
Adaptability of a Discrete PSO Algorithm applied to
the Traveling Salesman Problem with Fuzzy Data

Camelia–M. Pintea
Faculty of Sciences

Technical University Cluj-Napoca
Baia-Mare, Romania

dr.camelia.pintea@ieee.org

Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

simone.ludwig@ndsu.edu

Gloria Cerasela Crişan,
Faculty of Sciences

Vasile Alecsandri University
Bacău, Romania

ceraselacrisan@ub.ro

Abstract—Imperfection is a common characteristic of

information nowadays. For example, in everyday life, decisions
have to be made based on information that is incomplete,
inconsistent, and/or uncertain. This inexactness makes the
decision making a challenging task. This paper investigates the
behavior of a well-known optimization method, Particle Swarm
Optimization (PSO), when solving a fuzzy problem. The discrete
PSO implementation is studied on a Traveling Salesman Problem
(TSP) variant, designed to model the uncertain environmental
influences. The experiments investigate several symmetric TSP
instances and their fuzzy variants in order to study the impact of
uncertain information in the quality of the results provided by
PSO. The fuzzy variants were generated using a two-dimensional
degree of fuzziness, which is proportional to the number of nodes
of the instance. In addition, the amplitude of the uncertainty can
be set at running time, so the degree of fuzziness used here is a
systematic perturbation, providing similar effects on all studied
TSP instances. The experimental results reveal that the PSO
algorithm can handle uncertainty in data by showing good
adaptability based on the used TSP benchmark set.

Keywords—Traveling Salesman Problem; Particle Swarm
Optimization; Uncertainty Model.

I. INTRODUCTION
One of the common characteristics of information available

to humans is its imperfection. Information can be incomplete,
inconsistent, uncertain, or all three combined. The process of
decision-making becomes a very difficult task since the
information for solving a problem is often inexact. However, a
human expert can usually cope with these imperfections, can
make correct judgments, and can make the right decisions even
in complex situations.

Uncertainty is defined as the lack of exact knowledge that
would enable one to reach a perfectly reliable conclusion [1].
Classical logic, which permits only exact reasoning, where
perfect knowledge always exists, and the law of the excluded
middle always applies, do not consider reasoning under
incertitude [2]. Unfortunately, most real world problems do not
embed clear-cut knowledge. The available information often
contains inexact, incomplete or even immeasurable data. This
is why approaching such real-world situations must rely on
new solving paradigms, able to efficiently operate – like a
human mind does – with uncertain data.

In general, we can identify four main sources of uncertain
knowledge: weak implications, imprecise language, unknown

data, and the difficulty of combining the views of different
experts [3].

Uncertainty in data collected via experiments, sensor data,
the World Wide Web, etc., raise serious challenges to decision
making and reasoning, in particular when the data volumes are
high, and the problem restrictions are difficult to evaluate.
Uncertainty in data leads to wrong outcomes, decisions, and
judgments. Therefore, meeting data quality standards is
essential; standardization, validation, and enhancement are
several methods to succeed in improving the data quality. The
processes of standardization and validation clean data, whereas
enhancement is the result of the successful application of
standardization and validation. Enhancement gives value and
usability to the data [4].

Researchers when facing data of low quality have proposed
several strategies. One strategy is to use extra hardware,
software, or human resources for improving the data quality
[5]. This goal can be reached by hash functions [6] to detect
errors, cyclic redundancy check codes [7] for correcting errors,
etc. Another direction is to use the same resources in order to
design more complex and reliable applications that can handle
uncertain events. One such example is the category of resilient
algorithms: they are able to tolerate some degree of errors or
failures in data without the loss of correctness, performance,
and storage capability [8][9]. Different approaches in
processing uncertain databases are presented in [10].

This paper investigates the effect of an evolutionary
computation method when the optimization task contains fuzzy
data. In particular, the resilience of a biologically-inspired
algorithm is studied when low quality data are involved. This
work focuses on the Particle Swarm Optimization (PSO)
approach, and investigates its sensitivity to fuzzy data,
continuing the practical experiments from [11]. A comparison
from the adaptability point of view between PSO and the
previously proposed Ant Colony Optimization approach is also
performed.

