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ABSTRACT
In recent years, fuzzy based clustering approaches have shown
to outperform state-of-the-art hard clustering algorithms in
terms of accuracy. The difference between hard clustering
and fuzzy clustering is that in hard clustering each data
point of the data set belongs to exactly one cluster, and in
fuzzy clustering each data point belongs to several clusters
that are associated with a certain membership degree. Fuzzy
c-means clustering is a well-known and effective algorithm,
however, the random initialization of the centroids directs
the iterative process to converge to local optimal solutions
easily. In order to address this issue a clonal selection based
fuzzy c-means algorithm (CSFCM) is introduced. CSFCM is
compared with the basic Fuzzy C-Means (FCM) algorithm,
a genetic algorithm based FCM (GAFCM) algorithm, and
a particle swarm optimization based FCM (PSOFCM) algo-
rithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

Keywords
Evolutionary computation, fuzzy c-means algorithm, data
clustering

1. INTRODUCTION
Data mining is a relatively broad field that deals with the

automatic knowledge discovery from databases, and is one
of the most developed fields in the area of artificial intelli-
gence. Given the rapid growth of data collected in various
realms of human activity and their potential usefulness re-
quires efficient tools to extract and make use of the poten-
tially gathered knowledge [1]. One of the important data
mining tasks is classification, which is an effective method
that is used in many different fields. The main idea behind
the classification task is to build a model (classifier) that
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assigns items in a collection to target classes with the goal
to accurately predict the target class for each item in the
data [2]. There are many techniques that can be used to
do a classification process such as decision trees, Bayes net-
works, genetic algorithms, genetic programming and many
others [3]. Another important data mining technique used
when analyzing data is clustering [4]. The main goal of
clustering algorithms is to divide a set of unlabeled data
objects into different groups called clusters (each group has
common specifications between the group members). The
cluster membership measure is based on a similarity mea-
sure. To obtain high quality clusters, the similarity measure
between the data objects in the same cluster is to be maxi-
mized, and the similarity measure between the data objects
from different groups is to be minimized.

There are several definitions of how a cluster can be formu-
lated depending on the objective of clustering. In general,
a cluster is a group of objects that are more similar to one
another than to members of other clusters [5, 6]. The term
“similarity” is defined in terms of mathematical similarity
with a distance norm. Distance can be measured among the
data items or as a distance from a data item to some ob-
ject (prototype) of the cluster. Since the objects are usually
not known beforehand, they are determined by the algo-
rithms during the clustering steps. The objects can be of
the same dimension as the data objects, or can be defined
as “higher-level” geometrical objects such as linear or non-
linear functions. The performance of most clustering algo-
rithms is influenced by the geometrical shapes and densities
of the individual clusters. However, it is also influenced by
the spatial relations and distances of the clusters.

Many clustering algorithms have been introduced and clus-
tering techniques can be categorized depending on whether
the subsets of the resulting classification are fuzzy or crisp
(hard). In hard clustering an object either belongs or does
not belong to a cluster. In fuzzy clustering however, the ob-
jects belong to several clusters exhibiting different degrees of
membership. Fuzzy clustering is seen as more natural than
hard clustering since the objects on the class boundaries do
not need to fully belong to one of the classes. The objects
are assigned membership degrees between 0 and 1.

In recent years, fuzzy based clustering approaches have
shown to outperform state-of-the-art hard clustering algo-
rithms in terms of accuracy. Fuzzy c-means clustering [5]
is a common and effective algorithm, however, the random
initialization of the centroids directs the iterative process
to converge to local optimal solutions easily. Therefore,
evolutionary algorithms and swarm intelligence techniques



have been successfully applied such as genetic algorithms,
ant colony optimization, and particle swarm optimization in
order to tackle this problem.

This paper proposes another evolutionary algorithm tech-
nique belonging to the category of artificial immune systems.
A clonal selection mechanism is combined with the fuzzy c-
means algorithm. The paper is structured as follows: Sec-
tion 2 presents related work starting with general categories
of fuzzy clustering and ending with a list of work related to
using evolutionary methods for fuzzy clustering. In Section
3, first the fuzzy c-means algorithm and the clonal selection
algorithm are introduced before the proposed method is de-
scribed. Section 4 lists the experimental setup and the data
sets used. In Section 5, the results of the experiments are
given and discussed. Section 6 concludes this paper with a
summary of the findings.

