was used for the service
discovery process. It is intended to facilitate reading
OWL files, interpreting the information as per OWL
and RDF languages and allowing the user to query on
that information. It then inserts these triples as facts

into the Jess knowledge base [17]. With some
predefined rules, Jess can reason about the triples and
can draw more inferences. The Jess API (Application
Programming Interface) is intended to facilitate
interpretation of information within OWL files,
allowing users to query it. It leverages the existing
RDF API to read in the OWL file as a collection of
RDF triples. How the service discovery process works
is shown next. Figure 4 shows a part of the FS
Ontology. The services are listed as classes of the
ontology, having methods, which are sub-classes, and
parameters which are properties spoken in ontology
terms. The user defines for example three search words
which are: executeTrade, boolean and trade. For
all three search words the Jess query shown in Figure 5
is invoked, returning results to the GUI (see Figure 3).

Figure 4. FS Ontology Structure

The returned classes are then taken and another Jess

query for subsumption is invoked for each return class.
This returns the services getTradeByID,
getTradeByDate, getTradeByType etc. The sub-
classing query finds the other three related services.

(defquery query-for-class-of-a-given-property
"Find the class to a given property."
 (declare (variables ?class))
 (triple
 (predicate "http://www.w3.org/2000/01/rdf-
 Schema #domain")
 (subject ?class)
 (object ?x)))

Figure 5. Jess Query – Property of Class

5 PERFORMANCE MEASUREMENTS

Performance measurements were carried out using
the distributed discovery architecture presented,
utilizing various topologies and ontology sizes in order
to determine size constraints imposed by using this
richer service ontology. These measurements are

described in phase 1. In phase 2 performance
measurements are undertaken to monitor and record
service state for specialized service discovery.

5.1 Phase 1

The prototype system used three ontologies
(summarized in Table 1) to investigate the impact of
KB size on semantic search performance. The
ontology size is dictated by increases in the number of
product, process or geographical systems being
described. The following setup was chosen. The three
use cases mentioned in section 2 had the following
query attributes:
1. Finding a trade executed against a particular

countparty [Query="tradeList",”cpt”]
2. Finding a capability to value a book of interest

rate products [Query="rateVector",
”curveStructure”, ”doneTrade”]

3. Finding a capability to value an option trade
[Query="liveSwaptionTrade", ”volMatirx”]

The initial testing phase compared three differing
ontology sizes (Table 1) when used to execute three
use case searches.

 Small

Ontology
Medium
Ontology

Large
Ontology

No. of classes 57 114 228
No. of properties 23 46 92

Table 1. Phase 1 Ontology Comparison

The results can be seen in Figure 6. The timings in
milliseconds cover server time, both in instantiating
the OWLJessKB objects and executing the semantic
search. Client side and initialization figures highlight
the need for server side caching as initial runs reveal
an overhead in the region of 10 seconds. The timing
labels are new object initialization (N), finding
semantic matches (M) and the total (T). They are taken
from services that have been initialized.

0

1000

2000

3000

4000

5000

6000

small medium large small medium large small medium large

Ontology size

Pe
rfo

rm
an

ce
 in

 m
s

N M T

Use case 1 Use case 2 Use case 3

Figure 6. Ontology Size Results

The results highlight the near linear degradation in
performance exhibited by the search. In a dynamic
search context, ontologies larger than around 500
classes become impractical. Investment banks – with
thousands of capabilities – require alternatives to
centralization of service knowledge.

5.2 Phase 2

Recognizing the value of capability state in
specialized sub-class definitions, warrants practical
impact analysis. The second testing phase simulates the
three stated dynamic ontology growth scenarios (which
cause the number of classes to grow by (A) 80, (B)
320 and (C) 1600). The aim is to then understand the
practicalities of state integrations and derive pre-
discovery heuristics. The resulting ontologies were
compared using the same three use case queries (see
5.1). The results are shown in Figures 7.

The addition of specialized sub-classes to the
ontology provides greater accuracy, but at a cost. It can
be seen that, even when taking a small slice of
capability, the ontology growth makes it near
impractical to use a consolidated knowledge base.
Consequently, one could be to discard the approach.
This would be a mistake if the relative merit of this
specialized capability out ways the query performance.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

N M T

P
er

fo
rm

an
ce

 in
 m

s

Risk Management Low Volume Pricing High Volume Pricing

Figure 7. Combined Growth Results

An alternative is to separate the state service

knowledge from the combined KB. It is, after all,
already supported by the pre-discovery selection phase
of the SEDI4G architecture. The critical question is
that of how the service knowledge is separated. Here
we have provided a basic approach to this by
federating the state knowledge bases. They are then
selected in pre-discovery when a query attribute
contains a state identifier. The linear growth in query
performance does highlight that small service
ontologies with minimal change in state are capable of
remaining in a single KB. The use and performance
limits of state are clearly stated.

