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Abstract—Imperfection is a common characteristic of 

information nowadays. For example, in everyday life, decisions 
have to be made based on information that is incomplete, 
inconsistent, and/or uncertain. This inexactness makes the 
decision making a challenging task. This paper investigates the 
behavior of a well-known optimization method, Particle Swarm 
Optimization (PSO), when solving a fuzzy problem. The discrete 
PSO implementation is studied on a Traveling Salesman Problem 
(TSP) variant, designed to model the uncertain environmental 
influences. The experiments investigate several symmetric TSP 
instances and their fuzzy variants in order to study the impact of 
uncertain information in the quality of the results provided by 
PSO. The fuzzy variants were generated using a two-dimensional 
degree of fuzziness, which is proportional to the number of nodes 
of the instance. In addition, the amplitude of the uncertainty can 
be set at running time, so the degree of fuzziness used here is a 
systematic perturbation, providing similar effects on all studied 
TSP instances. The experimental results reveal that the PSO 
algorithm can handle uncertainty in data by showing good 
adaptability based on the used TSP benchmark set. 

Keywords—Traveling Salesman Problem; Particle Swarm 
Optimization; Uncertainty Model. 

I. INTRODUCTION 
One of the common characteristics of information available 

to humans is its imperfection. Information can be incomplete, 
inconsistent, uncertain, or all three combined. The process of 
decision-making becomes a very difficult task since the 
information for solving a problem is often inexact. However, a 
human expert can usually cope with these imperfections, can 
make correct judgments, and can make the right decisions even 
in complex situations.  

Uncertainty is defined as the lack of exact knowledge that 
would enable one to reach a perfectly reliable conclusion [1]. 
Classical logic, which permits only exact reasoning, where 
perfect knowledge always exists, and the law of the excluded 
middle always applies, do not consider reasoning under 
incertitude [2]. Unfortunately, most real world problems do not 
embed clear-cut knowledge. The available information often 
contains inexact, incomplete or even immeasurable data. This 
is why approaching such real-world situations must rely on 
new solving paradigms, able to efficiently operate – like a 
human mind does – with uncertain data. 

In general, we can identify four main sources of uncertain 
knowledge: weak implications, imprecise language, unknown 

data, and the difficulty of combining the views of different 
experts [3].  

Uncertainty in data collected via experiments, sensor data, 
the World Wide Web, etc., raise serious challenges to decision 
making and reasoning, in particular when the data volumes are 
high, and the problem restrictions are difficult to evaluate. 
Uncertainty in data leads to wrong outcomes, decisions, and 
judgments. Therefore, meeting data quality standards is 
essential; standardization, validation, and enhancement are 
several methods to succeed in improving the data quality. The 
processes of standardization and validation clean data, whereas 
enhancement is the result of the successful application of 
standardization and validation. Enhancement gives value and 
usability to the data [4].  

Researchers when facing data of low quality have proposed 
several strategies. One strategy is to use extra hardware, 
software, or human resources for improving the data quality 
[5]. This goal can be reached by hash functions [6] to detect 
errors, cyclic redundancy check codes [7] for correcting errors, 
etc. Another direction is to use the same resources in order to 
design more complex and reliable applications that can handle 
uncertain events. One such example is the category of resilient 
algorithms: they are able to tolerate some degree of errors or 
failures in data without the loss of correctness, performance, 
and storage capability [8][9]. Different approaches in 
processing uncertain databases are presented in [10]. 

This paper investigates the effect of an evolutionary 
computation method when the optimization task contains fuzzy 
data. In particular, the resilience of a biologically-inspired 
algorithm is studied when low quality data are involved. This 
work focuses on the Particle Swarm Optimization (PSO) 
approach, and investigates its sensitivity to fuzzy data, 
continuing the practical experiments from [11]. A comparison 
from the adaptability point of view between PSO and the 
previously proposed Ant Colony Optimization approach is also 
performed. 

The paper is organized as follows. Related work is outlined 
in Section II. In Section III, the PSO approaches as well as the 
fuzzification method for the Traveling Salesman Problem 
(TSP) are described. Section IV contains the experimental 
results obtained, and Section V concludes the paper with the 
outcomes of this study. 



II. RELATED WORK 
The Traveling Salesman Problem (TSP) [12] is the 

optimization benchmark problem used to investigate the 
impact of fuzzy data applied to an evolutionary computation 
method referred to as the Particle Swarm Optimization (PSO) 
technique.  