2. RELATED WORK
Due to the algorithmic approach, fuzzy clustering can be

categorized into three categories: hierarchical fuzzy cluster-
ing methods, graph-theoretic fuzzy clustering methods and
fuzzy clustering based on objective functions [7]. Hierarchi-
cal clustering methods correspond to the determination of
“similarity” trees, which is based on fuzzy equivalence rela-
tions.

Hierarchical clustering methods generate a hierarchy of
partitions by means of agglomerative and divisive methods
[7]. The agglomerative algorithms produce a sequence of
clusters of decreasing number at each step merging two clus-
ters from the previous level. The divisive algorithms work
the other way around. Lee [8] proposed a hierarchical clus-
tering algorithm to cluster business processes identified dur-
ing business systems planning. The best number of clusters
is determined by a matching approach. Another technique
called fuzzy equivalent relation-based hierarchical clustering
method deals with the cluster problem without a predefined
number of clusters [9].

Graph-theoretic fuzzy clustering methods are based on
the idea of connectivity of nodes of a graph representing
the data set. In graph-theoretic fuzzy clustering, the graph
representing the data structure is a fuzzy graph and different
notions of connectivity lead to different types of clusters.
The idea of fuzzy graphs is first mentioned in [10] whereby
the fuzzy analogues of several basic graph-theoretic concepts
such as bridges, cycles, paths, trees are introduced. In [11],
fuzzy graphs were first used for cluster analysis.

Fuzzy clustering based on objective functions results in
the most precise formulation of the clustering. The fuzzy C-
Means clustering model (FCM) was first introduced in 1974
[12], and later extended and generalized in [5]. Since then,
some variations of the method and model improvements are
suggested.

The Gustafson-Kessel (GK) algorithm [13] is a fuzzy clus-
tering technique that can estimate local covariance and par-
tition data into subsets, which can be well fitted with linear
submodels. However, considering a general structure for the
covariance matrix can have substantial effect on the model-
ing approach, and therefore, the Gath-Geva algorithm [14]
was proposed. The Fuzzy C-Varieties (FCV) [15] clustering
algorithm is a fuzzy clustering algorithm where the proto-
type of each cluster is a multi-dimensional linear variety.

By replacing the Euclidean distances with other distance
measures and enriching the cluster prototypes with further

parameters, other shapes than just the spherical clusters can
be discovered. Clusters might be ellipsoidal, linear, mani-
folds, quadrics or even differ in volumes [7]. Fuzzy cluster-
ing has been proven to handle ambiguous data that share
properties of different clusters using membership degrees to
assign data objects.

The use of fuzzy clustering especially the FCM algorithm
has been shown to be effective in image segmentation [16].
However, the FCM algorithm still lacks enough robustness to
noise and outliers, especially in absence of prior knowledge
of noise. The time of segmenting an image depends on the
image size, and hence the larger the size of the image, the
longer the segmentation time [17].

Evolutionary algorithms and swarm intelligence techniques
have been successfully applied such as Genetic Algorithms
(GA), Ant Colony Optimization (ACO), and Particle Swarm
Optimization (PSO). The key features of these evolutionary
and swarm intelligence based algorithms compared to other
global optimization techniques are their swarm-based collec-
tive learning ability, flexibility and robustness.

Many evolutionary computation methods have been ap-
plied for clustering. A hybrid technique based on combining
the k-means algorithm, Nelder-Mead simplex search, and
PSO was applied for cluster analysis in [18]. Another algo-
rithm based on the combination of GA, k-means and log-
arithmic regression expectation maximization [19] was in-
troduced. An introduced k-means algorithm that performs
correct clustering without preassigning the exact number of
clusters was proposed in [20]. A genetic k-means algorithm
for cluster analysis was introduced in [21], and a GA based
method to solve the clustering problem and experiment on
synthetic and real life data sets to evaluate the performance
was proposed in [22] - a basic mutation operator specific to
clustering called distance-based mutation is the novelty of
this approach. A GA algorithm that exchanges neighboring
centers for k-means clustering has been presented in [23].
A combination of evolutionary algorithm with a ACO al-
gorithm for the clustering problem was introduced in [23,
24].

