

Abstract—Automatic discovery of services is a crucial task
for the e-Science and e-Business communities. Finding a
suitable way to address this issue has become one of the key
points to convert the Web into a distributed source of
computation, as it enables the location of distributed services to
perform a required functionality. To provide such an
automatic location, the discovery process should be based on
the semantic match between a declarative description of the
service being sought and a description being offered. This
problem requires not only an algorithm to match these
descriptions, but also a language to declaratively express the
capabilities of services. The proposed matchmaking approach
is based on semantic descriptions for service attributes,
descriptions and metadata. For the ranking of service matches
a match score is calculated whereby the weight values are
either given by the user or estimated using a fuzzy approach.
An evaluation of both weight assignment approaches is
conducted identifying in which scenario one works better than
the other.

I. INTRODUCTION
ecently, more and more organizations are implementing
IT systems across different departments. The challenge
is to find a solution that is extensible, flexible and fits

well with the existing legacy systems. Replacing legacy
systems to cope with the new architecture is not only costly
but also introduces a risk to fail. In this context, the
traditional software architectures prove ineffective in
providing the right level of cost effective and extensible
information systems across the organization boundaries.
Service Oriented Architecture (SOA) [1] provides a
relatively cheap and more cost-effective solution addressing
these problems and challenges.

Dynamic discovery is an important component of SOA.
At a high level, SOA is composed of three core components:
service providers, service consumers and the directory
service. The directory service is an intermediary between
providers and consumers. Providers register with the
directory service and consumers query the directory service
to find service providers. Most directory services typically
organize services based on criteria and categorize them.
Consumers can then use the directory services' search
capabilities to find providers. Embedding a directory service
within SOA accomplishes the following, scalability of
services, decoupling consumers from providers, allowing
updates of services, providing a look-up service for
consumers and allowing consumers to choose between
providers at runtime rather than hard-coding a single

S. A. Ludwig is with the Department of Computer Science, University of

Saskatchewan, Saskatoon, SK S7N 5G9 Canada (e-mail:
ludwig@cs.usask.ca).

provider.
Although the concepts behind SOA were established long

before web services came along, web services play a major
role in SOA. This is because web services are built on top of
well-known and platform-independent protocols (HTTP
(Hypertext Transfer Protocol) [2], XML (Extensible Markup
Language) [3], UDDI (Universal Description, Discovery
and Integration) [4], WSDL (Web Service Description
Language) [5] and SOAP (Simple Object Access Protocol)
[6]). It is the combination of these protocols that make web
services so attractive. Moreover, it is these protocols that
fulfil the key requirements of a SOA. That is, a SOA
requires that a service be dynamically discoverable and
invokeable. This requirement is fulfilled by UDDI, WSDL
and SOAP.

However, SOA in its current form only performs service
discovery based on particular keyword queries from the
user. This, in majority of the cases leads to low recall and
low precision of the retrieved services. One reason might be
that the query keywords are semantically similar but
syntactically different from the terms in service descriptions.
A second reason is that the query keywords might be
syntactically equivalent but semantically different from the
terms in the service description. Another problem with
keyword-based service discovery approaches is that they
cannot completely capture the semantics of a user’s query
because they do not consider the relations between the
keywords. One possible solution for this problem is to use
ontology-based retrieval.

A lot of related work on semantic service matching has
been done [7,8,9,10,11] however, this approach takes not
only semantic service descriptions into account but also
context information. Ontologies are used for classification of
the services based on their properties. This enables retrieval
based on service types rather than keywords. This approach
also uses context information to discover services using
context and service descriptions defined in ontologies.

In order to derive a match score representing the quality
of the match, weights for each component need to be
assigned. The assignment of weights has mainly been done
in a static manner, which means that once weights are
assigned they remain unchanged during the lifetime of a
system. In the area of information retrieval the weights are
assigned to keywords in order to calculate the match score
[12,13,14]. There are some approaches where the
assignment is done in a dynamic manner. One approach
suggests a dynamic and self-learning weight assignment
technique for indexed index terms (or keywords). The term
self-learning means that change occurs in the weights of
index terms and the weights are updated by the change
which is caused by usage of the system [15]. Another

Fuzzy Match Score of Semantic Service Match
Simone A. Ludwig

R

method of dynamic weight assignment is done in classifier
systems. A weighted k-NN rule for classifying new patterns
was first proposed by Dudani [16]. The votes of the k
nearest neighbors are weighted by a function of their
distance to the test pattern. However, none of the methods
seem to be appropriate in the area of service matching and
therefore the usage of a fuzzy approach was explored.