The paper is organized as follows. Related work is outlined
in Section II. In Section III, the PSO approaches as well as the
fuzzification method for the Traveling Salesman Problem
(TSP) are described. Section IV contains the experimental
results obtained, and Section V concludes the paper with the
outcomes of this study.

II. RELATED WORK
The Traveling Salesman Problem (TSP) [12] is the

optimization benchmark problem used to investigate the
impact of fuzzy data applied to an evolutionary computation
method referred to as the Particle Swarm Optimization (PSO)
technique.

The Traveling Salesman Problem is described as follows:
Given a complete graph with weights on the edges (arcs),
find a Hamiltonian cycle with minimum total weight.

The usual representation for TSP is a 2D map, where the
nodes are the cities, the edges are the roads connecting the
cities, and the weight for an edge is the distance between the
corresponding cities. The goal for the salesman is to find one
shortest path for visiting all the cities and coming back to the
starting city.

The TSP is known to be a complex and difficult problem
[13]. With broad applications in transportation, logistics,
industry, communications, etc., it is under heavy investigation
by the research community. TSP has multiple variants,
designed for better reflecting real situations: asymmetric TSP
(aTSP) when the distance function is not symmetric, multiTSP
(mTSP) when multiple salesmen are available for completing
partial tours that cover all the cities from the map, etc.

Many publicly available instances of the TSP are available
[14][15]; as well as many real-life complex problems and
instances are given in [16][17]. All of those assume that the
problem is exact and all data are integrally known at the
solving time.

Uncertain TSP can be modeled in several ways. The first
attempt to introduce uncertainty was presented in [18]. The
Probabilistic TSP seeks a most efficient a-priori tour when
each city is to be visited with a specific probability. Fuzzy
TSP is defined as TSP with fuzzy numbers as distances on the
edges [19]. The tours in this case are classic tours with fuzzy
numbers as lengths. This TSP variant needs supplementary
decisions, since fuzzy numbers are not totally ordered as real
numbers are. The TSP with interval data specifies the distance
between any two cities as the range of possible values, and no
additional assumption is made [20]. The solution to this TSP
variant uses the concept of robust deviation: the best tour
minimizes the maximum deviations over all realizations of
edge distances. Dynamic TSP models the changing situations
in the world: the distance function is dynamic, and so is the
number of cities [21].

Of course, combinations of new features are constantly
designed and investigated. For example, a dynamic,
clusterized TSP version is investigated in [22]. An uncertain
multiobjective TSP version is defined and solved using
Genetic Algorithms in [23].

Many difficult problems can be seen as TSP
generalizations. One such example is the Vehicle Routing
Problem (VRP) [24]. The current problems are so complex
and rich in attributes that researchers investigate new
methodologies for efficiently solving them when computing
resources are scarce [25].

During the past decades several successful algorithms were
proposed to solve the TSP problem. For example, Concorde

[26] is an exact solver used to compute the optimal value to
106 from the 110 TSPLIB instances in [14]. Efficient parallel
branch-and-bound methods are reported for example in [27].
Other successful techniques for TSP are the Ant Colony
Optimization (ACO) [28] or the Particle Swarm Optimization
(PSO) [29].

Ant Colony Optimization (ACO) is a biologically-inspired
heuristic solving method for optimization problems
represented by a weighted graph. It uses a population of
artificial agents that seek to construct a least cost tour,
modeling the way a colony of ants manage to find the shortest
path from the food to the nest. The balance between space
exploration and the exploration of the good paths already
found by concurrently acting artificial ants, together with the
broad set of problems that allow ACO implementations, made
this approach intensively used.

ACO and PSO belong to the Swarm Intelligence domain,
which deals with natural and artificial systems composed of
many coordinated individuals that complete a difficult
common task using decentralized control and self-
organization. The expression was introduced in [30], in the
context of cellular robotic systems. PSO is presented in the
following section.

III. PROPOSED METHOD
The effect of a discrete PSO algorithm is investigated on

the TSP benchmark with perfect and uncertain/fuzzy data. The
presentation of the discrete PSO algorithm is followed by the
description of the fuzzified TSP benchmark instances.