Artificial Immune Systems (AIS) based clustering meth-
ods have also been proposed. A so called fuzzy artificial
immune system clustering approach was proposed in [25].
The approach is based on artificial immune networks and
fuzzy system. The authors compared their approach with
the k-means algorithm and reported better results achieved
by their proposed algorithm. Another algorithm is proposed
in [26]. The algorithm is based on the immune mechanism,
whereby the data to be clusters is represented as the anti-
gens, and the centroids are represented as the antibodies.
The clustering is therefore driven by the generation of an-
tibodies to recognize the antigens. The solution converges
towards finding the optimal antibodies for the capture of the
antigens. The results showed that the proposed algorithm
increases the convergence speed by avoiding local optima.
The next algorithms makes use of an immunodomaince op-
erator that is introduced to the clonal selection algorithm
in [27]. This operator allows to gain prior knowledge and
the sharing of information among the different antibodies.
Their method was compared with the standard FCM and a
GA-based FCM algorithm. The results showed that their
proposed algorithm performed better than the others, in
particular in avoiding the local optimum trap. Another al-
gorithm based on artificial immune system and ant colony



optimization was proposed in [28]. The authors proposed an
Immunity-based Ant Clustering Algorithm (IACA) in order
to perform the clustering task automatically by finding the
correct number of clusters.

Even though AIS based approaches have been explored
for data clustering in the past, however, this paper proposes
an approach based on the combination of standard FCM al-
gorithm with the clonal selection principle of AIS. The FCM
algorithm is a very powerful algorithm, however, it suffers
from the initialization problem easily converging to subop-
timal solutions. In order to overcome this clonal selection is
used applying operators such as cloning, mutation, reselec-
tion and displacement.

3. PROPOSED APPROACH
This section gives an introduction of the fuzzy c-means

algorithm first followed by a discussion of the clonal selection
approach. Afterwards the proposed clonal selection based
fuzzy c-means algorithm is described in detail.

3.1 Fuzzy c-Means Algorithm
In fuzzy clustering each data point belongs to several clus-

ters that are associated with a certain membership degree.
The FCM algorithm is an iterative partitional clustering

technique first introduced by Dunn [12], and was further
extended by Bezdek [5]. FCM is a standard least squared
error model that generalizes an earlier and very popular non-
fuzzy c-means model that produces hard clusters of the data.
An optimal c partition is produced iteratively by minimizing
the weighted within group sum of squared error objective
function:

J =

n∑
i=1

c∑
j=1

(uij)
md2(yi, cj) (1)

where Y = [y1, y2, ..., yn] is the data set in a d-dimensional
vector space; n is the number of data items; c is the number
of clusters which is defined by the user where 2 ≤ c ≤ n.
uij is the degree of membership of yi in the jth cluster; m
is a weighted exponent on each fuzzy membership; cj is the
center of cluster j; d2(xi, cj) is a squared distance measure
between object yi and cluster cj .

A solution with c partitions can be obtained via an itera-
tive process which is as follows:

1. Input c, m, threshold value ε, Y .

2. Initialize the fuzzy partition matrix U = [uij ].

3. Iteration starts by setting t = 1.

4. Calculate the c cluster centers with U t:

ci =

∑n
i=1(uij)

myi∑n
i=1(uij)m

(2)

5. Calculate the membership U t+1 using:

uij =
1∑c

k=1(
dij
dkj

)
2

(m−1)

(3)

6. If one of the stopping criteria is not met, then incre-
ment t and go to Step 4. The stopping criteria are the
maximum number of iterations achieved and no signif-
icant improvement compared to the previous iteration
is made based on ε.

3.2 Clonal Selection Algorithm
De Castro and Von Zuben developed the Clonal Selection

Algorithm (CSA) [29] based on the biological clonal selection
theory and the shape space model of the biological immune
system. The main idea is that only cells that are capable
of recognizing an antigen will proliferate. CSA is very sim-
ilar to a genetic algorithm, however, CSA does not have a
crossover operator. The algorithm works as follows:

• Step 1. Initialization: Randomly initialize a popula-
tion of individuals P .

• Step 2. Evaluation: Present each input I to the popu-
lation P , and determine its affinity with each element
of P .

• Step 3. Selection and cloning : Select n of the high-
est affinity elements of P , and clone these individuals
proportionally to their affinity with the antigen. The
higher the affinity, the higher the number of copies.

• Step 4. Hypermutation: Mutate all these copies with
a rate proportional to their affinity with the input pat-
tern - the higher the affinity, the smaller the mutation
rate.

• Step 5. Receptor editing : Add these mutated indi-
viduals to the population P , and reselect m of these
maturated individuals to be kept as memory cells.

• Step 6. Repeat Steps 2-5 until a certain criterion is
met.