Fuzzy logic has been introduced in the area of Web
services for the discovery or matching of services by
Straccia [17] for Description Logics (DL). They have
introduced a fuzzy version of SHOIN(D) by defining fuzzy
sets and fuzzy modifiers for DL. Agarwal et al. [18] have
modelled fuzzy rules with DL. Kuester et al. [19] are
proposing a framework for automated service discovery,
composition, binding and invocation on the web using fuzzy
sets to capture user’s preferences. This paper uses fuzzy
logic for the match score calculation and uses OWL service
descriptions.

The structure of this paper is as follows. The next section
describes in detail the matching architecture and
implementation including the matching algorithm, match
score calculation with weight values and the fuzzy weight
assignment. Section 3 and 4 summarizes the implementation
details and describes the evaluation of both approaches
respectively. In Section 5, a summary of the findings and
directions for future work are described.

II. SEMANTIC MATCHMAKER
The architecture of the semantic matchmaker is shown in

Fig. 1 comprises of clients, matchmaker, context and service
ontologies, registries and web servers which host the web
services.

Fig 1. Matching architecture

The components are now explained in more detail. Clients
provide an interface for the users to describe their service
requests. The interface also lists the matches and provides a
facility to call the web services retrieved. Registries contain
the service information storing all service data. Service
descriptions are in the form of service name, service
attributes (inputs and outputs), service description and
metadata information. Web Servers host the web services.
Matchmaker consists of the matching module including the

matching algorithm and a reasoner for the ontology
matching part. The matching algorithm is explained in
further detail in the following section. Ontologies (context
and services) describe the domain knowledge such as book
shop services and provide a shared understanding of the
concepts used to describe services. Contextual information
is crucial to ensure a high quality service discovery process
[20].

The sequence diagram in Fig. 2 shows the interactions of
a service request. The user contacts the matchmaker where
the matching algorithm is stored (1). The matchmaker
contacts the context ontology (2 and 3) and reasons
depending on a set of rules defined. The same is done for the
services ontology (4 and 5). Having additional match values
the registry is then queried (6) to retrieve service
descriptions which match the request and returns the service
details to the user via the matchmaker (7). The parameters
stored in the registry are service name, service attributes,
service description, metadata information and contact
details. Having the URL of the service the user can then call
the web service (8) and interact (9) with it.

Fig. 2. Interaction diagram

Three steps are necessary to perform the request. First the
service request is matched semantically within the context
specified which provides further attributes for the service
matching where services are matched semantically within
their service domain and finally a lookup with the registry is
done to return the matched service details.

B. Matching Algorithm
The main component of the context-aware ontology

selection framework is the matching algorithm (Fig. 3).
The algorithm reads the service request parameters from

the GUI first. Then a connection to the registry is made in
order to search and read the service parameters. In the “for
loop” considering all services stored in the registry, first the
service name of the service is compared with the service
name of the request. If they are “equal” (assuming that the
user knows the name of the service) the match score is set to
1 and no further steps are necessary. If “not” then the
following steps need to be performed. The context and
service ontology parameters are read, then the registry is
queried using the service request and ontology parameters.
If matches are found, then the match values are calculated
for all three categories (service attributes, service description

and service metadata). Afterwards the overall match score
for a particular service is calculated and the service details
are retrieved which are then stored and returned.

SNR,SAR,SDR,SMR: Service name, attributes, descriptions,
metadata from request
SN,SA,SD,SM: Service name, attributes, descriptions,
metadata from registry
MA,MD,MM,MO: Match score attributes, descriptions,
metadata and overall
MDT: Match details of service

SNR, SAR, SDR, SMR ← read_service_request_from_GUI()
SN, SA, SD, SM ← load_service_descriptions()

for all service_descriptions_in_registry do
 if SNR equals SN
 MO = 1
 else
 check_SAR_with_SA()
 MA ← calculate_match_value()
 check_SDR_with_SD()
 MD ← calculate_match_value()
 check_SMR_with_SM()
 MM ← calculate_match_value()
 MO ← calculate_match_score()
 end if
 MDT ← store_service_match_details()
end for

Fig. 3. Matching algorithm

C. Match Score
The overall consideration within the matchmaking

approach for the calculation of the match score is to get a
match score returned which should range between 0 and 1,
where 0 represents a “mismatch”, 1 represents a “precise
match” and a value in-between represents a “partial match”.
The overall match score consists of the match score for
service attributes, service description and service metadata
respectively:

3
MDA

O
MMMM ++

= , whereby OM , AM , DM ,

MM are the overall, attribute, description and metadata
match scores respectively.

Looking at the service attributes first, it is necessary to
determine the ratio of the number of service attributes given
in the query in relation to the number given by the actual
service. To make sure that this ratio does not exceed 1, a
normalization is performed with the inverse of the sum of
both values. This is multiplied by the sum of the number of
service attributes matches divided by the number of actual
service attributes shown below. Similar equations were
derived for service descriptions and service metadata
respectively. The importance of service attributes,
description and metadata in relation to each other is reflected
in the weight values.

