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Abstract 
 

Investment Banking requires a diverse set of 
supporting systems in order to operate in a range of 
markets from corporate mergers to trading options on 
weather. The challenge to this community is the ability 
to adapt to new business requirements in an effective 
manner, utilizing their network of capabilities in a 
flexible and dynamic way. A semantic approach to 
capability discovery can combine many strategic 
perspectives in a pragmatic yet easily usable form. The 
use of richer explicit knowledge, that is system 
readable, provides the basis for discovering 
capabilities on this exemplar Business Grid - "the grid 
of services". Current research of semantic capability 
description in the Grid community has tended to focus 
on resource selection rather than service discovery. 
This research explores the practical usage of Grid 
services in the financial market sector. The approach 
demonstrates the need for distributed and phased 
semantic service discovery (with capabilities described 
and stored in a dynamic ontology). 
 
1 INTRODUCTION 
 

Investment banks house a diverse set of systems 
segregated by product, process or geographical focus. 
The product range include Foreign Exchange, Interest 
Rates, Fixed Income (Bonds), Commodities (from Oil 
to Weather) and Derivatives. Action is then required to 
bring together capabilities resident in several products, 
processes or geographical focused systems. The 
challenge to these organizations is to be able to adapt 
to new business requirements in an effective way, 
utilizing their capabilities in a flexible manner. The 
size of the inventory directs this research away from 
centralized knowledge engineering and use; and 
toward strategies for service knowledge segmentation. 
Focusing ones thinking on process and performance 
directs this analysis. 

Grid infrastructure, with its Web Services layer, 
provides an infrastructure for exposing stateless and 

stateful organizational capabilities for re-use and novel 
re-configuration. The logical next step, with a service 
oriented inventory, is to identify practical methods for 
the discovery of these capabilities in the support of 
sporadic business need. Existing methods such as 
UDDI (Universal Description Discovery and 
Integration) [1] and MDS (Monitoring and Discovery 
Service) [2] were discounted due to the limitation of a 
string matching syntactic approach [3]. We have 
chosen a semantic approach to service discovery; 
investigating the practicalities of semantic technology 
in Financial Services (FS). The experiments explore 
the performance impact of top down conceptual 
models and bottom up state models; with results 
directing a novel phased combination of the two 
ontology formation mechanisms. 

The remainder of this paper is organized as follows. 
In section 2 related work which motivates the research 
executed is presented. Section 3 shows the financial 
service architecture and describes the components 
used. In section 4 the implementation of the prototype 
is described with the tools used. Section 5 shows the 
performance graphs for two phases of experimentation. 
A conclusion is given in section 6 which summarizes 
the findings and suggests some further improvements. 
 
2 RELATED WORK 
 

Many general strategies have been proposed to 
address the issues of adapting to new business 
requirements in an effective way, utilizing these 
capabilities in a flexible manner. Social sciences have 
proposed organizational learning (OL), with tacit-
explicit conversion of knowledge. This focus on 
knowledge flow, whilst often not computer readable, 
provides a basis for supporting improved inter silo 
decision making, clearly highlighted in Nonaka’s 
knowledge spiral [4]. Alternatively, technology 
organizations have recently refocused on the use of 
workflow to orchestrate the execution of capabilities 
within the system inventory (an example being 
BPEL4WS [5]). One problem here is that no single 



person, or pre-formed grouping, can bridge the wide 
conceptual knowledge gap between the macro and 
micro perspectives. Chen et al. [6] add, “such 
initiatives (WSFL, XLANG, BPEL4WS) generally 
focus on representing service compositions where the 
flow of process and the bindings between services are 
known a priori…”. The upfront knowledge needed to 
create workflows for new, sporadic requirements is 
fragmented within the organization making the 
complete, top-down modeling of flows extremely 
difficult. 

Similar research in the Grid area was addressed by 
Deelman et al. [7] with their workflow generator and 
Tangmurarunkit et al. [8] with their resource selector. 
The workflow generator addresses the problem of 
automatically generating job workflows for the Grid. 
Deelman et al. have developed two workflow 
generators. The first one maps an abstract workflow 
defined in terms of application-level components to the 
set of available Grid resources. The second generator 
takes a wider perspective and not only performs the 
abstract to concrete mapping but also enables the 
construction of the abstract workflow based on the 
available components. 

The ontology-based resource selector exploits 
ontologies, background knowledge, and rules for 
solving resource matching in the Grid. The aim being 
to overcome the restrictions and constraints of resource 
descriptions in the Grid. In order to make the 
matchmaking more flexible and also to consider the 
structure of VOs the framework consists of ontology-
based matchmakers, resource providers and resource 
consumers or requesters. Resource providers 
periodically advertise their resources and capabilities 
to one or more matchmakers using advertisement 
messages. The user can then activate the matchmaker 
by submitting a query asking for resources that satisfy 
the request specification. 