The Traveling Salesman Problem is described as follows:  
Given a complete graph with weights on the edges (arcs), 
find a Hamiltonian cycle with minimum total weight. 

The usual representation for TSP is a 2D map, where the 
nodes are the cities, the edges are the roads connecting the 
cities, and the weight for an edge is the distance between the 
corresponding cities. The goal for the salesman is to find one 
shortest path for visiting all the cities and coming back to the 
starting city. 

The TSP is known to be a complex and difficult problem 
[13]. With broad applications in transportation, logistics, 
industry, communications, etc., it is under heavy investigation 
by the research community. TSP has multiple variants, 
designed for better reflecting real situations: asymmetric TSP 
(aTSP) when the distance function is not symmetric, multiTSP 
(mTSP) when multiple salesmen are available for completing 
partial tours that cover all the cities from the map, etc.  

Many publicly available instances of the TSP are available 
[14][15]; as well as many real-life complex problems and 
instances are given in [16][17]. All of those assume that the 
problem is exact and all data are integrally known at the 
solving time.  

Uncertain TSP can be modeled in several ways. The first 
attempt to introduce uncertainty was presented in [18]. The 
Probabilistic TSP seeks a most efficient a-priori tour when 
each city is to be visited with a specific probability. Fuzzy 
TSP is defined as TSP with fuzzy numbers as distances on the 
edges [19]. The tours in this case are classic tours with fuzzy 
numbers as lengths. This TSP variant needs supplementary 
decisions, since fuzzy numbers are not totally ordered as real 
numbers are. The TSP with interval data specifies the distance 
between any two cities as the range of possible values, and no 
additional assumption is made [20]. The solution to this TSP 
variant uses the concept of robust deviation: the best tour 
minimizes the maximum deviations over all realizations of 
edge distances. Dynamic TSP models the changing situations 
in the world: the distance function is dynamic, and so is the 
number of cities [21].  

Of course, combinations of new features are constantly 
designed and investigated. For example, a dynamic, 
clusterized TSP version is investigated in [22]. An uncertain 
multiobjective TSP version is defined and solved using 
Genetic Algorithms in [23].  

Many difficult problems can be seen as TSP 
generalizations. One such example is the Vehicle Routing 
Problem (VRP) [24]. The current problems are so complex 
and rich in attributes that researchers investigate new 
methodologies for efficiently solving them when computing 
resources are scarce [25]. 

During the past decades several successful algorithms were 
proposed to solve the TSP problem. For example, Concorde 

[26] is an exact solver used to compute the optimal value to 
106 from the 110 TSPLIB instances in [14]. Efficient parallel 
branch-and-bound methods are reported for example in [27]. 
Other successful techniques for TSP are the Ant Colony 
Optimization (ACO) [28] or the Particle Swarm Optimization 
(PSO) [29].  

Ant Colony Optimization (ACO) is a biologically-inspired 
heuristic solving method for optimization problems 
represented by a weighted graph. It uses a population of 
artificial agents that seek to construct a least cost tour, 
modeling the way a colony of ants manage to find the shortest 
path from the food to the nest. The balance between space 
exploration and the exploration of the good paths already 
found by concurrently acting artificial ants, together with the 
broad set of problems that allow ACO implementations, made 
this approach intensively used.  

ACO and PSO belong to the Swarm Intelligence domain, 
which deals with natural and artificial systems composed of 
many coordinated individuals that complete a difficult 
common task using decentralized control and self-
organization. The expression was introduced in [30], in the 
context of cellular robotic systems. PSO is presented in the 
following section. 

III. PROPOSED METHOD 
The effect of a discrete PSO algorithm is investigated on 

the TSP benchmark with perfect and uncertain/fuzzy data. The 
presentation of the discrete PSO algorithm is followed by the 
description of the fuzzified TSP benchmark instances. 

