
 
 

 

  

Abstract—Automatic discovery of services is a crucial task 
for the e-Science and e-Business communities. Finding a 
suitable way to address this issue has become one of the key 
points to convert the Web into a distributed source of 
computation, as it enables the location of distributed services to 
perform a required functionality. To provide such an 
automatic location, the discovery process should be based on 
the semantic match between a declarative description of the 
service being sought and a description being offered. This 
problem requires not only an algorithm to match these 
descriptions, but also a language to declaratively express the 
capabilities of services. The proposed matchmaking approach 
is based on semantic descriptions for service attributes, 
descriptions and metadata. For the ranking of service matches 
a match score is calculated whereby the weight values are 
either given by the user or estimated using a fuzzy approach. 
An evaluation of both weight assignment approaches is 
conducted identifying in which scenario one works better than 
the other. 

I. INTRODUCTION 
ecently, more and more organizations are implementing 
IT systems across different departments. The challenge 
is to find a solution that is extensible, flexible and fits 

well with the existing legacy systems. Replacing legacy 
systems to cope with the new architecture is not only costly 
but also introduces a risk to fail. In this context, the 
traditional software architectures prove ineffective in 
providing the right level of cost effective and extensible 
information systems across the organization boundaries. 
Service Oriented Architecture (SOA) [1] provides a 
relatively cheap and more cost-effective solution addressing 
these problems and challenges. 

Dynamic discovery is an important component of SOA. 
At a high level, SOA is composed of three core components: 
service providers, service consumers and the directory 
service. The directory service is an intermediary between 
providers and consumers. Providers register with the 
directory service and consumers query the directory service 
to find service providers. Most directory services typically 
organize services based on criteria and categorize them. 
Consumers can then use the directory services' search 
capabilities to find providers. Embedding a directory service 
within SOA accomplishes the following, scalability of 
services, decoupling consumers from providers, allowing 
updates of services, providing a look-up service for 
consumers and allowing consumers to choose between 
providers at runtime rather than hard-coding a single 
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provider. 
Although the concepts behind SOA were established long 

before web services came along, web services play a major 
role in SOA. This is because web services are built on top of 
well-known and platform-independent protocols (HTTP 
(Hypertext Transfer Protocol) [2], XML (Extensible Markup 
Language) [3], UDDI (Universal Description, Discovery 
and Integration) [4], WSDL (Web Service Description 
Language) [5] and SOAP (Simple Object Access Protocol) 
[6]). It is the combination of these protocols that make web 
services so attractive. Moreover, it is these protocols that 
fulfil the key requirements of a SOA. That is, a SOA 
requires that a service be dynamically discoverable and 
invokeable. This requirement is fulfilled by UDDI, WSDL 
and SOAP. 

However, SOA in its current form only performs service 
discovery based on particular keyword queries from the 
user. This, in majority of the cases leads to low recall and 
low precision of the retrieved services. One reason might be 
that the query keywords are semantically similar but 
syntactically different from the terms in service descriptions. 
A second reason is that the query keywords might be 
syntactically equivalent but semantically different from the 
terms in the service description. Another problem with 
keyword-based service discovery approaches is that they 
cannot completely capture the semantics of a user’s query 
because they do not consider the relations between the 
keywords. One possible solution for this problem is to use 
ontology-based retrieval. 

A lot of related work on semantic service matching has 
been done [7,8,9,10,11] however, this approach takes not 
only semantic service descriptions into account but also 
context information. Ontologies are used for classification of 
the services based on their properties. This enables retrieval 
based on service types rather than keywords. This approach 
also uses context information to discover services using 
context and service descriptions defined in ontologies. 

