
Fuzzy Clustering Using Automatic Particle Swarm Optimization

Min Chen and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

min.chen@my.ndsu.edu, simone.ludwig@ndsu.edu

Abstract—Fuzzy clustering is a popular unsupervised learn-
ing method used in cluster analysis which allows a data point
to belong to two or more clusters. Fuzzy c-means is one of the
most well-known and used methods, however, the number of
clusters need to be defined in advance. This paper proposes
a clustering approach based on Particle Swarm Optimization.
This approach automatically determines the optimal number
of clusters using a threshold vector that is added to the
particle. The algorithm starts by partitioning the data set
randomly within a preset maximum number of clusters in
order to overcome the fuzzy c-means shortcoming of the
predefined cluster count. A reconstruction criterion is applied
to evaluate the performance of the clustering results of the
proposed algorithm. The experiments conducted show that the
proposed algorithm can automatically find the optimal number
of clusters.

Keywords-Fuzzy Clustering, Particle Swarm Optimization
(PSO), data mining

I. INTRODUCTION

Data mining is called exploratory data analysis, among
other things. It is an analytic process designed to explore
data. Data mining aims to search for consistent patterns or
systematic relationships between variables. It then validates
the findings by applying the detected patterns to new subsets
of data [1]. It is a statistical analysis process which can
identify the clusters along with collection of data. Data min-
ing can be achieved by classification, association, prediction,
sequential pattern, similar time sequences and clustering [2].

Clustering analysis is one of the popular approaches and
has been widely used in data mining. Clustering analysis
is a process to identify groups or clusters based on some
similarity measures. Most clustering algorithms can be cat-
egorized into two popular techniques known as hierarchical
and partitional clustering. The output of the hierarchical
clustering is a tree showing a sequence of clusters with
each cluster being a partition of the data set. Hierarchical
clustering does not specify the number of clusters, and the
output is independent of the initial condition. However, the
hierarchical clustering is static, i.e., the data points assigned
to a cluster cannot be reassigned to another cluster. In
addition, it will fail to separate overlapping clusters due
to the lack of information regarding the global shape or
size of the clusters. On the other hand, partitioned clustering
requires a fixed number of clusters to be specified a priori.

Objective functions such as square error function are used
as a criteria in the optimization process of data partitioning.
Partitioned clustering uses an iterative process to optimize
the cluster centers, as well as the number of clusters.
However, it is a challenge to find the “optimum” number
of clusters since it always requires prior knowledge about
the data. The advantages of hierarchical algorithms are the
disadvantages of the partitional algorithms and vice versa.

The goal of clustering involves the task of dividing data
points into homogeneous groups such that the data points in
the same group are as similar as possible and data points in
different groups are as dissimilar as possible [3], [2]. The
importance of clustering is documented in pattern recogni-
tion [4], machine learning, image analysis [5], information
retrieval, etc. Depending on whether a data point belongs to
a single cluster or several clusters with different membership
degrees, clustering methods can be categorized as either hard
clustering [6], [7] or fuzzy clustering [8]. Each data point of
the data set belongs to exactly one cluster in hard clustering.
Fuzzy set theory which was proposed by Zadeh [9] in 1965
is used to describe the membership degrees in fuzzy cluster
analysis. Therefore, each data point of the data set belongs
to two or more clusters with a membership degree between
0 and 1. Due to the capacity of handling uncertainty and
vagueness, the potential of fuzzy clustering to reveal the
underlying structures in data with regard to similarities or
dissimilarities among them can be exploited [10].

One of the widely used methods in fuzzy clustering is
Fuzzy C-Means clustering (FCM) [11]. The FCM method
attempts to partition a data set into a collection of c fuzzy
groups. It finds a cluster center in each group such that
the intra-distance within the group is minimized and the
inter-distance between each group is maximized. All of the
fuzzy clustering methods that have been applied recently
mostly use an extension of the FCM algorithm. As we
have discussed before, partitional clustering suffers from the
following two drawbacks:

• The number of clusters needs to be specified in ad-
vance. Furthermore, it requires prior knowledge or
ground truth of the data.