3.3 Proposed Clonal Selection based FCM Al-
gorithm - CS-FCM

Our proposed CSFCM algorithm uses the objective func-
tion of FCM and the principles of clonal selection in order
to find the optimal centroids given the membership matrix.
In particular, CSFCM is designed to find the optimal mem-
bership matrix and the centroids by minimizing Equation
1.

For the notation used in the algorithm description below,
the term antibody represents the centroids, antigen repre-
sents the membership matrix, and the memory cell repre-
sents the best solution or best centroids.

The CSFCM algorithm works as follows:

• Step 1: The antibody population is randomly gener-
ated.

• Step 2: The first iteration of the algorithm begins
by calculating the affinity of the antibody population
using the following equation:

f =
1

1 + J
(4)

where f is the fitness of an antibody.

• Step 3: The n highest affinity antibodies are selected
to compose a new set of high-affinity antibodies, and
the highest affinity memory cell is found. Next follows
the cloning stage. The n selected antibodies are cloned
based on their antigenic affinities to generate the clone
set C. The number of clones for an antibody is fixed to



n+ 1. Therefore, the total number of clones generated
nc is defined as:

nc =

n∑
i=1

(n+ 1) = n2 + n (5)

This function allows the optimization to get closer to
the solution by increasing the average affinity.

• Step 4: The next step is mutation. Each antibody
in the clone set C gets the opportunity to produce
mutated offspring abiding by the law that the higher
the affinity, the smaller the mutation rate. In order to
achieve this, the affinity of the antibodies are normal-
ized (fnorm) to be in the range of [0,1]. The mutation
rate is adaptively determined by:

pm = exp(−2× fnorm(antibody)) (6)

where pm is the mutation rate (in the range of [0,1]),
and 2 is the decay coefficient. The mutation process is
a very important step in the algorithm. It generates
a random real value using a uniform distribution (u)
in the range between the minimum and the maximum.
The function is defined as:

∆(I, u) = u(1− r(1−i/I)λ) (7)

where r is a random value in the range of [0,1], i is
the current iteration, I is the maximum number of it-
erations defined, and λ is the nonconforming degree
factor. This step is crucial for the algorithm since the
mutation step helps to avoid local optima. One anti-
body is kept in order to keep the search stable. Then,
the affinity of the matured clones is calculated. Af-
terwards, the antibodies with the highest affinity are
replacing the ones with the lowest affinity, and the one
with the highest affinity is set to be the memory cell.
During the iteration, this memory cell is only updated
if there was an improvement compared to the previous
iteration. Then, the antibodies with the lowest affinity
are replaced by newly randomly generated antibodies.

• Step 5: The stopping criterion is the maximum num-
ber of iterations reached. If the stopping criterion is
not fulfilled, then the algorithm proceeds with Step 2.

• Step 6: Calculate the validity indices (described in
Section 4.2).

4. EXPERIMENTAL SETUP
This section describes the parameter setup and the data

sets used as well as describes the validity measures proposed
in literature that are being used for the experiments.

4.1 Parameter Setup and Data sets
The parameters of the CSFCM algorithm are set to:

• Population size (antibodies) = 20
• Maximum number of iterations = 100
• Number of selected antibodies = 8
• Number of displaced antibodies = 5
• Fuzzy weighting exponent = 2

The data sets used for the experiments are given in Ta-
ble 1. The number of records, dimensions, and number of
clusters are listed. 30 independent runs were performed for
each data set.

Table 1: Data sets
Data set Records Dimensions Clusters

Iris 150 4 3
Wine 178 13 3
Vowel 871 3 6
Glass 214 10 6
Ecoli 336 7 8
Liver disorder 345 7 2
Vowel2 528 10 11

4.2 Validity Indices
To measure the quality of the resulting clusters, several

cluster validity measures have been proposed in literature.
The cluster validity is a measure of the relative performance
of a partitioned structure of the data set. All clustering algo-
rithms generate a partition matrix and other useful informa-
tion regarding the cluster structure by identifying centroids.
Partition and centroids jointly determine the “goodness” of
a cluster structure. The validity indices used in this study
are explained below.

4.2.1 Partition Coefficient (PC) Index
The Partition Coefficient (PC) is defined as [5]:

PC =
1

n

n∑
i=1

c∑
j=1

u2
ij (8)

PC obtains its maximum when the cluster structure is opti-
mal.