In order to derive a match score representing the quality 
of the match, weights for each component need to be 
assigned. The assignment of weights has mainly been done 
in a static manner, which means that once weights are 
assigned they remain unchanged during the lifetime of a 
system. In the area of information retrieval the weights are 
assigned to keywords in order to calculate the match score 
[12,13,14]. There are some approaches where the 
assignment is done in a dynamic manner. One approach 
suggests a dynamic and self-learning weight assignment 
technique for indexed index terms (or keywords). The term 
self-learning means that change occurs in the weights of 
index terms and the weights are updated by the change 
which is caused by usage of the system [15]. Another 
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method of dynamic weight assignment is done in classifier 
systems. A weighted k-NN rule for classifying new patterns 
was first proposed by Dudani [16]. The votes of the k 
nearest neighbors are weighted by a function of their 
distance to the test pattern. However, none of the methods 
seem to be appropriate in the area of service matching and 
therefore the usage of a fuzzy approach was explored. 

Fuzzy logic has been introduced in the area of Web 
services for the discovery or matching of services by 
Straccia [17] for Description Logics (DL). They have 
introduced a fuzzy version of SHOIN(D) by defining fuzzy 
sets and fuzzy modifiers for DL. Agarwal et al. [18] have 
modelled fuzzy rules with DL. Kuester et al. [19] are 
proposing a framework for automated service discovery, 
composition, binding and invocation on the web using fuzzy 
sets to capture user’s preferences. This paper uses fuzzy 
logic for the match score calculation and uses OWL service 
descriptions. 

The structure of this paper is as follows. The next section 
describes in detail the matching architecture and 
implementation including the matching algorithm, match 
score calculation with weight values and the fuzzy weight 
assignment. Section 3 and 4 summarizes the implementation 
details and describes the evaluation of both approaches 
respectively. In Section 5, a summary of the findings and 
directions for future work are described. 

II. SEMANTIC MATCHMAKER 
The architecture of the semantic matchmaker is shown in 

Fig. 1 comprises of clients, matchmaker, context and service 
ontologies, registries and web servers which host the web 
services. 

 

 
Fig 1.  Matching architecture 
 

The components are now explained in more detail. Clients 
provide an interface for the users to describe their service 
requests. The interface also lists the matches and provides a 
facility to call the web services retrieved. Registries contain 
the service information storing all service data. Service 
descriptions are in the form of service name, service 
attributes (inputs and outputs), service description and 
metadata information. Web Servers host the web services. 
Matchmaker consists of the matching module including the 

matching algorithm and a reasoner for the ontology 
matching part. The matching algorithm is explained in 
further detail in the following section. Ontologies (context 
and services) describe the domain knowledge such as book 
shop services and provide a shared understanding of the 
concepts used to describe services. Contextual information 
is crucial to ensure a high quality service discovery process 
[20]. 

The sequence diagram in Fig. 2 shows the interactions of 
a service request. The user contacts the matchmaker where 
the matching algorithm is stored (1). The matchmaker 
contacts the context ontology (2 and 3) and reasons 
depending on a set of rules defined. The same is done for the 
services ontology (4 and 5). Having additional match values 
the registry is then queried (6) to retrieve service 
descriptions which match the request and returns the service 
details to the user via the matchmaker (7). The parameters 
stored in the registry are service name, service attributes, 
service description, metadata information and contact 
details. Having the URL of the service the user can then call 
the web service (8) and interact (9) with it. 
 

 
Fig. 2.  Interaction diagram 
 

Three steps are necessary to perform the request. First the 
service request is matched semantically within the context 
specified which provides further attributes for the service 
matching where services are matched semantically within 
their service domain and finally a lookup with the registry is 
done to return the matched service details. 

B. Matching Algorithm 
The main component of the context-aware ontology 

selection framework is the matching algorithm (Fig. 3). 
The algorithm reads the service request parameters from 

the GUI first. Then a connection to the registry is made in 
order to search and read the service parameters. In the “for 
loop” considering all services stored in the registry, first the 
service name of the service is compared with the service 
name of the request. If they are “equal” (assuming that the 
user knows the name of the service) the match score is set to 
1 and no further steps are necessary. If “not” then the 
following steps need to be performed. The context and 
service ontology parameters are read, then the registry is 
queried using the service request and ontology parameters. 
If matches are found, then the match values are calculated 
for all three categories (service attributes, service description 



 
 

 

and service metadata). Afterwards the overall match score 
for a particular service is calculated and the service details 
are retrieved which are then stored and returned. 
 