• In most cases data points in overlapping areas can not
be categorized correctly.



In order to overcome these two drawbacks, we proposed a
fuzzy C-means clustering approach using automated Particle
Swarm Optimization (PSO) for clustering analysis. The rest
of this paper is organized as follows. In Section II, fuzzy
c-means and PSO are introduced. The proposed algorithm
is described in Section III. A list of validity indices is
given in Section IV. The experimental results and analysis
is described in Section V. We finally conclude this paper in
Section VI.

II. RELATED WORK

FCM was first developed by [12] in 1973 and was
extended by [11] in 1981. Since then, FCM is one of the
most promising fuzzy clustering methods. Many variants of
FCM have been introduced. For example, the Gustafson-
Kessel (GK) algorithm [7] is a fuzzy clustering technique
which can estimate local covariance to partition data into
subsets that can be well fitted with linear sub-models.
However, considering a general structure of the covariance
matrix can have substantial effect on the modeling ap-
proach, thus the Gath-Geva algorithm [13] was proposed.
The fuzzy c-varieties (FCV) [14] clustering algorithm is
a fuzzy clustering algorithm where the prototype of each
cluster is a multi-dimensional linear vector. It is similar to
cluster analysis, however, it uses the statistical method of
principal component analysis. A generalized FCM algorithm
is presented in [15]. The algorithm proposes an approach for
setting the algorithm parameters.

With regards to PSO approaches, two methods called
PSO-V and PSOU are introduced in [16]. A reformulated
objective function of fuzzy c-means is minimized by PSO
for cluster analysis. A PSO-based fuzzy clustering algorithm
is introduced to overcome the shortcomings of FCM [17].
An ant colony clustering algorithm is applied for solving
clustering problem in [18]. The algorithm employs the
global pheromone updating and the heuristic information
to find clustering solutions. In [19], a genetic fuzzy K-
modes algorithm for clustering categorical data is proposed.
The fuzzy K-modes clustering is treated as an optimization
problem and a genetic algorithm is used to obtain the global
optimal solution. A hybrid data clustering algorithm which
makes use of the merits of PSO and KHM is proposed
in [20]. The proposed algorithm helps the KHM to escape
from local optima. In addition, it overcomes the problem
of slow convergence of the PSO algorithm. A hybrid evo-
lutionary algorithm called FAPSO-ACO-K is discussed in
[21]. The hybrid algorithm is based on PSO, ACO and
k-means applied to cluster analysis. A new method for
dynamic parameter adaptation in PSO is proposed in [22].
The proposed algorithm uses fuzzy logic to improve the
convergence and diversity of the swarm in PSO.

Although PSO techniques do eventually locate the desired
solution, the high computational cost and the slow con-
vergence rate severely limit the use of PSO on clustering

analysis. For these reasons, a chaotic map PSO with an
accelerated convergence rate strategy is introduced in [23].
The algorithm adopts chaotic maps and adaptive action
to avoid entrapment of the PSO in a local optimum. A
hybrid fuzzy clustering method based on FCM and FPSO
is proposed to overcome the shortcomings of PSO in [24].
A modified version of PSO, known as Multi-Elitist PSO
(MEPSO), is proposed in [25]. This approach solves the
hard clustering problem which can automatically determine
the optimal number of clusters. This approach shows that
PSO is guaranteed to solve clustering problem automatically.

III. FUZZY C-MEANS AND PARTICLE SWARM
OPTIMIZATION

A. Fuzzy C-means Clustering

Fuzzy clustering is a method of clustering which allows
one piece of data to belong to two or more clusters. The
FCM algorithm is an iterative partition clustering technique
which was first introduced by Dunn [12] and was extended
by Bezdek [11]. FCM is a pretty standard least squared error
model that generalizes an earlier and very popular non-fuzzy
c-means model that produces hard clusters of the data. An
optimal c partition is produced iteratively by minimizing
the weighted within group sum of squared error objective
function:

J =

n∑
i=1

c∑
j=1

(uij)
md2(yi, cj) (1)

where Y = [y1, y2, ..., yn] is the data set in a d-dimensional
vector space. n is the number of data items. c is the number
of clusters which is defined by the user where 2 ≤ c ≤ n.
uij is the degree of membership of yi in the jth cluster. m
is a weighted exponent on each fuzzy membership. cj is the
center of cluster j. d2(xi, cj) is a square distance measure
between object yi and cluster cj . An optimal solution with
c partitions can be obtained via an iterative process which
is as follows:

1) Input(c, m, ε, data)
2) Initialize the fuzzy partition matrix U = [uij ]
3) Iteration starts and set t=1
4) Calculate the c cluster centers with U t:

ci =

∑n
i=1(uij)

myi∑n
i=1(uij)m

(2)

5) Calculate the membership U t+1 using:

uij =
1∑c

k=1(
dij

dkj
)

2
(m−1)

(3)

6) If the stopping criteria is not met, t = t+ 1 and go to
Step 4)



B. Particle Swarm Optimization

PSO was originally designed and introduced by Eberhart
and Kennedy [26]. The PSO is a population search algo-
rithm which intends to simulate the choreography of a bird
flock. Each individual, called particle, within the swarm is
represented by a vector in a multidimensional search space.
A velocity vector is assigned to each particle to determine
the next movement of the particle. Each particle updates its
velocity based on the current velocity, best personal position
it has explored so far and the global best position explored
by the swarm:

The velocity and position of the particle at the next
iteration is updated as:

Vi(t+1) = wVi(t)+c1r1(X l
i(t)−Xi(t))+c2r2(Xg−Xi(t))

(4)
Xi(t+ 1) = Xi(t) + Vi(t+ 1) (5)

for the ith particle, where w is the inertia weight, Vi(t) is
the previous velocity in iteration t of ith particle. c1 and c2
are coefficients. Generally, r1 and r2 are random numbers
between 0 and 1. (X l

i(t)−Xi(t)) is the difference between
the local best X l

i of the ith particle and the previous position
Xi(t). Similarly, (Xg−Xi(t)) is the difference between the
global best Xg and the previous position Xi(t).

IV. PROPOSED APPROACH

The proposed algorithm is based on PSO and FCM.
The particle encoding, velocity encoding, decoding and
clustering validation is described separately. The procedures
of the proposed algorithm are presented at the end of this
section.

A. Particle Encoding

A particle is a 2 × k matrix, where k is the maximum
number of clusters that is predefined. The first row represents
the centers. Each value in the second row controls the
activation of each center in the first row.

Xi =

(
xi1,1 xi1,2 ... xi1,k
ti2,1 ti2,2 ... ti2,k

)
(6)

where xi1,k represents the ith particle’s position in cluster
k. xi1,k should be in the range of [xmin, xmax]. ti2,k is the
ith particle’s threshold value in the range of [0, 1]. If the
threshold value is greater than 0.5, the center is activated.
Otherwise, it is deactivated.

B. Velocity Encoding

The velocity matrix should have the same dimension as
the position matrix with a range. Suppose we set the range
as [vmin, vmax], all values of the velocity matrix should be
between vmin and vmax. Thus, the ith velocity is denoted
as:

Vi =

(
vix1,1 vix1,2 ... vix1,k
vit2,1 vit2,2 ... vit2,k

)
(7)

Similarly, k is the maximum number of clusters. The first
row is the velocity of the centers, and the second row is the
velocity of the threshold values.

C. Decoding

Y = (y1, y2, .., yn) is the data set with d dimensions. The
cluster centers can be decoded as C = (c1, c2, ...ck) using
Equation 2.

D. Clustering Validation Techniques

The aim of clustering validation is to evaluate the clus-
tering results to find the best partition that fits the under-
lying data. Thus, cluster validity is used to quantitatively
evaluate the result of clustering algorithms. Compactness
and separation are considered as two widely used criteria
in measuring the quality of partitioning a data set into a
number of clusters. Conventional approaches run the algo-
rithm iteratively using different input values and select the
best validity measure to determine the “optimum” number of
clusters. A collection of validity indices in fuzzy clustering
is listed below.