AS

MA

AS

AQ

ASAQ

A
A n

n
n
n

nn
wM ⋅⋅
+

=
)(

DS

MD

DS

DQ

DSDQ

D
D n

n
n
n

nn
wM ⋅⋅
+

=
)(

MS

MM

MS

MQ

MSMQ

M
M n

n
n
n

nn
wM ⋅⋅

+
=

)(

whereby Aw , Dw and Mw are the weights for attributes,

description and metadata respectively; AQn , ASn and MAn

are the number of query attributes, service attributes and
service attribute matches respectively; DQn , DSn and MDn

are the number of query descriptions, service descriptions
and service description matches respectively; MQn , MSn

and MMn are the number of query metadata, service
metadata and service metadata matches respectively.
1) Match Score with User Weight Assignment (UWA)

The user defines the weight values for service attributes,
descriptions and metadata respectively, based upon their
confidence in the “search words” used.
2) Match Score with Fuzzy Weight Assignment (FWA)

Fuzzy weight assignment allows for uncertainty to be
captured and represented, and helps the automation of the
matching process.

Fuzzy logic is derived from fuzzy set theory [21,22,23,24]
dealing with reasoning that is approximate rather than
precisely deduced from classical predicate logic. It can be
thought of as the application side of fuzzy set theory dealing
with well thought out real world expert values for a complex
problem. [25]. Fuzzy logic allows for set membership values
between and including 0 and 1, and in its linguistic form,
imprecise concepts like "slightly", "quite" and "very".
Specifically, it allows partial membership in a set.

A fuzzy set A in a universe of discourse U is
characterized by a membership function]1,0[: →UAμ
which associates a number)(xAμ in the interval]1,0[with
each element x of U . This number represents the grade of
membership of x in the fuzzy set A (with 0 meaning that x
is definitely not a member of the set and 1 meaning that it
definitely is a member of the set).

This idea of using approximate descriptions of weight
values rather than precise description is used in this
approach. First, we have to define a membership function
each for Aw , Dw and Mw . The fuzzy subset of the
membership function for service attributes can be denoted as
such)}(,{(xxA Aμ=]1,0[:)(, →∈ XxXx Aμ . The fuzzy
subset A of the finite reference super set X can be expressed
as)}(,{)},...,(,{)},(,{ 2211 nAnAA xxxxxxA μμμ= ; or

}/)({},...,/)({},/)({ 2211 nnAAA xxxxxxA μμμ= where the
separating symbol / is used to associate the membership
value with its coordinate on the horizontal axis. The
membership function must be determined first. A number of
methods learned from knowledge acquisition can be applied
here. Most practical approaches for forming fuzzy sets rely
on the knowledge of a single expert. The expert is asked for
his or her opinion whether various elements belong to a
given set. Another useful approach is to acquire knowledge
from multiple experts. A new technique to form fuzzy sets
was recently introduced which is based on artificial neural
networks, which learn available system operation data and
then derive the fuzzy sets automatically.

Fig. 4 shows the membership functions for service
attributes, description and metadata respectively. The

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Attributes

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Descriptions

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Metadata

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Match score

D
eg

re
e

of
 m

em
be

rs
hi

p

poor average good great

Fig. 4. Membership function of the fuzzy sets for service attributes, descriptions, metadata and match score

comparison of the three membership functions shows that

it is assumed that service attributes are defined in more
detail and therefore there is less overlapping of the three
fuzzy sets weak, medium and strong. However, for service
description and also metadata the overlap is significantly
wider allowing the user a larger “grey area” where the
weight values are defined accordingly. In order to do the
mapping from a given input to an output using the theory of
fuzzy sets, a fuzzy inference must be used. There are two
fuzzy inference techniques – Mamdani [26] and Sugeno
[27]. The Mamdani method is widely accepted for capturing
expert knowledge. It allows to describe the expertise more
intuitively. However, Mamdani-type inference entails a
substantial computational burden. On the other hand, the
Sugeno method is computationally effective and works well
with optimization and adaptive techniques, which makes it
very attractive for control problems. For this investigation,
the Mandami inference was chosen because of the fact that it
better captures expert knowledge. In 1975, Mandami built
one of the first fuzzy systems to control a steam engine and
boiler combination by applying a set of fuzzy rules supplied
by experienced human operators. The Mamdani-style
inference process is performed in four steps which are
fuzzification of the input variables, rule evaluation,
aggregation of the rule outputs and finally defuzzification.