A. Discrete PSO Algorithm
Particle Swarm Optimization (PSO) was initially defined

for continuous problems. The idea behind PSO is to model the
way a bird flock globally moves [29]. It was developed for a
broad range of problems with large solution spaces; it uses
simple mathematical relations based on particle position and
speed, and it delivers very good results for a broad range of
difficult problems [31]. The discretization of PSO can be done
in multiple ways, depending on the problem structure and type.
For example, a discrete implementation of TSP is described in
[32]. The discrete PSO equations are as follows:

)1()()1(++=+ tvtxtx (1)

() ())()()()()()()1(321 txtxtctxtxctvctv GBestBestij −⊕−⊕=+ (2)

where x represents a particle, i denotes the particle's number,
j the dimension, t a point in time, and v is the particle's

velocity. The variable Bestx is the best location the particle ever
visited (the particle’s knowledge), and GBestx is the best
location any particle in the swarm ever visited (the swarm’s
knowledge). The value of 1c represents the inertia weight and
used to weigh the previous velocity, 2c is a variable to weigh
the particle’s knowledge, and 2c is a variable to weigh the
swarm’s knowledge.

More information on the PSO implementation for TSP
regarding the multiplication, addition, and subtraction

operators are found in [32]. Details on a PSO approach to a
VRP with uncertain demands are presented in [33]. Multi-
objective PSO can be used for designing efficient robot paths
in uncertain environments [34]. A multi-swarm approach for
solving dynamic optimization problems is presented in [35].
The complexity of dynamic problems is tackled in [36] by a
two-scale framework with low-level PSO classic operators, and
high-level new operators, able to enhance the particle diversity
and to avoid local convergence.

B. Traveling Salesman Problem Benchmark
The TSP is used as the benchmark to investigate the

behavior of the PSO algorithm on an uncertain problem. In
particular, the fuzziness impact as an imperfect knowledge
characteristic is studied. Fuzzy logic is employed in order to
generate the uncertainty for the benchmark. Fuzzy numbers are
used to represent the vagueness, the same way that random
values express the probability.

The new mathematical theory of fuzzy sets was developed
by Lotfi A. Zadeh in [37]. Zadeh introduced the fuzzy sets,
where many degrees of membership are allowed, and indicated
with a number in [0,1]. The point of departure for fuzzy sets is
the generalization of the valuation set from the pair of numbers
{0,1} to all the numbers in [0,1]. This is called a membership
function, denoted as µA(x) and in this way defines the fuzzy set
A. An alpha cut (α-cut) is a crisp set of elements of A
belonging to the fuzzy set to a degree at least α. Further details
and representation theorems for fuzzy concepts are given in
[38].

This fuzzification process is applied to the TSP benchmark
that models real situations when the travel cost of the salesman
on several roads is affected by external events such as sudden
weather changes, or transportation difficulties like a car engine
failure.

Figure 1. Representation of an initial map (left side) and its fuzzified form (right side)

The entry data of the fuzzy TSP variant we study here

consist of slight and systematic modifications of the position of
several nodes within their neighborhood. Another approach to
fuzzy TSP is presented in [39].

The initial benchmark data is fuzzified by applying the
same degree of fuzziness to each instance. The TSP instance
inst taken from [14] is used as input and the modified instance
has the same number of nodes, but some nodes are positioned
differently on the map. Figure 1 shows an example of obtaining
a fuzzified TSP instance (right side) from an exact initial
instance (left side).

Two global integer parameters a∈(0, 100) and b∈(0, 100)
are used to express the uncertainty, i.e., the fuzziness for each
instance. The parameter a is called the dimension regularity,
specifying how many node changes are applied (with the same
impact irrespective of the number of nodes). The parameter b is
called the scale regularity, which specifies how far the nodes
move (maintaining the same impact irrespective of the
distance). Thus, each node is relocated in a random order
within a circle as shown in Figure 1. The figure shows the
modified position of node i, randomly chosen using C(i, y), the
circle with the center in the current node i and the radius
y=x*b/100, where x is the distance from i to the nearest node.

function fuzzifyInstance(inst, a, b)
n = count_nodes(inst)

k = n*a/100

for j=1 to k do

 Randomly choose an unvisited node i∈inst

 x = min{d(i,u), u∈inst, u≠i}
 y = x*b/100

 Randomly choose a new position i’∈C(i,y)
end for

return inst

Algorithm 1. The fuzzification function fuzzifyInstance

Algorithm 1 shows the pseudo code of the fuzzifyInstance
function. The function returns the modified instance inst after
applying the modifications controlled by the values of the
parameters a and b. The function min returns the minimum of
the distances between the current node i and any other node
from inst, and C(i, y) is the circle with the center being the
current node i and radius y.