4.2.2 Partition Entropy (PE) Index
The Partition Entropy (PE) is defined as [15]:

PE = − 1

n

n∑
i=1

c∑
j=1

uij logb(uij) (9)

where b is the logarithmic base. PE obtains its minimum
when the cluster structure is optimal.

4.2.3 Davies-Bouldin (DB)
The Davies-Bouldin (DB) fuzzy validity index is defined

as the ratio of the sum of within-cluster scatter to between-
cluster separation [30]:

DB =
1

c

c∑
i=1

Ri (10)

where c is the number of clusters, Ri = maxi6=j{Si+Sj)/lij}.
The scatter with the jth center is Sj = (1/|Cj |)

∑
x∈Ci ||y−

zj ||2. The distance between the ith cluster center and the jth

cluster center is lij = ||zi− zj ||2. DB achieves the minimum
when the cluster structure is optimal.

4.2.4 Partition Coefficient And Exponential Separa-
tion (PCAES) Index

The Partition Coefficient And Exponential Separation
(PCAES) index [31] is defined as:

PCAES =

n∑
i=1

c∑
j=1

(uij)
2

uM
−

c∑
k=1

exp(−min
k 6=i
||zi − zk||2/βT )

(11)



where uM = min1≤j≤c{
∑n

i=1 u
2
ij} and βT = (

∑c
j=1 ||zj −

z̄||2)/c. z̄ =
∑n

i=1(yi/n). PCAES reaches its maximum
when the cluster structure is optimal.

4.2.5 Pakhira-Bandyopadhyay-Maulik Fuzzy (PBMF)
index

The Pakhira-Bandyopadhyay-Maulik Fuzzy (PBMF) in-
dex for fuzzy clustering is defined as [32]:

PBMF = (
1

c
× E1

Jm
×Dc)

2 (12)

where

E1 =

n∑
i=1

||yi − z|| (13)

E1 is a constant determined by the data set, with z being
the centroid of the data set.

Dc =
c

max
i,j=1

||zi − zj || (14)

PBMF obtains its maximum when the cluster structure is
optimal.

4.2.6 Xie-Beni (XB) Index
Xie and Beni proposed a validity function in 1991 [33] and

later it was modified by Bezdek in 1995 [34].

XB =
Jm

n×mini6=j ||zi − zj ||2
(15)

XB reaches its minimum when the cluster structure is opti-
mal.

5. RESULTS
The results of applying the different validity indices are

shown in Tables 2-7. The comparison values for FCM, GA-
FCM and PSOFCM are taken from [35]. The comparison
algorithms used the following parameters. FCM was run for
100 iterations. GAFCM used a population size of 50 chromo-
somes, a crossover rate of 0.85, and a mutation rate of 0.008,
and was run for 100 iterations. PSOFCM used a swarm size
of 50 particles, the maximum and minimum inertia weight
were set to 0.9 and 0.4, respectively, the constants c1 and c2
were both set to 2, with the number of iterations set to 120.

Table 2 lists the comparison of FCM, GAFCM, PSOFCM
and CSFCM in terms of the PC validity index applied to the
given data sets. It can be seen that the CSFACM algorithm
achieves 3 out of 7 times the best PC validity index tied with
the FCM algorithm. GAFCM as well as PSOFCM achieve
the highest PC index on one data set each.

Looking at Table 3, the PE validity index for all algo-
rithms measured on the data sets is given. It shows that
CSFCM achieves the lowest values and therefore best values
for 4 data sets, again tied with the FCM algorithm.

From Table 4 it can be seen that the CSFACM algorithm
achieves the best DB validity value 5 out of 7 times, whereas
FCM obtains the best index in 4 cases, and GAFCM only
in 1.

The PCAES validity index values are given in Table 5.
Our CSFCM algorithm outperforms the other techniques
scoring the highest PCAES validity values on 5 data sets.
The PSOFCM algorithm scores best on 2 data sets.

CSFCM obtains the highest PBMF validity index on 6
data sets as seen in Table 6. FCM scores the best value on

3 data sets, and PSOFCM obtains the highest score on the
Liver disorder data set.

Table 7 contains the XB validity values. Again, CSFCM
scores best obtaining the lowest and therefore best score on
5 data sets, whereas FCM scores best 3 times. GAFCM and
PSOFCM achieve the best value on 1 data set each.

Overall, our CSFCM algorithm obtains the better validity
values for 4 of the 6 validity indices. For the other 2, CSFCM
is tied with FCM.