Even though research on workflow and semantic 
resource selection has been introduced to the grid, it 
has been resource centric and not focused on service-
orientation. In the financial market sector the challenge 
is being able to adapt to new business requirements in 
an effective way, utilizing these capabilities in a 
flexible manner. A semantic approach to capability 
discovery can combine OL and IT (Information 
Technology) in a pragmatic yet easily usable form, 
using general service profile ontology to support 
heterogeneity. It was with the aim of evaluating this 
technology that a business oriented discovery 
architecture was designed. The use of richer explicit 
knowledge, that is system readable, provides the basis 

for discovering capability on the Business Grid – “the 
grid of services” [9]. Our own generalized ontological 
service model was chosen – combining top-down 
human and bottom-up computer derived knowledge. 
OWL-S [10] was discounted due to (a) the 
impracticality in searching many distinct service 
profiles, (b) our need to reason across the whole 
inventory is better supported by a combined profile 
ontology and (c) discovery does not require much of 
the synthesis oriented baggage. 
 
3 FINANCIAL SERVICE ARCHITECTURE 
 

The business architecture of financial service 
applications are often segmented by product, process 
or geographic concerns; impacting service architecture 
design. Application re-use strategies will align behind 
the appropriate segment and additional development 
will be needed to close any recognizable gaps. 
Challenges may occur when factors dictate a particular 
strategy change or with misalignment to underlying 
segments. This may involve moving into a new market 
or developing a new business product from existing 
parts. The brittle nature of application integration is 
then replaced with that of brittle service integration. 
This is often caused by the static nature segmentation, 
service decomposition and registries. An alternative 
approach is to adopt a loosely coupled view of service 
description and categorization allowing more dynamic 
service groupings. It is with this strategy in mind that 
application system capabilities were replicated as 
stateful grid services in order to provide virtual 
services ready for exploitation via re-use or re-
configuration. 

In order to investigate the prototype, existing 
capabilities from a group of systems spanning product, 
process and geographical dimensions were extracted. 
The capabilities were explicitly described using OWL 
(W3C Web Ontology Language [11]) – see section 3. 
These same capabilities were exposed as grid services. 
In order to investigate dynamic discovery, three use 
cases were chosen to explore the applicability of 
semantic searching. (1) Searching for trades executed 
with a particular counterpart, (2) Valuing a portfolio of 
interest rate derivative products and (3) Valuing an 
option based product. 

These three core use-cases were chosen because 
they provide examples of three distinct patterns of use. 
Use-case 1 requires data access to several systems, 
aggregating results into a composite portfolio. Use-
case 2 uses a relatively standard, unique capability, 
whereas Use-case 3 may use one of several alternative 
capabilities. Extending our human derived ontological 



model with state knowledge is investigated with three 
further use case – each involving various granularities 
of business state. The three state use cases comprise: 
(A) Risk Management where 10 books each hour are 
cached in the underlying grid service, (B) Pricing a 
Low Volume Product where 40 new trades per hour 
are cached in the underlying grid service and (C) 
Pricing a High Volume Product where 200 new trades 
per hour are cached in the underlying grid service. 
 
3.1 Requirements 
 

The use of a standard registry usually involves 
syntactically matching a request to an available service 
[3]. Furthermore, constraints imposed by specific 
information models on what and how service 
information can be stored can also limit applicability. 
The global financial organization has common 
terminology at the generalized level, which becomes 
more specialized when describing capability within a 
product, process or geographical context. These 
differences, together with relationships, need to be 
made explicit if capabilities are to be better identified. 
 
3.2 Description of FS Service Components 
 
Geographical coverage of the Investment Banking 
systems motivated the high level of middleware and 
knowledge flexibility. The matching algorithm may be 
deployed on one of four tiers; the client, a front line 
hosting server, a grid node or with the knowledge base. 
 

 
Figure 1. SEDI4G Architecture 

 
The Semantic Discovery for Grid Services 

architecture (SEDI4G) (depicted in Figure 1), 
influenced by the changing network economics 
highlighted by Jim Gray [12], allows placement of the 