The post-discovery heuristics expose additional
relevance in the exploration of cost-benefit and
associated payoff functions of service state: (Cost-
Benefit)*Importance. Recognizing cost and benefit
will differ depending on the context.

For example, in Sao Paulo the network usage will
take precedence whereas in New York it is system
performance. This requires an understanding of what is
important and the associated costs and benefits of each
specific state. Further research on dynamic ontology
selection is required.

6 CONCLUSION

This resulting SEDI4G service discovery system
and performance results show that dynamic service
discovery is easily and flexibly supported with JESS
based semantic search. Ontology sizes of up to 200-
300 classes (the large ontology test case) yield
adequate performance. The performance degrades
linearly with the number of classes. Likely ontology
sizes within an Investment Bank extend into thousands
of classes and direct the second phase investigation of
specialized KBs and other optimization methods.

The novel use of bottom-up resource state heuristics
to dynamically extend the top-down service ontology,
whilst degrading search performance, must be
considered in relation to the value of selecting such
specialized resources. The combination of the domain
size and the inclusion of valuable service state
emphasize the benefits of a discovery process that is
both architecturally distributed and phased. This need
to recognize the phasing and distribution of service
knowledge is the key contribution of this paper, as the
implications to the global business capability
knowledge base is one of poor performance or over
generalization if not appreciated. The paper
demonstrated the suitability of pre- and post-discovery
phases (and associated rule sets) in that they provide
knowledge selection and specialization functions.

7 REFERENCES

[1] S. Fitzgerald, I. Foster, C. Kesselman, G. von

Laszewski, W. Smith and S. Tuecke, “A Directory
Service for Configuring High-Performance Distributed
Computations”. Proceedings of the 6th IEEE
International Symposium on High-Performance
Distributed Computing (HPDC-6), 1997.

[2] UDDI Technical White Paper.
http://uddi.org/pubs/uddi-tech-wp.pdf.

[3] L. Li and I. Horrocks, “A Software Framework for
Matchmaking Based on Semantic Web Technology”,
International Journal of Electronic Commerce, 8 (4).
39-60.

[4] I. Nonaka, “The Knowledge-Creating Company”,
Harvard Business Review, 69 (6). 96, 1995.

[5] BPEL4WS - Business Process Execution Language for
Web Services Version.
http://www-
128.ibm.com/developerworks/library/ws-bpel/.

[6] L.M. Chen, N.R Shadbolt, C. Goble, F. Tao, S.J. Cox,
C. Puleston and P.R. Smart, “Towards a Knowledge-
based Approach to Semantic Service Composition”,
Proceedings of 2nd International Semantic Web
Conference (ISWC2003), 2003.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, A. Lazzarini, A. Arbree, R.
Cavanaugh, S. Koranda, Mapping Abstract Complex
Workflows onto Grid Environments, Journal of Grid
Computing, Vol. 1, No. 1, pp 9--23, 2003.

[8] H. Tangmunarunkit, S. Decker, C. Kesselman,
"Ontology-based Resource Matching in the Grid - The
Grid meets the Semantic Web", In the proceedings of
the First Workshop on Semantics in Peer-to-Peer and
Grid Computing (SemPG03). In conjunction with the
Twelfth International World Wide Web Conference
2003. Budapest, Hungary. May 2003.

[9] F. Leymann and K. Guntzel, “The business grid:
Providing transactional business processes via grid
services”, Proceedings of Service-Oriented Computing
(ICSOC2003), 2003.

[10] OWL-S, OWL Services.
http://www.daml.org/services/owl-s/.

[11] W3C Web Ontology Language.
http://www.w3.org/TR/owl-ref/.

[12] J. Gray, “Distributed Computing Economics”,
Microsoft Research, MSR-TR-2003-24, 2003.

[13] C.L. Forgy, “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”.
Artificial Intelligence, 19(1982) 17-37.

[14] S.A. Ludwig et al., “A Grid Service Discovery
Matchmaker based on Ontology Description”,
Proceedings of 2nd International EuroWeb2002
Conference, Oxford, UK, 2002.

[15] S.A. Ludwig, “Flexible Semantic Matchmaking
Engine”, Proceedings of 2nd IASTED International
Conference on Information and Knowledge Sharing
(IKS), AZ, USA, 2003.

[16] OWLJessKB.
http://edge.cs.drexel.edu/assemblies/software/owljessk
b/.

[17] JESS, Java Expert Systems Shell.
http://herzberg.ca.sandia.gov/jess/docs/61/index.html.