SNR,SAR,SDR,SMR: Service name, attributes, descriptions, 
metadata from request 
SN,SA,SD,SM: Service name, attributes, descriptions, 
metadata from registry 
MA,MD,MM,MO: Match score attributes, descriptions, 
metadata and overall 
MDT: Match details of service 
 
SNR, SAR, SDR, SMR ← read_service_request_from_GUI() 
SN, SA, SD, SM ← load_service_descriptions() 
 
for all service_descriptions_in_registry do 
 if SNR equals SN 
  MO = 1 
 else 
  check_SAR_with_SA() 
  MA ← calculate_match_value() 
  check_SDR_with_SD() 
  MD ← calculate_match_value() 
  check_SMR_with_SM() 
  MM ← calculate_match_value() 
  MO ← calculate_match_score() 
 end if 
 MDT ← store_service_match_details() 
end for 

Fig. 3.  Matching algorithm 

C. Match Score 
The overall consideration within the matchmaking 

approach for the calculation of the match score is to get a 
match score returned which should range between 0 and 1, 
where 0 represents a “mismatch”, 1 represents a “precise 
match” and a value in-between represents a “partial match”. 
The overall match score consists of the match score for 
service attributes, service description and service metadata 
respectively: 
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MM  are the overall, attribute, description and metadata 
match scores respectively. 

Looking at the service attributes first, it is necessary to 
determine the ratio of the number of service attributes given 
in the query in relation to the number given by the actual 
service. To make sure that this ratio does not exceed 1, a 
normalization is performed with the inverse of the sum of 
both values. This is multiplied by the sum of the number of 
service attributes matches divided by the number of actual 
service attributes shown below. Similar equations were 
derived for service descriptions and service metadata 
respectively. The importance of service attributes, 
description and metadata in relation to each other is reflected 
in the weight values. 
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whereby Aw , Dw  and Mw  are the weights for attributes, 

description and metadata respectively; AQn , ASn  and MAn  

are the number of query attributes, service attributes and 
service attribute matches respectively; DQn , DSn  and MDn  

are the number of query descriptions, service descriptions 
and service description matches respectively; MQn , MSn  

and MMn  are the number of query metadata, service 
metadata and service metadata matches respectively. 
1) Match Score with User Weight Assignment (UWA) 

The user defines the weight values for service attributes, 
descriptions and metadata respectively, based upon their 
confidence in the “search words” used. 
2) Match Score with Fuzzy Weight Assignment (FWA) 

Fuzzy weight assignment allows for uncertainty to be 
captured and represented, and helps the automation of the 
matching process. 

Fuzzy logic is derived from fuzzy set theory [21,22,23,24] 
dealing with reasoning that is approximate rather than 
precisely deduced from classical predicate logic. It can be 
thought of as the application side of fuzzy set theory dealing 
with well thought out real world expert values for a complex 
problem. [25]. Fuzzy logic allows for set membership values 
between and including 0 and 1, and in its linguistic form, 
imprecise concepts like "slightly", "quite" and "very". 
Specifically, it allows partial membership in a set. 

A fuzzy set A in a universe of discourse U  is 
characterized by a membership function ]1,0[: →UAμ  
which associates a number )(xAμ  in the interval ]1,0[  with 
each element x  of U . This number represents the grade of 
membership of x  in the fuzzy set A  (with 0 meaning that x 
is definitely not a member of the set and 1 meaning that it 
definitely is a member of the set). 