discovery services and knowledge across the network 
with associated selection and combination. Several FS 
applications where mined for capabilities (e.g. Object 
methods in a C++, .NET or Java based systems). 
Capabilities were exposed capabilities as stateful grid 
services. An example is trade pricing of Interest Rate 
Swap and Interest Rate Option products; resident in 
both trading and risk management systems. The 
resulting service sets cover trade execution, price 
calculation, risk management, settlement and credit 
risk. The use of de facto business terminology and 
object generalization resulted in certain terms requiring 
additional analysis. An example is the use of the term 
“trade” to describe the various states of the trade – 
planned, new, live and dead. These class 
specializations were recognized and made explicit 
manually in the first phase. The second phase of 
investigation extracted dynamic state without human 
intervention. The discovery process begins by 
identifying which components are required to carry out 
a semantic search. This choice involves placement 
concerns (represented by the grey flexible services and 
data in Figure 1). Thus, Step 1 involves the selection 
of which discovery control service (SDCS), knowledge 
base and matching service best fit the user 
requirement. This information is sent to SDCS together 
with the search parameters (2). SDCS then calls the 
KB based matching service (3) that in turn loads the 
KB and rules (5). The matching is carried out and 
returned to SDCS for use in one of the client 
components (4). The SDCS service can optionally 
provide the resource properties, the dynamic state of 
each service, alongside the service choices (6). These 
same properties are monitored by the SSMON service 
(7). This monitoring service contains simple heuristics 
that determine when a specialized description is 
required (8). The initial specialization rules are time 
based, an example being a stable state for x minutes. 

 
KB: Knowledge Base 
RETE: RETE Object 
URL: URL of ontology 
RS: returned services 
MS: matched services 
KBInitialisation: 
RETE ← create_Rete_Object() 
read_Jess_Rules_And_Facts() 
run_Rete_Infer_Rules_And_Facts() 
KB ← load_OWL_Resource(URL) 
runRete_Apply_Semantics() 
SearchRequest: 
for all searchWords do 

RS ← search_Ontology_For_Service(URL) 
end for 
   MS ← remove_Ambiguous_Services(RS) 
return MS 

Figure 2. Pseudo Code of Matching Algorithm 



The matching algorithm comprises two steps; the 
initialization of the knowledge base and the actual 
search request. During the initialization phase the 
ontology is loaded and the facts and rules are applied 
using the Rete algorithm [13]. During the search 
request the ontology is reasoned depending on the 
specified Jess queries and the matched services are 
returned. Figure 2 shows in more detail how the 
matching algorithm works. 
 
4 IMPLEMENTATION 
 

The prototype system was implemented using 
Protégé (with OWL Plugin) and used to build three 
service KBs – OWL files (small, medium and large). 
The discovery algorithm is a grid enabled web service. 
The control web service is a Java web service that 
directs control to the discovery algorithm which then 
generates either; (a) XML for return to the client, (b) 
HTML for thin client usage and (c) a JDNC data file. 
 

 
Figure 3. Service Search and Selection 

 
The lack of common service discovery systems 

showed a lack of expressive service description and the 
lack of infrastructures for defining common service 
descriptions across enterprises and customers [14]. 
This is supported by the generalization of concepts 
used to describe capability. To provide an enhanced 
discovery for the FSs, the prototype is supported by a 
matching mechanism which allows for a more efficient 
service discovery by using a FS ontology described in 
a semantic language and a reasoning engine that uses 
the ontology [15]. The flexibility in capability 
categorization and multi-placement support address 
many of the limitations exhibited by static data models 
and centralized repositories. 

OWLJessKB [16] was used for the service 
discovery process. It is intended to facilitate reading 
OWL files, interpreting the information as per OWL 
and RDF languages and allowing the user to query on 
that information. It then inserts these triples as facts 

into the Jess knowledge base [17]. With some 
predefined rules, Jess can reason about the triples and 
can draw more inferences. The Jess API (Application 
Programming Interface) is intended to facilitate 
interpretation of information within OWL files, 
allowing users to query it. It leverages the existing 
RDF API to read in the OWL file as a collection of 
RDF triples. How the service discovery process works 
is shown next. Figure 4 shows a part of the FS 
Ontology. The services are listed as classes of the 
ontology, having methods, which are sub-classes, and 
parameters which are properties spoken in ontology 
terms. The user defines for example three search words 
which are: executeTrade, boolean and trade. For 
all three search words the Jess query shown in Figure 5 
is invoked, returning results to the GUI (see Figure 3). 

 

 
Figure 4. FS Ontology Structure 

 
The returned classes are then taken and another Jess 

query for subsumption is invoked for each return class. 
This returns the services getTradeByID, 
getTradeByDate, getTradeByType etc. The sub-
classing query finds the other three related services. 

 
(defquery query-for-class-of-a-given-property 
"Find the class to a given property." 
 (declare (variables ?class)) 
 (triple 
  (predicate "http://www.w3.org/2000/01/rdf- 
    Schema #domain") 
  (subject ?class) 
  (object ?x))) 

Figure 5. Jess Query – Property of Class 
 
5 PERFORMANCE MEASUREMENTS 
 

Performance measurements were carried out using 
the distributed discovery architecture presented, 
utilizing various topologies and ontology sizes in order 
to determine size constraints imposed by using this 
richer service ontology. These measurements are 



described in phase 1. In phase 2 performance 
measurements are undertaken to monitor and record 
service state for specialized service discovery. 
 