IV. EXPERIMENTAL RESULTS
To test our fuzzification method, several instances from the

TSPLIB [14] library are used: Krolak/Felts/Nelson with 100
nodes, Christofides/Eilon with node dimension between 51 and
101, and Padberg/Rinaldi instances with node dimension
between 76 and 124. The computer used had the following
processor specifications: AMD with 2.8GHz and 3GB of
RAM.

These instances were modified based on the input
parameters a and b specified in the description of the
fuzzifyInstance function. From the 11 initial instances we
derived 44 fuzzified instances; for each original instance four
new, fuzzified instances resulted, corresponding to the four
following sets of new parameters a and b:
{a=10%, b=25%}, {a=10%, b=50%}, {a=25%, b=25%} and
{a=25%,b=50%}.

The original instances and their fuzzified variants were
solved using the exact method with CPLEX [25], ACOTSP
[40], and PSO [29]. The applications were executed with
implicit values for the running parameters. As many results
show [41][42], the parameter settings are very important for
heuristic methods, and we preferred to use their implicit values,
recommended by the ACO and PSO designers. For the ACO
implementation, we used the MAX-MIN Ant System (MMAS)
with no local search, as PSO has not such a supplementary
method. The results are presented in Table 1 (for the
executions with the new instances derived when a=10%), and
in Table 2 for the two sets of instances obtained when a=25%.

For each fuzzified instance we measured the impact of the
data fuzzification introduced by the function fuzzifyInstance
through the new parameter PE (percentage error):

PE = solution− best
best

⋅100% (3)

where solution is the best solution (in ten runs) found by the
two heuristic methods on the fuzzified instance, and best is the
optimal solution.

Table 1. Comparison of PE values in % for CPLEX/ACO/PSO
method, for a=10, b∈{25,50}.

 (a, b)
Application

Instances

(10, 25) (10, 50)

CPLEX ACO PSO CPLEX ACO PSO

 Krolak/Felts/Nelson instances
Average -0.03 2.40 -0.08 -0.30 3.81 -2.54
Minimal -0.35 -1.83 -3.58 -1.83 1.45 -9.69
Maximal 0.47 6.25 1.29 0.74 5.99 4.23

 Christofides/Eilon instances
Average 0.23 0.34 0.43 -1.94 -1.70 -3.09
Minimal -0.56 -0.56 -0.33 -4.23 -3.99 -7.98
Maximal 1.41 1.41 1.20 0.64 1.11 -0.13

 Padberg/Rinaldi instances
Average -0.08 0.24 -0.44 -0.25 0.46 -1.72
Minimal -0.19 -0.15 -2.22 -0.37 0.07 -5.45
Maximal 0.06 0.48 0.60 -0.19 0.82 0.51

Overall
Average 0.03 1.25 -0.03 -0.73 1.39 -2.45

Table 2. Comparison of PE values in % for CPLEX/ACO/PSO
method, for a=25, b∈{25,50}.

 (a, b)
Application

Instances

(25, 25) (25, 50)

CPLEX ACO PSO CPLEX ACO PSO

 Krolak/Felts/Nelson instances
Average 0.60 5.63 1.10 -0.10 3.98 0.13
Minimal -0.64 1.92 -1.10 -1.22 2.26 -2.80
Maximal 2.38 8.04 3.63 0.94 5.73 4.25

 Christofides/Eilon instances
Average -0.26 3.98 -0.05 -1.50 2.82 -5.94
Minimal -0.79 1.88 -4.79 -2.58 -1.17 -10.02
Maximal 0.00 7.63 4.29 -0.79 9.06 -0.27