1) Least Squared Error (SE) Index: The weighted within
cluster sum of squared error function is used [27]:

Jm =

n∑
i=1

c∑
j=1

umij ||yi − cj ||2 (8)

where yi is the ith data point with d dimensions. cj is the
value of the jth cluster, and ||yi − cj || is the Euclidean
distance between yi and cj . Jm takes its minimum value
when the cluster structure is best.

2) Partition Coefficient (PC) Index: The partition coeffi-
cient (PC) is defined as [11]:

PC =
1

n

n∑
i=1

c∑
j=1

u2ij (9)

PC obtains its maximum value when the cluster structure is
optimal.

3) Partition Entropy (PE) Index: The partition entropy
was defined as [14]:

PE = − 1

n

n∑
i=1

c∑
j=1

uij logb(uij) (10)

where b is the logarithmic base. PE gets its minimum value
when the cluster structure is optimal.

4) Modified Partition Coefficient (MPC) Index: Modifi-
cation of the PC index, which can reduce the monotonic
tendency, is proposed by Dave in 1996 [28].

MPC = 1− c

c− 1
(1− PC) (11)

where c is the number of cluster. An optimal cluster number
is found by maximizing MPC to produce a best clustering
performance for a data set.



5) Fukuyama and Sugeno (FS) Index: Fukuyama and
Sugeno proposed a validity function in 1989 [29]. It is
defined as:

FS =

n∑
i=1

c∑
j=1

µm
ij ||xi − cj || −

n∑
i=1

c∑
j=1

µm
ij ||cj − c̄|| (12)

where c̄ =
∑c

j=1 cj/c. It measures the separation. The
first term equals to Jm which is the least squared error. It
measures the compactness. The best clustering performance
for a data set is found by maximizing the value of FS.

6) Xie-Beni (XB) Index: Xie and Beni proposed a validity
function in 1991 [30], and later it was modified by Bezdek
in 1995 [31].

XB =
Jm

n×mini6=j ||zi − zj ||2
(13)

XB reaches its minimum value when the cluster structure is
optimal.

7) Partition Coefficient and Exponential Separation
(PCAES) Index: The partition coefficient and exponential
separation (PCAES) index [32] is defined as:

PCAES =

n∑
i=1

c∑
j=1

(uij)
2

uM
−

c∑
k=1

exp(−min
k 6=i
||zi − zk||2/βT )

(14)
where uM = min1≤j≤c{

∑n
i=1 u

2
ij} and βT = (

∑c
j=1 ||zj−

z̄||2)/c. z̄ =
∑n

i=1(yi/n). PCAES takes its maximum value
when the cluster structure is optimal.

8) Weighted Inter-Intra (Wint) Index: The weighted inter-
intra (Wint) measure is introduced by Strehl [33] in 2002.
It compares the compactness of the data to its separation.

Wint = (1− 2c

n
)·(1−

∑
i

1
n−|ci|

∑
j 6=i inter(ci, cj)∑

i
2

|ci|−1 intra(ci)
) (15)

where intra(ci) is the average intra-distance within cluster
i. inter(ci, cj) is the average inter-distance between cluster
i and cluster j. Wint obtains its maximum value when the
cluster structure is optimal.

The procedure of the proposed algorithm is listed below:
Input: data set Y = [y1, y2, ..., yn], number of cluster c,

fuzzification coefficient m.
Output: a n × c partition matrix U and corresponding

centers.
1) Randomly initialize a swarm
2) Iteration starts and set t=1
3) Update the velocity of each particle using Equation 4
4) Update the position of each particle using Equation 5
5) Update the personal best and global best
6) Calculate the partition matrix U
7) If the stopping criterion is not met, t = t+ 1 and go

back to Step 3)
8) The partition matrix U of the global best is used to

reconstruct the original data

9) Calculate the reconstruction error. In order to use
a consistent method to evaluate the eight different
indices, the reconstruction criterion (RC) [34] is used.
The reconstruction criterion uses the cluster prototypes
and partition matrix to “reconstruct” the original data
vectors. The reconstructed version of the original data
vectors, Ŷ = [ŷ1, ŷ2, ..., ŷn], is calculated as:

ŷi =

∑c
j=1 u

m
ij cj∑c

j=1 u
m
ij

(16)

Once the reconstruction has been finished, the squared
error of the reconstruction vectors and original vectors
are evaluated using Equation 17.