This idea of using approximate descriptions of weight 
values rather than precise description is used in this 
approach. First, we have to define a membership function 
each for Aw , Dw  and Mw . The fuzzy subset of the 
membership function for service attributes can be denoted as 
such )}(,{( xxA Aμ=  ]1,0[:)(, →∈ XxXx Aμ . The fuzzy 
subset A of the finite reference super set X can be expressed 
as )}(,{)},...,(,{)},(,{ 2211 nAnAA xxxxxxA μμμ= ; or 

}/)({},...,/)({},/)({ 2211 nnAAA xxxxxxA μμμ=  where the 
separating symbol / is used to associate the membership 
value with its coordinate on the horizontal axis. The 
membership function must be determined first. A number of 
methods learned from knowledge acquisition can be applied 
here. Most practical approaches for forming fuzzy sets rely 
on the knowledge of a single expert. The expert is asked for 
his or her opinion whether various elements belong to a 
given set. Another useful approach is to acquire knowledge 
from multiple experts. A new technique to form fuzzy sets 
was recently introduced which is based on artificial neural 
networks, which learn available system operation data and 
then derive the fuzzy sets automatically. 

Fig. 4 shows the membership functions for service 
attributes, description and metadata respectively. The 
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Fig. 4.  Membership function of the fuzzy sets for service attributes, descriptions, metadata and match score 
 

 
comparison of the three membership functions shows that 

it is assumed that service attributes are defined in more 
detail and therefore there is less overlapping of the three 
fuzzy sets weak, medium and strong. However, for service 
description and also metadata the overlap is significantly 
wider allowing the user a larger “grey area” where the 
weight values are defined accordingly. In order to do the 
mapping from a given input to an output using the theory of 
fuzzy sets, a fuzzy inference must be used. There are two 
fuzzy inference techniques – Mamdani [26] and Sugeno 
[27]. The Mamdani method is widely accepted for capturing 
expert knowledge. It allows to describe the expertise more 
intuitively. However, Mamdani-type inference entails a 
substantial computational burden. On the other hand, the 
Sugeno method is computationally effective and works well 
with optimization and adaptive techniques, which makes it 
very attractive for control problems. For this investigation, 
the Mandami inference was chosen because of the fact that it 
better captures expert knowledge. In 1975, Mandami built 
one of the first fuzzy systems to control a steam engine and 
boiler combination by applying a set of fuzzy rules supplied 
by experienced human operators. The Mamdani-style 
inference process is performed in four steps which are 
fuzzification of the input variables, rule evaluation, 
aggregation of the rule outputs and finally defuzzification. 

To give an example, four fuzzy rules for service attributes 
(A), description (D), metadata (M) and match score (MS) 
are defined as: 

• R1: IF A=low AND D=low AND M=low  
THEN MS=poor 

• R2: IF A=medium AND D=low AND M=medium 
THEN MS=average 

• R3: IF A=medium AND D=medium AND 
M=medium  
THEN MS=good 

• R4: IF A=high AND D=high AND M=high  
THEN MS=great 

Let us assume a user’s query results in the match values 
AM =0.4, DM =0.5 and MM =0.7; with the weight values 

Aw = Dw = Mw =1. 
1. Fuzzification:  
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2. Rule Evaluation:  
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3. Aggregation  

 
4. Defuzzification using the centroid technique: 
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The evaluated match score is 0.614 for the given example. 

III. IMPLEMENTATION 
Fig. 5 shows the prototype implementation which is 

centred around the context and services ontologies that 
structure knowledge about the domain for the purposes of 
presentation and searching of services. The matchmaking 
engine performs the semantic match of the requested service 
with the provided services. This allows close and flexible 
matches of the matchmaking process. This prototype is 
based on Web services technology standards. The user 
interface is developed with Java Server Pages (JSPs). The 
communication from the JSPs with the underlying process is 
done with JavaBeans. The implementation of the Web 
services was done in Java using WSDL, XML and SOAP. 
The UDDI registry is used for the final selection stage which 
is the registry selection. The actual service is matched with 
the service request depending on the ontologies loaded. 