Figure 1 summarizes the results graphically. It can be
seen by the number of wins, draws, and losses that CSFCM
outperforms the other algorithms followed by FCM. A win is
defined as having the best validity index (highest or lowest)
compared to the other algorithms, a loss is defined as not
having the best validity index, and a draw is defined if two
or more algorithms achieved exactly the same best validity
index. The number of wins, draws and losses are summed
over all data sets.
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Figure 1: Number of wins, draws, and losses of all
algorithms

However, it has to be mentioned that our CSFCM algo-
rithm used the highest number of Function Evaluations (FE)
with 9,700 FE (20 antibodies plus 72 clones plus 5 displace-
ment antibodies times 100 iterations). The FCM achiev-
ing very good results only needed 100 FE, and GAFCM
used 5,000 FE (50 chromosomes times 100 iterations), and
PSOFCM ran with 6,000 FE (50 particles times 120 itera-
tions).

6. CONCLUSION
Fuzzy based clustering approaches have shown to outper-

form state-of-the-art hard clustering algorithms. The dif-
ference between hard clustering and fuzzy clustering is that
in hard clustering each data point of the data set belongs
to exactly one cluster, and in fuzzy clustering each data
point belongs to several clusters that are associated with
a certain membership degree. Fuzzy c-means clustering is
a well-known and effective algorithm, however, the random
initialization of the centroids directs the iterative process
to converge to local optimal solutions easily. This paper
proposed a clonal selection based fuzzy clustering algorithm
(CSFCM) in order to overcome this issue. The algorithm
makes use of clonal selection theory by applying methods
such as cloning, mutation, reselection and displacement as
well as using the objective function of the FCM algorithm.

Seven data sets were chosen and the CSFCM algorithm
was compared to the basic fuzzy c-means algorithm (FCM),



Table 2: Comparison of FCM, GAFCM, PSOFCM, CSFCM in terms of PC validity index

Data set FCM GAFCM PSOFCM CSFCM

Iris 0.7832±3.7633e-16 0.75823±0.01351 0.77417±0.0099931 0.7618±1.91761e-5
Wine 0.79094±1.1.4057e-12 0.79004±0.0011282 0.78845± 0.0024337 0.79004±1.6337-7
Vowel 0.54976±9.3088e-8 0.49496±0.018895 0.52674± 0.012648 0.55004±4.2974e-8
Glass 0.50173±0.006688 0.51232±0.059044 0.49461±0.095027 0.50827±7.1837e-9
Ecoli 0.30873±0.001027 0.27437±0.011477 0.37804±0.031598 0.37804±6.1944e-6
Liver disorder 0.82993±3.7026e-16 0.82488±0.01628 0.81221 ±0.080893 0.83103±2.4917e-8
Vowel2 0.22873±0.0013672 0.12554±0.0035406 0.18685± 0.0055172 0.2182±5.2344e-6

Table 3: Comparison of FCM, GAFCM, PSOFCM, CSFCM in terms of PE validity index

Data set FCM GAFCM PSOFCM CSFCM

Iris 0.39593±3.341e-16 0.43395±0.021827 0.4133±0.018546 0.40857±1.349e-9
Wine 0.38041±1.5985e-12 0.38204±0.0015792 0.3855±0.0049499 0.38041±4.8934e-8
Vowel 0.92244±9.6191e-7 1.0216±0.034679 0.97007±0.026595 0.92293±7.6243e-7
Glass 0.96943±0.02053 1.4308±0.12146 1.0842±0.17089 0.9479±2.9477e-8
Ecoli 1.5333±0.011206 1.9196±0.034903 1.6449±0.082692 1.5296±1.2673e-4
Liver disorder 0.28813±2.7948e-16 0.29613±0.023051 0.30998 ±0.11027 0.29017±1.3728e-7
Vowel2 1.8882±0.0032484 2.228±0.014348 1.5143±0.027739 1.4378±3.8373e-5

a genetic algorithm based FCM algorithm (GAFCM), as
well as a particle swarm optimization based FCM algorithm
(PSOFCM). Six validity indices were used in order to com-
pare the algorithms with each other. The results showed
that CSFCM outperformed the other algorithms for four of
the validity indices, and scored equally well compared to
FCM on the other two validity indices in terms of best va-
lidity value achieved.

Future work will address the second shortcoming of FCM
with the number of clusters needing to be predefined. Fur-
thermore, in order for the algorithm to be applicable on big
data sets, a parallelization of the algorithm is paramount.
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