E =

n∑
i=1

||ŷi − yi||2 (17)

10) Select the partition matrix and centers corresponding
to the minimum reconstruction error.

V. EXPERIMENTS AND RESULTS

In this section, the experimental setup, datasets and ex-
perimental study are described.

A. Experimental Setup

The experiments are implemented and evaluated on an
ASUS desktop (Intel(R) Dual Core I3 CPU @3.07 GHz,
3.07 GHz) Matlab Version 7.13. All measurements of the
proposed algorithm are tested 30 times. The parameters
required for the proposed algorithm are listed in Table I.

Parameter Value
Maximum number of cluster 10

Maximum iteration 50
Swarm size 25

Maximum run 30
Fuzzification coefficient (m) 2

Table I: Parameters and their values of the proposed algo-
rithm.

B. Datasets

The experiments are conducted on a number of datasets
taken from the UCI repository [35], and one synthetic data
set was generated in Matlab. The datasets are described in
Table II.

Table II: Datasets used for the experiments.

Data Set Dimensions Instances Classes
Pinwheel 2 1000 2

Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2

Jain 2 373 2
Thyroid 5 215 2

Iris 4 150 3



C. Experimental Study

1) Use of Synthetic Data: In order to investigate the
clustering performance with different numbers of clusters,
we use a synthetic data set to test the clustering performance
using K-means, FCM and the proposed algorithm (FPSO).
K-means and FCM are the default methods in Matlab. The
data generated is shown in Figure 1. A toolbox for estimating
the number of clusters implemented by Kaijun Wang is
adopted. Nine traditional indices, Rand [36], Mirkin [37],
Hubert [38], Silhouette [39], Davies-Bouldin [40], Calinski-
Harabasz [41], Krzanowski-Lai [42], Hartigan [43] and
Homogeneity-Separation [44] are implemented as used by
Wang.

Figure 2 lists the performance of the synthetic data set
using K-means. The Rand index measures an agreement of
the clustering results. As the number of clusters increases,
the agreement of the clustering results decrease. As the
number of clusters increases, the performance using Mirkin
distance increases. Hubert index has the same performance
as Rand index. As the number of clusters increases, the
performance using Silhouette improves. The optimal clus-
ter numbers found by Davies-Bouldin, Calinski-Harabasz,
Krzanowski-Lai, Hartigan and Homogeneity-Separationare
are 2, 6, 9, 1, and 2, respectively.

Figure 3 shows the performance results using FCM on
the same synthetic data set. As shown in the figure, Rand,
Mirkin, Hubert and Silhouette have the same performance as
K-means. The optimal number of clusters found by Davies-
Bouldin, Calinski-Harabasz, Krzanowski-Lai, Hartigan and
Homogeneity-Separation are 9, 7, 4, 1, and 2, respectively.

Due to the stochastic nature of PSO, the performance of
the proposed algorithm fluctuates using the Rand, Mirkin,
Hubert and Silhouette indices as seen in Figure 4. The opti-
mal number of clusters found by Davies-Bouldin, Calinski-
Harabasz, Krzanowski-Lai, Hartigan and Homogeneity-
Separation are 9, 7, 9, 1, and 2, respectively.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Pinwheel Data

Figure 1: Synthetic data set

2) Use of Real-World Data: In this section, we investigate
the behavior of the clustering results using eight different
validity measures listed in Equations 8-15.

In Table III, the reconstruction errors of the transfusion
data set, where c ranges from 2 to 9, have been calculated
using the proposed algorithm by applying Equations 8-15.
As shown by the results, the bold values are minimum
reconstruction errors with different cluster numbers for each
measure. 6 out of 8 cases show that c = 2 is the optimal
number of clusters.