A. Discrete PSO Algorithm 
Particle Swarm Optimization (PSO) was initially defined 

for continuous problems. The idea behind PSO is to model the 
way a bird flock globally moves [29]. It was developed for a 
broad range of problems with large solution spaces; it uses 
simple mathematical relations based on particle position and 
speed, and it delivers very good results for a broad range of 
difficult problems [31]. The discretization of PSO can be done 
in multiple ways, depending on the problem structure and type. 
For example, a discrete implementation of TSP is described in 
[32]. The discrete PSO equations are as follows: 

)1()()1( ++=+ tvtxtx  (1) 
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where x  represents a particle, i  denotes the particle's number, 
j  the dimension, t  a point in time, and v  is the particle's 

velocity. The variable Bestx  is the best location the particle ever 
visited (the particle’s knowledge), and GBestx  is the best 
location any particle in the swarm ever visited (the swarm’s 
knowledge). The value of 1c  represents the inertia weight and 
used to weigh the previous velocity, 2c  is a variable to weigh 
the particle’s knowledge, and 2c  is a variable to weigh the 
swarm’s knowledge.  

More information on the PSO implementation for TSP 
regarding the multiplication, addition, and subtraction 



operators are found in [32]. Details on a PSO approach to a 
VRP with uncertain demands are presented in [33]. Multi-
objective PSO can be used for designing efficient robot paths 
in uncertain environments [34]. A multi-swarm approach for 
solving dynamic optimization problems is presented in [35]. 
The complexity of dynamic problems is tackled in [36] by a 
two-scale framework with low-level PSO classic operators, and 
high-level new operators, able to enhance the particle diversity 
and to avoid local convergence. 

B. Traveling Salesman Problem Benchmark 
The TSP is used as the benchmark to investigate the 

behavior of the PSO algorithm on an uncertain problem. In 
particular, the fuzziness impact as an imperfect knowledge 
characteristic is studied. Fuzzy logic is employed in order to 
generate the uncertainty for the benchmark. Fuzzy numbers are 
used to represent the vagueness, the same way that random 
values express the probability.  

The new mathematical theory of fuzzy sets was developed 
by Lotfi A. Zadeh in [37]. Zadeh introduced the fuzzy sets, 
where many degrees of membership are allowed, and indicated 
with a number in [0,1]. The point of departure for fuzzy sets is 
the generalization of the valuation set from the pair of numbers 
{0,1} to all the numbers in [0,1]. This is called a membership 
function, denoted as µA(x) and in this way defines the fuzzy set 
A. An alpha cut (α-cut) is a crisp set of elements of A 
belonging to the fuzzy set to a degree at least α. Further details 
and representation theorems for fuzzy concepts are given in 
[38]. 

This fuzzification process is applied to the TSP benchmark 
that models real situations when the travel cost of the salesman 
on several roads is affected by external events such as sudden 
weather changes, or transportation difficulties like a car engine 
failure.  

 
Figure 1. Representation of an initial map (left side) and its fuzzified form (right side)

 
 
The entry data of the fuzzy TSP variant we study here 

consist of slight and systematic modifications of the position of 
several nodes within their neighborhood. Another approach to 
fuzzy TSP is presented in [39]. 

The initial benchmark data is fuzzified by applying the 
same degree of fuzziness to each instance. The TSP instance 
inst taken from [14] is used as input and the modified instance 
has the same number of nodes, but some nodes are positioned 
differently on the map. Figure 1 shows an example of obtaining 
a fuzzified TSP instance (right side) from an exact initial 
instance (left side).  

Two global integer parameters a∈(0, 100) and b∈(0, 100) 
are used to express the uncertainty, i.e., the fuzziness for each 
instance. The parameter a is called the dimension regularity, 
specifying how many node changes are applied (with the same 
impact irrespective of the number of nodes). The parameter b is 
called the scale regularity, which specifies how far the nodes 
move (maintaining the same impact irrespective of the 
distance). Thus, each node is relocated in a random order 
within a circle as shown in Figure 1. The figure shows the 
modified position of node i, randomly chosen using C(i, y), the 
circle with the center in the current node i and the radius 
y=x*b/100, where x is the distance from i to the nearest node. 

 

function fuzzifyInstance(inst, a, b) 
n = count_nodes(inst) 

k = n*a/100 

for j=1 to k do 

 Randomly choose an unvisited node i∈inst 

 x = min{d(i,u), u∈inst, u≠i} 
 y = x*b/100 

 Randomly choose a new position i’∈C(i,y) 
end for 

return inst 

Algorithm 1. The fuzzification function fuzzifyInstance 

Algorithm 1 shows the pseudo code of the fuzzifyInstance 
function. The function returns the modified instance inst after 
applying the modifications controlled by the values of the 
parameters a and b. The function min returns the minimum of 
the distances between the current node i and any other node 
from inst, and C(i, y) is the circle with the center being the 
current node i and radius y. 