5.1 Phase 1 
 

The prototype system used three ontologies 
(summarized in Table 1) to investigate the impact of 
KB size on semantic search performance. The 
ontology size is dictated by increases in the number of 
product, process or geographical systems being 
described. The following setup was chosen. The three 
use cases mentioned in section 2 had the following 
query attributes: 
1. Finding a trade executed against a particular 

countparty [Query="tradeList",”cpt”] 
2. Finding a capability to value a book of interest 

rate products [Query="rateVector", 
”curveStructure”, ”doneTrade”] 

3. Finding a capability to value an option trade 
[Query="liveSwaptionTrade", ”volMatirx”] 

The initial testing phase compared three differing 
ontology sizes (Table 1) when used to execute three 
use case searches. 

 
 Small 

Ontology 
Medium 
Ontology 

Large 
Ontology 

No. of classes 57 114 228 
No. of properties 23 46 92 

Table 1. Phase 1 Ontology Comparison 
 

The results can be seen in Figure 6. The timings in 
milliseconds cover server time, both in instantiating 
the OWLJessKB objects and executing the semantic 
search. Client side and initialization figures highlight 
the need for server side caching as initial runs reveal 
an overhead in the region of 10 seconds. The timing 
labels are new object initialization (N), finding 
semantic matches (M) and the total (T). They are taken 
from services that have been initialized. 

 

0

1000

2000

3000

4000

5000

6000

small medium large small medium large small medium large

Ontology size

Pe
rfo

rm
an

ce
 in

 m
s

N M T

Use case 1 Use case 2 Use case 3

 
Figure 6. Ontology Size Results 

 

The results highlight the near linear degradation in 
performance exhibited by the search. In a dynamic 
search context, ontologies larger than around 500 
classes become impractical. Investment banks – with 
thousands of capabilities – require alternatives to 
centralization of service knowledge. 
 
5.2 Phase 2 
 

Recognizing the value of capability state in 
specialized sub-class definitions, warrants practical 
impact analysis. The second testing phase simulates the 
three stated dynamic ontology growth scenarios (which 
cause the number of classes to grow by (A) 80, (B) 
320 and (C) 1600). The aim is to then understand the 
practicalities of state integrations and derive pre-
discovery heuristics. The resulting ontologies were 
compared using the same three use case queries (see 
5.1). The results are shown in Figures 7. 

The addition of specialized sub-classes to the 
ontology provides greater accuracy, but at a cost. It can 
be seen that, even when taking a small slice of 
capability, the ontology growth makes it near 
impractical to use a consolidated knowledge base. 
Consequently, one could be to discard the approach. 
This would be a mistake if the relative merit of this 
specialized capability out ways the query performance. 
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Figure 7. Combined Growth Results 
 
An alternative is to separate the state service 

knowledge from the combined KB. It is, after all, 
already supported by the pre-discovery selection phase 
of the SEDI4G architecture. The critical question is 
that of how the service knowledge is separated. Here 
we have provided a basic approach to this by 
federating the state knowledge bases. They are then 
selected in pre-discovery when a query attribute 
contains a state identifier. The linear growth in query 
performance does highlight that small service 
ontologies with minimal change in state are capable of 
remaining in a single KB. The use and performance 
limits of state are clearly stated. 



The post-discovery heuristics expose additional 
relevance in the exploration of cost-benefit and 
associated payoff functions of service state: (Cost-
Benefit)*Importance. Recognizing cost and benefit 
will differ depending on the context. 

For example, in Sao Paulo the network usage will 
take precedence whereas in New York it is system 
performance. This requires an understanding of what is 
important and the associated costs and benefits of each 
specific state. Further research on dynamic ontology 
selection is required. 
 
6 CONCLUSION 
 

This resulting SEDI4G service discovery system 
and performance results show that dynamic service 
discovery is easily and flexibly supported with JESS 
based semantic search. Ontology sizes of up to 200-
300 classes (the large ontology test case) yield 
adequate performance. The performance degrades 
linearly with the number of classes. Likely ontology 
sizes within an Investment Bank extend into thousands 
of classes and direct the second phase investigation of 
specialized KBs and other optimization methods. 

The novel use of bottom-up resource state heuristics 
to dynamically extend the top-down service ontology, 
whilst degrading search performance, must be 
considered in relation to the value of selecting such 
specialized resources. The combination of the domain 
size and the inclusion of valuable service state 
emphasize the benefits of a discovery process that is 
both architecturally distributed and phased. This need 
to recognize the phasing and distribution of service 
knowledge is the key contribution of this paper, as the 
implications to the global business capability 
knowledge base is one of poor performance or over 
generalization if not appreciated. The paper 
demonstrated the suitability of pre- and post-discovery 
phases (and associated rule sets) in that they provide 
knowledge selection and specialization functions. 
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