Table III: Reconstruction error with varying c using trans-
fusion data set.

c=2 3 4 5 6 7 8 9
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.3 16.9 30.3

MPC 17.0 44.8 24.6 60.4 93.3 12.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5

Due to the stochastic nature of our proposed algorithm,
we tested the proposed algorithm on 30 runs and calculated
the average optimal number of clusters as listed in Table
IV. The values in parenthesis are the standard deviation.
The results show that the proposed algorithm can obtain an
optimal cluster number except for the Breast data set which
returns c = 3 using the MPC index.

Table IV: Eight different indices using the proposed algo-
rithm.

Haberman Breast Jain Thyroid Iris
SE 2.17 2.27 2.37 2.20 3.20

(0.44) (0.56) (0.60) (0.54) (1.15)
PC 2.30 2.40 2.30 2.53 3.50

(0.76) (0.89) (0.86) (0.95) (1.57)
PE 2.33 2.43 2.40 2.50 3.83

(0.51) (0.57) (0.55) (0.61) ((1.72)
MPC 2.43 3.61 2.73 2.97 3.33

(0.89) (1.13) (1.18) (1.31)) (1.55)
FS 2.23 2.30 2.23 2.47 3.23

(0.46) (0.49) (0.46) (0.59) (1.20)
XB 2.40 2.47 2.33 2.57 3.47

(0.55) (0.59) (0.51) (0.66) (1.40)
PCAES 2.47 2.53 2.27 2.70 3.43

(0.59) (0.64) (0.48) (0.76) (1.37)
Wint 2.33 2.47 2.30 2.40 3.33

(0.51) (0.59) (0.49) (0.55) (1.28)
True Class labels 2 2 2 2 3

VI. CONCLUSION

In this study, we proposed an algorithm based on PSO
and FCM in order to overcome the drawbacks of traditional
partition clustering. The proposed algorithm uses a threshold
vector to control the number of clusters and solves the
clustering problem via an iterative fuzzy partition process.
We generated a synthetic dataset and used 6 datasets from
the UCI repository. The results show that the proposed
algorithm can automatically find the optimal number of
clusters.
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Figure 2: Kmeans using 9 different validity indices

However, due to the slow convergence and the stochastic
nature of the PSO algorithm, the prediction results of a single
run fluctuates and is thus hard to make predictions. Unlike
K-means and FCM, the proposed algorithm need to be tested
repeatedly in order to find the optimal solution. In addition,
the maximum number of clusters is predefined, and the
recursive increase of the number of clusters is computational
expensive.

As for future work, it would be interesting to improve
the proposed algorithm to achieve more stable predictions
with fewer runs. Moreover, we are planning to explore
the proposed algorithm with big datasets, and therefore
parallelization techniques are necessary.

REFERENCES

[1] H. A. Edelstein. “Introduction to data mining and knowledge
discovery (3rd ed).” Potomac, MD: Two Crows Corp. 1999.

[2] B. Mirkin, “Clustering: A Data Recovery Approach,” Second
Edition (Chapman & Hall/CRC Computer Science & Data
Analysis).

[3] R. B. Cattell, “The description of personality: Basic traits
resolved into clusters,” Journal of Abnormal and Social Psy-
chology, 38, 476-506,1943.

[4] S. Theodoridis, and K. Koutroubas, “Pattern Recognition,”
Academic Press, 1999.

[5] T. N. Pappas, “An adaptive clustering algorithm for image
segmentation,” IEEE Trans. Signal process, vol. 40, pp.901-
914, 1992

[6] A. Likas, N. Vlassis, and J. Verbeek, “The global k-means
clustering algorithm (Technical Report),” Computer Science
Institute, University of Amsterdam, The Netherlands. ISA-
UVA-01-02. 2001.

[7] V. P. Guerrero-Bote, et al., “Comparison of neural models for
document clustering,” Int. Journal of Approximate Reasoning,
vol. 34, pp.287-305, 2003.

[8] G. L. Carl, “A fuzzy clustering and fuzzy merging algorithm,
Technical Report,” CS-UNR-101, 1999.

[9] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp.
338-353, 1965.