IV. EXPERIMENTAL RESULTS 
To test our fuzzification method, several instances from the 

TSPLIB [14] library are used: Krolak/Felts/Nelson with 100 
nodes, Christofides/Eilon with node dimension between 51 and 
101, and Padberg/Rinaldi instances with node dimension 
between 76 and 124. The computer used had the following 
processor specifications: AMD with 2.8GHz and 3GB of 
RAM. 

These instances were modified based on the input 
parameters a and b specified in the description of the 
fuzzifyInstance function. From the 11 initial instances we 
derived 44 fuzzified instances; for each original instance four 
new, fuzzified instances resulted, corresponding to the four 
following sets of new parameters a and b:                            
{a=10%, b=25%}, {a=10%, b=50%}, {a=25%, b=25%} and    
{a=25%,b=50%}.  

The original instances and their fuzzified variants were 
solved using the exact method with CPLEX [25], ACOTSP 
[40], and PSO [29]. The applications were executed with 
implicit values for the running parameters. As many results 
show [41][42], the parameter settings are very important for 
heuristic methods, and we preferred to use their implicit values, 
recommended by the ACO and PSO designers. For the ACO 
implementation, we used the MAX-MIN Ant System (MMAS) 
with no local search, as PSO has not such a supplementary 
method. The results are presented in Table 1 (for the 
executions with the new instances derived when a=10%), and 
in Table 2 for the two sets of instances obtained when a=25%. 

For each fuzzified instance we measured the impact of the 
data fuzzification introduced by the function fuzzifyInstance 
through the new parameter PE (percentage error): 

PE = solution− best
best

⋅100%   (3) 

where solution is the best solution (in ten runs) found by the 
two heuristic methods on the fuzzified instance, and best is the 
optimal solution.  

Table 1. Comparison of PE values in % for CPLEX/ACO/PSO 
method, for a=10, b∈{25,50}. 

    (a, b)    
Application 

        
Instances      

(10, 25) (10, 50) 

CPLEX ACO PSO CPLEX ACO PSO 

  Krolak/Felts/Nelson instances  
Average  -0.03 2.40 -0.08 -0.30 3.81 -2.54 
Minimal  -0.35 -1.83 -3.58 -1.83 1.45 -9.69 
Maximal 0.47 6.25 1.29 0.74 5.99 4.23 

  Christofides/Eilon instances  
Average  0.23 0.34 0.43 -1.94 -1.70 -3.09 
Minimal -0.56 -0.56 -0.33 -4.23 -3.99 -7.98 
Maximal 1.41 1.41 1.20 0.64 1.11 -0.13 

  Padberg/Rinaldi instances  
Average  -0.08 0.24 -0.44 -0.25 0.46 -1.72 
Minimal -0.19 -0.15 -2.22 -0.37 0.07 -5.45 
Maximal 0.06 0.48 0.60 -0.19 0.82 0.51 

Overall 
Average 0.03 1.25 -0.03 -0.73 1.39 -2.45 

Table 2. Comparison of PE values in % for CPLEX/ACO/PSO 
method, for a=25, b∈{25,50}. 

    (a, b)    
Application 

        
Instances      

(25, 25) (25, 50) 

CPLEX ACO PSO CPLEX ACO PSO 

  Krolak/Felts/Nelson instances  
Average  0.60 5.63 1.10 -0.10 3.98 0.13 
Minimal  -0.64 1.92 -1.10 -1.22 2.26 -2.80 
Maximal 2.38 8.04 3.63 0.94 5.73 4.25 

  Christofides/Eilon instances  
Average  -0.26 3.98 -0.05 -1.50 2.82 -5.94 
Minimal -0.79 1.88 -4.79 -2.58 -1.17 -10.02 
Maximal 0.00 7.63 4.29 -0.79 9.06 -0.27 

  Padberg/Rinaldi instances  
Average  0.02 5.38 -0.23 -0.04 3.80 -1.06 
Minimal -0.16 1.56 -1.31 -0.89 0.71 -4.16 
Maximal 0.18 7.91 0.61 0.90 6.14 0.91 

Overall 
Average 0.21 5.11 0.27 -0.47 3.61 -2.29 

 

The TSP instances used are from the groups:  
Krolak/Felts/Nelson group: kroA100, kroB100, kroC100, 
kroD100 and kroE100; the Christofides/Eilon group: eil51, 
eil76, and eil101, and the Padberg/Rinaldi group gathers pr76, 
pr107, and pr124. 