The heart of the portal implementation is the semantic 
matchmaking. The OWL parser parses the context and 
services ontologies. With a defined set of rules the inference 
engine reasons about the ontologies and with the matched 
results a lookup in the UDDI registry is performed. The 
services get then displayed in the user portal, where the user 
can select the appropriate service from the list. 

For the context and services ontologies OWL was chosen 
as it provides a representative notion of semantics for 
describing the context and services. OWL allows 
subsumption reasoning on concept taxonomies. 
Furthermore, OWL permits the definition of relations 
between concepts. For the inference engine rules were 
defined using the JESS (Java Expert Systems Shell) 
language [28]. The JESS API (Application Programming 
Interface) is intended to facilitate interpretation of 
information of OWL files, and it allows users to query on 
that information. It leverages the existing RDF API to read 

in the OWL file as a collection of RDF triples. 

 
Fig. 5.  Prototype Implementation. 

 
JESS was chosen as a rule-based language for the 

prototype as it provides the functionality for defining rules 
and queries in order to reason about the ontologies specified. 
JESS is an expert system shell and scripting language 
written entirely in the Java language. JESS supports the 
development of rule-based expert systems which can be 
tightly coupled to code written in the portable Java 
language. JESS is a forward chaining production system that 
uses the Rete algorithm [29]. The Rete algorithm is intended 
to improve the speed of forward-chained rule systems by 
limiting the effort required to recompute the conflict set after 
a rule is fired. Its drawback is that it has high memory space 
requirements. In the prototype implementation, queries 
depending on the specified ontology and service definition 
structure are specified. These get called whenever a search 
request is performed by the user. The search request is given 
by search parameters the user specifies. If datatypes, in JESS 
syntax PropertyValue, of a defined class should be 
found then the defquery in Fig. 6 is invoked. 

 
 (defquery query-for-class-of-a-given-property 
 "Find the class to a given property." 
  (declare (variables ?class)) 
  (triple 
   (predicate "http://www.w3.org/2000/01/rdf-schema  
                  #domain") 
   (subject ?class) 
   (object ?x) 
  ) 
 ) 

Fig. 6.  JESS Rule. 
 
With such queries, reasoning about classes of the 

ontology is achieved with the matching modules and works 
as follows. The context ontology is parsed by a OWL parser. 
The attributes and classes of OWL describe the concept of 
the ontology. The service request is being matched 
semantically by parsing the context and services ontology 
and the application of the rules defined. The OWL code 
facilitates effective parsing of service capabilities through its 



 
 

 

use of generic RDF(S) symbols compared with OWL 
specific symbols. With a defined set of rules an inference 
engine reasons about the value parameters parsed from the 
ontology. Other rules implemented include sub-classing, 
datatype, object and functional properties. 

The FuzzyJ toolkit [30], which is based on JESS, was 
used for the fuzzy weight assignment. The membership 
functions for attributes, descriptions, metadata and match 
score are implemented together with the rules stated in 
Section IIIc. 

IV. EVALUATION 
For further implementation details of the application 

prototype the reader is referred to [31], where an application 
scenario was chosen to demonstrate the usability of the 
semantic matching. It is assumed that many e-shopping web 
services are available on the Web. These can be any kind of 
services e.g. Amazon, eBay, etc., wrapped as web services 
offering different goods. 

The evaluation is done by calculating precision and recall 
rates. Consider a set of relevant services ( R ) within a set of 
advertised services ( A ). Ra  is the number of services in 
the intersection of the sets R  and A . Precision is the 
fraction of advertised services which are relevant i.e., 

ARaPRECISION /= . The highest number is returned 
when only relevant services are retrieved. Recall is the 
fraction of relevant services which have been retrieved i.e., 

RRaRECALL /= . The highest number is returned when 
all relevant services are retrieved. 
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At the beginning of the evaluation, 10 services were 

searched for by 10 users using the prototype system which 
allows the semantic match with either user weight 
assignment (UWA) or fuzzy weight assignment (FWA). 
After evaluating the precision and recall values no 
difference was found as the average precision value for 
UWA was 63.0% and for FWA was 69.6%, and the recall 
values were similar with 69.2% and 57.3% respectively. A 
closer look at the data revealed, as expected, that there was a 
difference between the users (3 of them) who were confident 
in their search and the users (7 of them) who were not. It 

was seen that the users confident in their search achieved a 
higher match score using UWA, and the users not confident 
in their search scored higher using FWA. 