[10] R. Babuska, “Fuzzy Modelling for Control,” Kluwer Aca-
demic, USA, 1998.

[11] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective
Function Algorithms”. ISBN 0-306-40671-3, 1981.

[12] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process
and Its Use in Detecting Compact Well-Separated Clusters,”
Journal of Cybernetics 3: 32-57, 1973.

[13] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clus-
tering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 11(7), pp 773-781, 1989.



2 3 4 5 6 7 8 9 10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of clusters (k)

Rand index

2 3 4 5 6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of clusters (k)

Mirkin index

2 3 4 5 6 7 8 9 10

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Number of clusters (k)

Hubert index

2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters (k)

Silhouette index

2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
15

Number of clusters (k)

Davies−Bouldin index

2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

600

Number of clusters (k)

Calinski−Harabasz index

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Number of clusters (k)

Krzanowski−Lai index

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

Number of clusters (k)

Hartigan index

2 3 4 5 6 7 8 9 10

9

9.5

10

10.5

11

11.5

12

12.5

Number of clusters (k)

Homogeneity−Separation index

Figure 3: FCM using 9 different validity indices

[14] J. C. Bezdek, C. Coray, R. Gunderson and J. Watson, “Detec-
tion and characterization of cluster substructure i. linear struc-
ture: Fuzzy c-lines.” SIAM Journal on Applied Mathematics,
40(2), 339-357.

[15] J. Yu, and M. S Yang. “A generalized fuzzy clustering reg-
ularization model with optimality tests and model complexity
analysis.“ Fuzzy Systems, IEEE Transactions on 15.5 (2007):
904-915.

[16] T. A. Runkler, and C. Katz. “Fuzzy clustering by particle
swarm optimization.” Fuzzy Systems, 2006 IEEE International
Conference on. IEEE, 2006.

[17] H. C. Liu, J. M. Yih, D. B Wu, S. W. Liu. “Fuzzy C-mean
clustering algorithms based on Picard iteration and particle
swarm optimization.“ Education Technology and Training,
2008. and 2008 International Workshop on Geoscience and
Remote Sensing. ETT and GRS 2008. International Workshop
on. Vol. 2. IEEE, 2008.

[18] B. J. Zhao. “An ant colony clustering algorithm.” Machine
Learning and Cybernetics, 2007 International Conference on.
Vol. 7. IEEE, 2007.

[19] G. Gan, J. Wu, and Z. Yang. “A genetic fuzzy k-Modes
algorithm for clustering categorical data.“ Expert Systems with
Applications 36.2 (2009): 1615-1620.

[20] F. Yang, T. Sun, and C. Zhang. “An efficient hybrid data
clustering method based on K-harmonic means and Particle
Swarm Optimization.” Expert Systems with Applications 36.6
(2009): 9847-9852.

[21] T. Niknam, B. Amiri. “An efficient hybrid approach based
on PSO, ACO and k-means for cluster analysis.” Applied Soft
Computing, 10(1), 183-197.

[22] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M.
Valdez. “Optimal design of fuzzy classification systems using
PSO with dynamic parameter adaptation through fuzzy logic.”
Expert Systems with Applications 40, no. 8 (2013): 3196-3206.

[23] L. Y. Chuang, C. J. Hsiao, and C. H. Yang. “Chaotic particle
swarm optimization for data clustering.” Expert systems with
Applications 38.12 (2011): 14555-14563.

[24] H. Izakian, and A. Abraham. “Fuzzy C-means and fuzzy
swarm for fuzzy clustering problem.” Expert Systems with
Applications 38.3 (2011): 1835-1838.

[25] S. Das, A. Abraham, and A. Konar, “Automatic kernel cluster-
ing with a multi-elitist particle swarm optimization algorithm.”
Pattern Recognition Letters, 29(5), 688-699, 2008.

[26] R. C. Eberhart and J. Kennedy, A New Optimizer using
Particle Swarm Theory, In Proc. 6th Symp. Micro Machine
and Human Science, Nagoya, Japan 1995, 29-43.