 Padberg/Rinaldi instances
Average 0.02 5.38 -0.23 -0.04 3.80 -1.06
Minimal -0.16 1.56 -1.31 -0.89 0.71 -4.16
Maximal 0.18 7.91 0.61 0.90 6.14 0.91

Overall
Average 0.21 5.11 0.27 -0.47 3.61 -2.29

The TSP instances used are from the groups:
Krolak/Felts/Nelson group: kroA100, kroB100, kroC100,
kroD100 and kroE100; the Christofides/Eilon group: eil51,
eil76, and eil101, and the Padberg/Rinaldi group gathers pr76,
pr107, and pr124.

For each group, each application, and each set of the new
parameters (a, b) we report in Tables 1 and 2 three numerical
values based on the PE computed by formula (3): the average,
the minimum, and the maximum for the PE values. The last
lines from the Tables 1 and 2 hold the average values of the
variable PE taken on all the eleven fuzzified instances.

Figure 2 represents the numerical values taken from the last
lines from Tables 1 and 2: the average influence of the data
fuzziness for each set of the new parameters a and b. The
variations in the results show that PSO is more sensitive to the
changing influences, and it can detect the modifications in data
more accurately than the ACO implementation.
 The same conclusion can be drawn when looking at the
regression lines. Both lines show a direct influence of the
fuzziness amplitude on the solution deviation, but the PSO line
is closer to the CPLEX line showing a better adaptation.

The PSO sensitivity is more obvious in Figures 3-5 with the
minimum PE values taken on instance groups: in each figure,
the lines for PSO are steeper, showing that this method is more
“explorative” than the other, and succeeds in finding new
zones in the solution space. The PSO behavior shows that it
always produces PE results with negative deviation, as the
exact CPLEX method does. We can conclude that PSO is able
to correctly perceive the data modifications.

The new fuzzy instances when b=25% led to solutions
extremely close to the solution of the exact instance. This
means that the PSO method is able to tolerate data
modifications with small amplitude, and to deliver stable
results. But there is a clear disparity between the case when
a=25% and the other case, with a=10% (the value 0.27% is 9
times higher than 0.03%).

The fuzzy instances derived when b=50% manifest a
complete different behavior. The higher amplitude of the data
uncertainty provides large variation of the best PE, but the
couple of cases controlled by the two values for the parameter
a show a similar result. We can conclude that for large possible
intervals of changes of the problem’s data, the PSO has the
same sensitivity, no matter if these changes are few or
frequent.

The Krolak/Felts/Nelson and the Padberg/Rinaldi instances
have a distinct and interesting behavior; few changes in node
positions (both cases when a=10%) result in larger PE values
than in the case when more changes are applied (when
a=25%). The Christofides/Eilon group of the studied instances
manifests a direct dependency between the number of fuzzified
nodes and the distance of the minimal PE from the solution of
the exact corresponding instance. We can conclude that the
problem structure is very important when a PSO-based
application is executed. The human decision-maker must also
know the problem structure, and does not to entirely rely on the
computing results.

-3

-2

-1

0

1

2

3

4

5

6

(10, 25) (10, 50) (25, 25) (25, 50)

CPLEX ACO PSO Linear (ACO) Linear (CPLEX) Linear (PSO)

Figure 2. CPLEX/ACO/PSO comparison for the overall average PE

in %.

Figure 3. Minimal best PE values in % of CPLEX/ACO/PSO on the

Krolak/Felts/Nelson group.

Figure 4. Minimal best PE values in % of CPLEX/ACO/PSO on the

Christofides/Eilon group.

Figure 5. Minimal best PE values in % of CPLEX/ACO/PSO on the
Padberg/Rinaldi group.

V. CONCLUSIONS
This paper empirically investigates how a metaheuristic

solving method designed for an exact problem performs when
it faces a supplementary difficulty level: the data are fuzzified
using a two-dimensional uncertainty level: the frequency and
the amplitude parameters.

At the practical level, our work shows that the
implementation based on Particle Swarm Optimization (PSO)
is stable and fairly adaptable when the uncertainty amplitude is
low, but is very sensitive to data changes when this
characteristic is high. This means that PSO is a reliable choice
when almost exact input data are expected. When the data
inexactness is unknown, or is expected to be high, then PSO
can be used as an uncertainty marker: when it provides results
further away, one can assume that the data are really far away
from the correct ones.