For each group, each application, and each set of the new 
parameters (a, b) we report in Tables 1 and 2 three numerical 
values based on the PE computed by formula (3): the average, 
the minimum, and the maximum for the PE values. The last 
lines from the Tables 1 and 2 hold the average values of the 
variable PE taken on all the eleven fuzzified instances. 

Figure 2 represents the numerical values taken from the last 
lines from Tables 1 and 2: the average influence of the data 
fuzziness for each set of the new parameters a and b. The 
variations in the results show that PSO is more sensitive to the 
changing influences, and it can detect the modifications in data 
more accurately than the ACO implementation.  
 The same conclusion can be drawn when looking at the 
regression lines. Both lines show a direct influence of the 
fuzziness amplitude on the solution deviation, but the PSO line 
is closer to the CPLEX line showing a better adaptation.  

The PSO sensitivity is more obvious in Figures 3-5 with the 
minimum PE values taken on instance groups: in each figure, 
the lines for PSO are steeper, showing that this method is more 
“explorative” than the other, and succeeds in finding new 
zones in the solution space. The PSO behavior shows that it 
always produces PE results with negative deviation, as the 
exact CPLEX method does. We can conclude that PSO is able 
to correctly perceive the data modifications. 

The new fuzzy instances when b=25% led to solutions 
extremely close to the solution of the exact instance. This 
means that the PSO method is able to tolerate data 
modifications with small amplitude, and to deliver stable 
results. But there is a clear disparity between the case when 
a=25% and the other case, with a=10% (the value 0.27% is 9 
times higher than 0.03%).  



The fuzzy instances derived when b=50% manifest a 
complete different behavior. The higher amplitude of the data 
uncertainty provides large variation of the best PE, but the 
couple of cases controlled by the two values for the parameter 
a show a similar result. We can conclude that for large possible 
intervals of changes of the problem’s data, the PSO has the 
same sensitivity, no matter if these changes are few or 
frequent. 

The Krolak/Felts/Nelson and the Padberg/Rinaldi instances 
have a distinct and interesting behavior; few changes in node 
positions (both cases when a=10%) result in larger PE values 
than in the case when more changes are applied (when 
a=25%). The Christofides/Eilon group of the studied instances 
manifests a direct dependency between the number of fuzzified 
nodes and the distance of the minimal PE from the solution of 
the exact corresponding instance. We can conclude that the 
problem structure is very important when a PSO-based 
application is executed. The human decision-maker must also 
know the problem structure, and does not to entirely rely on the 
computing results. 
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Figure 2. CPLEX/ACO/PSO comparison for the overall average PE 

in %. 

 

 
Figure 3. Minimal best PE values in % of CPLEX/ACO/PSO on the 

Krolak/Felts/Nelson group. 

 
Figure 4. Minimal best PE values in % of CPLEX/ACO/PSO on the 

Christofides/Eilon group. 
 

 

Figure 5. Minimal best PE values in % of CPLEX/ACO/PSO on the 
Padberg/Rinaldi group. 

 

V. CONCLUSIONS 
This paper empirically investigates how a metaheuristic 

solving method designed for an exact problem performs when 
it faces a supplementary difficulty level: the data are fuzzified 
using a two-dimensional uncertainty level: the frequency and 
the amplitude parameters.  

At the practical level, our work shows that the 
implementation based on Particle Swarm Optimization (PSO) 
is stable and fairly adaptable when the uncertainty amplitude is 
low, but is very sensitive to data changes when this 
characteristic is high. This means that PSO is a reliable choice 
when almost exact input data are expected. When the data 
inexactness is unknown, or is expected to be high, then PSO 
can be used as an uncertainty marker: when it provides results 
further away, one can assume that the data are really far away 
from the correct ones. 

At the theoretical level, this paper uses a new method for 
introducing uncertainty to a TSP instance, through the 
fuzzifyInstance function. It is also a start for other experiments 
for assessing traditional solving methods when external 
processes could affect the exactness in data. Other fuzzification 



methods, inspired by real-world situations can be tested to 
assess and compare other solving methods applied to other 
optimization problems.  
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