10 more users were asked to search for the services, 
looking for users where 6 of them were confident in their 
search and 4 were not. This resulted in an overall of 9 users 
being confident in their search and 11 users not being 
confident. The results, as shown in Fig. 7, confirmed the 
tendency that the FWA match achieved higher precision 
values than the UWA match for the users who were not 
confident in their search. In return, the UWA match 
achieved higher precision values than the FWA match for 
the users who were confident in their search as evident from 
the values given in Table 1. 

 
TABLE I 

AVERAGE VALUES OF PRECISION AND RECALL FOR UWA AND FWA 
MATCH 

 Precision 
UWA (%) 

Precision 
FWA (%) 

Recall 
UWA 
(%) 

Recall 
FWA 
(%) 

not 
confident 58.4 80.6 78.9 50.8 
 
confident 79.7 53.9 50.8 73.8 
 
average 69.1 67.3 64.9 62.3 
 
The average precision rate for UWA was 69.1% and for 

FWA it was 67.3%, and the recall rate for UWA was 64.9% 
and for FWA it was 62.3%. Furthermore, Fig. 7 shows the 
relationship between precision and recall rate. Whenever the 
precision rate for either FWA or UWA is increasing, the 
recall rate is decreasing and vice versa. This is a logical 
consequence of precision and recall rates, as increasing the 
precision always results in a decrease of recall. 

This evaluation shows that the fuzzy weight assignment 
works better for the users who do not know exactly what the 
correct search words are. However, the fuzzy sets were also 
customized, so more measurements with more users are 
necessary for further investigation. 

V. CONCLUSION 
The contextual information enhances the expressiveness 

of the matching process, i.e. by adding semantic information 
to services, and also serves as an implicit input to a service 
that is not explicitly provided by the user. The introduction 
of match scores serves as a selection criterion for the user to 
choose the best match. Two different approaches to calculate 
the match score were shown whereby one used precise 
weight values assigned to service attributes, description and 
metadata, and the second approach showed the usage of 
fuzzy descriptions for the weight values. The first approach 
is semi-automatic as the user needs to provide the weight 
values by entering the query, resulting in a confidence value 
of how good the user thinks the entered query attributes 
were chosen. The second approach with the fuzzy weight 
assignment allows for uncertainty to be captured and 



 
 

 

represented. The benefit of the second approach is that user 
intervention is not necessary anymore which helps the 
automation of the matching process. 

The evaluation showed that users confident in their 
search, meaning that they are confident in the search words 
they type in, had higher match scores using the user weight 
assignment. On the other side, the users who were not 
confident in their search achieved higher match scores using 
the user fuzzy assignment approach where they choose the 
weights for service attributes, description and metadata 
respectively. However, the prototype was customized for the 
application domain of e-shopping. Therefore, the question to 
be answered is how good does the customized application 
area reflect the overall nature of distributed services on the 
whole and also different ontology domains. Another 
investigation to be conducted is to compare how predefined 
and hard coded weight values would influence the precision 
and recall values. Furthermore, the fuzzy membership 
functions were customized and further research is necessary 
into how these can be efficiently defined to serve a broader 
range of application areas. 

In addition, due to the computational burden of the 
Mamdani inference, the Sugeno inference might work better 
in this area where quick response times are important. 
However, the advantage of capturing expert knowledge 
might be compromised. This also needs to be explored 
further. 
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