[27] J. C. Bezdek. “Cluster validity with fuzzy sets.” (1973): 58-73

[28] R. N. Dave, “Validating fuzzy partitions obtained through c-
shells clustering.” Pattern Recognition Letters, 17(6), 613-623,
1996.



2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of clusters (k)

Rand index

2 3 4 5 6 7 8 9 10

0.5

0.55

0.6

0.65

0.7

0.75

Number of clusters (k)

Mirkin index

2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of clusters (k)

Hubert index

2 3 4 5 6 7 8 9 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of clusters (k)

Silhouette index

2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
14

Number of clusters (k)

Davies−Bouldin index

2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

Number of clusters (k)

Calinski−Harabasz index

2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

Number of clusters (k)

Krzanowski−Lai index

1 2 3 4 5 6 7 8 9
−400

−200

0

200

400

600

800

1000

Number of clusters (k)

Hartigan index

2 3 4 5 6 7 8 9 10

9

9.5

10

10.5

11

11.5

12

12.5

Number of clusters (k)

Homogeneity−Separation index

Figure 4: FPSO using 9 different validity indices

[29] Y. Fukuyama and M. Sugeno, ”A new method of choosing the
number of clusters for the fuzzy c-means method.” Proceeding
of fifth fuzzy Syst. Sympo., pp.247-250, 1989.

[30] X. L. Xie, and G. Beni, “A validity measure for fuzzy
clustering. Pattern Analysis and Machine Intelligence,” IEEE
Transactions on, 13(8), 841-847, 1991.

[31] N. R. Pal, and J. C. Bezdek, “On cluster validity for the fuzzy
c-means model.” Fuzzy Systems, IEEE Transactions on, 3(3),
370-379, 1995.

[32] K. L. Wu, and M. S. Yang, “A cluster validity index for
fuzzy clustering.” Pattern Recognition Letters, 26(9), 1275-
1291, 2005.

[33] A. Strehl, “Relationship-based clustering and cluster ensem-
bles for high-dimensional data mining,” 2002.

[34] W. Pedrycz and J. V. de Oliveira, “A development of fuzzy
encoding and decoding through fuzzy clustering,” IEEE Trans.
Instrum. Meas., vol. 57, no. 4, pp. 829837, Apr. 2008.

[35] A. Frank & A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of Cali-
fornia, School of Information and Computer Science, 2010.

[36] W. M. Rand, “Objective criteria for the evaluation of cluster-
ing methods”. Journal of the American Statistical Association
(American Statistical Association) 66 (336): 846850, 1971

[37] B. Mirkin, “Mathematical classification and clustering: From
how to what and why (pp. 172-181).” Springer Berlin Heidel-
berg, 1998.

[38] L. J. Hubert, and J. R. Levin, “A general statistical framework
for assessing categorical clustering in free recall,” Psycholog-
ical Bulletin, 83(6), 1072, 1976.

[39] P. J. Rousseeuw, “Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis,” Journal of
computational and applied mathematics, 20, 53-65, 1987.

[40] D. L. Davies and D. W. Bouldin, “A cluster separation
measure. Pattern Analysis and Machine Intelligence,” IEEE
Transactions on, (2), 224-227, 1979.

[41] R. B. Calinski and J. Harabasz, “A Dendrite Method for
Cluster Analysis,”Comm. in Statistics, vol. 3, pp. 1-27, 1974.

[42] R. J. Bolton, and W. J. Krzanowski, “Projection pursuit clus-
tering for exploratory data analysis.” Journal of Computational
and Graphical Statistics, 12(1), 2003.

[43] J. A. Hartigan, and M. A. Wong, “Algorithm AS 136: A k-
means clustering algorithm.” Journal of the Royal Statistical
Society. Series C (Applied Statistics), 28(1), 100-108, 1979.

[44] G. Chen, S. A. Jaradat, N. Banerjee, T. S. Tanaka, M.
S. Ko, and M. Q. Zhang, “Evaluation and comparison of
clustering algorithms in analyzing ES cell gene expression
data.” Statistica Sinica, 12(1), 241-262, 2002.