At the theoretical level, this paper uses a new method for
introducing uncertainty to a TSP instance, through the
fuzzifyInstance function. It is also a start for other experiments
for assessing traditional solving methods when external
processes could affect the exactness in data. Other fuzzification

methods, inspired by real-world situations can be tested to
assess and compare other solving methods applied to other
optimization problems.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable suggestions to improve the paper. The study
was conducted under the auspices of the IEEE-CIS-
Interdisciplinary Emergent Technologies task force.

REFERENCES
[1] H. E. Stephanou, and A. P. Sage, “Perspectives on imperfect

information processing”, IEEE Transactions on System, Man, and
Cybernetics, SMC-17(5), 780-798, 1987.

[2] B. Russell, The Problems of Philosophy, With a New Introduction by
John Perry, Oxford University Press, New York, 1997 edition.

[3] P. P. Bonissone, and R. M. Tong, “Reasoning with uncertainty in expert
systems”, International Journal on Man-Machine Studies, 22(3), 241-
250, 1985.

[4] M. J. Eppler, Managing Information Quality: Increasing the Value of
Information in Knowledge-intensive Products and Processes, 2nd Ed,
New York/Heidelberg: Springer, 2006.

[5] M. M. Balas, and V. E. Balas, “World knowledge for control
applications”, 11th IEEE International Conference on Intelligent
Engineering Systems, pp.225--228, 2007.

[6] T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms (3rd ed.), Cambridge, MS: MIT Press, 2009.

[7] W. W. Peterson, and E. J. Weldon, Error-correcting codes. 2nd Ed.
Cambridge, MS: MIT Press, 1972.

[8] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components”, in Automata Studies, C.
Shannon, and J. McCarty Eds., Princeton University Press, pp. 43–98,
1956.

[9] I. Finocchi, F. Grandoni, and G. F. Italiano, “Designing reliable
algorithms in unreliable memories algorithms”, Lecture Notes in
Computer Science, vol. 3669, pp.1-8, 2005.

[10] C. C. Aggarwal, and P. S. Yu, “A survey of uncertain data algorithms
and applications”, IEEE Transactions on Knowledge and Data
Engineering, 21 (5), pp.609-623, 2009.

[11] G. C. Crişan, C. M. Pintea, and P. C. Pop, "On the resilience of an ant-
based system in fuzzy environments. An empirical study," 2014 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Proceedings
pp.2588-2593, 2014.

[12] W. J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton University Press, 2012.

[13] R. M. Karp, “Reducibility among Combinatorial problems”, in
Complexity of Computer Computations. The IBM Research Symposia,
R.E. Miller, J.W. Thatcher (Eds.), pp.85-103, NY: Plenum. Press, 1972.

[14] Library of sample instances for the TSP. Available at:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[15] 8th DIMACS Implementation challenge: The Traveler Salesman
Problem. Available at: http://dimacs.rutgers.edu/Challenges/TSP/

[16] C-M. Pintea, Advances in Bio-inspired Computing for Combinatorial
Optimization Problem, Springer, 2014.

[17] C-M. Pintea, C. Chira, D. Dumitrescu, and P. C. Pop, “Sensitive ants in
solving the Generalized Vehicle Routing Problem”, Int. J. Comput
Commun, 6 (4), pp.731-738, 2011.

[18] P. Jaillet, “A priori solution of a Traveling Salesman Problem in which a
random set of the customers are visited” Operations Research 36 (6),
pp.929-936, 1988.

[19] G. C. Crişan, and E. Nechita, “Solving Fuzzy TSP with Ant
Algorithms”, International Journal of Computers, Communications and
Control, vol. III, suppl. issue, pp.228-231, 2008.

[20] R. Montemanni, J. Barta, and L.M. Gambardella, The robust traveling
salesman problem with interval data, Technical Report IDSIA-20-05,

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano-
Manno, Switzerland, 2005.

[21] Z. C. Huang, X. L. Hu, and S. D. Chen, “Dynamic Traveling Salesman
Problem based on Evolutionary Computation”, Congress on
Evolutionary Computation (CEC’01), IEEE Press, pp.1283–1288, 2001.

[22] C-M. Pintea, P.C. Pop, and D. Dumitrescu, “An Ant-based technique for
the Dynamic Generalized Traveling Salesman Problem”, Proceedings of
the 7-th International Conference on Systems Theory and Scientific
Computation, pp.257-261, 2007.

[23] Z. Wang, J. Guo, M. Zheng, and Y. Wang, “Uncertain multiobjective
Traveling Salesman Problem”, European Journal of Operational
Research, 241 (2), pp.478–489, 2015.

[24] G. B. Dantzig, and J. H. Ramser. "The Truck Dispatching Problem",
Management Science 6 (1), pp.80–91, 1959.

[25] N. Lahrichi, T. G. Crainic, M. Gendreau, W. Rei, G. C. Crişan, and T.
Vidal, “An integrative cooperative search framework for multi-decision-
attribute combinatorial optimization”, Technical Report CIRRELT-
2012-42, Centre interuniversitaire de recherche sur les reseaux
d'entreprise, la logistique et le transport, Montreal, Canada, 2012.

[26] Concorde solver. Available at:
http://www.math.uwaterloo.ca/tsp/concorde.html

[27] S. Tschoke, R. Lubling, and B. Monien, “Solving the traveling salesman
problem with a distributed branch-and-bound algorithm on a 1024
processor network”, Proceedings of 9th International Parallel Processing
Symposium, pp.182 – 189, 1995.

[28] M. Dorigo, and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[29] J. Kennedy, and R. C. Eberhart, Swarm Intelligence. Morgan

Kaufmann, 2001.
[30] G. Beni, and J. Wang, “Swarm Intelligence in cellular robotic systems”,

Proceedings of the NATO Advanced Workshop on Robots and
Biological Systems, Tuscany, Italy, 1989.

[31] R. Poli, “Analysis of the publications on the applications of particle
swarm optimization”, Journal of Artificial Evolution and
Applications, 4, pp.1–10, 2008.

[32] M. Clerc, Discrete particle swarm optimization - illustrated by the
traveling salesman problem, New Optimization Techniques in
Engineering, Springer, 2004.

[33] J. Q. Chen, W. L. Li, and T. Murata, “Particle swarm optimization for
vehicle routing problem with uncertain demand”, 4th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
pp.857 - 860, 2013.

[34] Y. Zhang, D. W. Gong, and J. H. Zhang, “Robot path planning in
uncertain environment using multi-objective particle swarm
optimization”, Neurocomput. 103, pp.172-185, 2013.

[35] P. Novoa, D.A. Pelta, C. Cruz, and I. G. del Amo, “Controlling Particle
Trajectories in a Multi-swarm Approach for Dynamic Optimization
Problems”, International Work-Conference on the Interplay Between
Natural and Artificial Computation, IWINAC 2009, 5601, Santiago de
Compostela, Spain, pp.285-294, 2009.

[36] T. Blackwell, and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments”, IEEE Transactions on
Evolutionary Computation, 10(4), pp.459-472, 2006.

[37] L. A. Zadeh, “Fuzzy sets” Information and Control 8, 338-353, 1965.
[38] C. V. Negoiţă, and D. A. Ralescu, "Representation theorems for Fuzzy

concepts", Kybernetes, 4(3), pp.169-174, 1975.
[39] G. C. Crişan, Ant Algorithms in Artificial Intelligence. PhD Thesis, A.I.

Cuza University of Iaşi, Romania, 2008.
[40] ACO public software. Available at:

http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html
[41] E. Nechita, C. V. Muraru, and M. Talmaciu, “Mechanisms in social

insect societies and their use in Optimization. A case study for trail
laying behavior”, Proceedings of BICS 2008, 1117(1), pp.171-179,
2008.

[42] M. Clerc, and J. Kennedy, “The Particle Swarm - explosion, stability,
and convergence in a multidimensional complex space”, IEEE
Transactions on Evolutionary Computation, 6(1), pp.58-73, 2002.