To give an example, four fuzzy rules for service attributes
(A), description (D), metadata (M) and match score (MS)
are defined as:

• R1: IF A=low AND D=low AND M=low
THEN MS=poor

• R2: IF A=medium AND D=low AND M=medium
THEN MS=average

• R3: IF A=medium AND D=medium AND
M=medium
THEN MS=good

• R4: IF A=high AND D=high AND M=high
THEN MS=great

Let us assume a user’s query results in the match values
AM =0.4, DM =0.5 and MM =0.7; with the weight values

Aw = Dw = Mw =1.
1. Fuzzification:

6.0,8.0

,1,8.0,2.0

)()(

)()()(

==

===

==

===

highmmediumm

mediumdmediumalowa

μμ

μμμ

2. Rule Evaluation:
)](),(),(min[)(xxxx MDAMDA μμμμ =∩∩

R1: 2.0=μ , R2: 8.0=μ ,
R3: 0.1=μ , R4: 6.0=μ

3. Aggregation

4. Defuzzification using the centroid technique:

614.0
)(

)(
==

∫

∫
b

a
A

b

a
A

dxx

xdxx
COG

μ

μ

The evaluated match score is 0.614 for the given example.

III. IMPLEMENTATION
Fig. 5 shows the prototype implementation which is

centred around the context and services ontologies that
structure knowledge about the domain for the purposes of
presentation and searching of services. The matchmaking
engine performs the semantic match of the requested service
with the provided services. This allows close and flexible
matches of the matchmaking process. This prototype is
based on Web services technology standards. The user
interface is developed with Java Server Pages (JSPs). The
communication from the JSPs with the underlying process is
done with JavaBeans. The implementation of the Web
services was done in Java using WSDL, XML and SOAP.
The UDDI registry is used for the final selection stage which
is the registry selection. The actual service is matched with
the service request depending on the ontologies loaded.

The heart of the portal implementation is the semantic
matchmaking. The OWL parser parses the context and
services ontologies. With a defined set of rules the inference
engine reasons about the ontologies and with the matched
results a lookup in the UDDI registry is performed. The
services get then displayed in the user portal, where the user
can select the appropriate service from the list.

For the context and services ontologies OWL was chosen
as it provides a representative notion of semantics for
describing the context and services. OWL allows
subsumption reasoning on concept taxonomies.
Furthermore, OWL permits the definition of relations
between concepts. For the inference engine rules were
defined using the JESS (Java Expert Systems Shell)
language [28]. The JESS API (Application Programming
Interface) is intended to facilitate interpretation of
information of OWL files, and it allows users to query on
that information. It leverages the existing RDF API to read

in the OWL file as a collection of RDF triples.

Fig. 5. Prototype Implementation.

JESS was chosen as a rule-based language for the

prototype as it provides the functionality for defining rules
and queries in order to reason about the ontologies specified.
JESS is an expert system shell and scripting language
written entirely in the Java language. JESS supports the
development of rule-based expert systems which can be
tightly coupled to code written in the portable Java
language. JESS is a forward chaining production system that
uses the Rete algorithm [29]. The Rete algorithm is intended
to improve the speed of forward-chained rule systems by
limiting the effort required to recompute the conflict set after
a rule is fired. Its drawback is that it has high memory space
requirements. In the prototype implementation, queries
depending on the specified ontology and service definition
structure are specified. These get called whenever a search
request is performed by the user. The search request is given
by search parameters the user specifies. If datatypes, in JESS
syntax PropertyValue, of a defined class should be
found then the defquery in Fig. 6 is invoked.

 (defquery query-for-class-of-a-given-property
 "Find the class to a given property."
 (declare (variables ?class))
 (triple
 (predicate "http://www.w3.org/2000/01/rdf-schema
 #domain")
 (subject ?class)
 (object ?x)
)
)

Fig. 6. JESS Rule.

With such queries, reasoning about classes of the

ontology is achieved with the matching modules and works
as follows. The context ontology is parsed by a OWL parser.
The attributes and classes of OWL describe the concept of
the ontology. The service request is being matched
semantically by parsing the context and services ontology
and the application of the rules defined. The OWL code
facilitates effective parsing of service capabilities through its

use of generic RDF(S) symbols compared with OWL
specific symbols. With a defined set of rules an inference
engine reasons about the value parameters parsed from the
ontology. Other rules implemented include sub-classing,
datatype, object and functional properties.

The FuzzyJ toolkit [30], which is based on JESS, was
used for the fuzzy weight assignment. The membership
functions for attributes, descriptions, metadata and match
score are implemented together with the rules stated in
Section IIIc.

IV. EVALUATION
For further implementation details of the application

prototype the reader is referred to [31], where an application
scenario was chosen to demonstrate the usability of the
semantic matching. It is assumed that many e-shopping web
services are available on the Web. These can be any kind of
services e.g. Amazon, eBay, etc., wrapped as web services
offering different goods.

The evaluation is done by calculating precision and recall
rates. Consider a set of relevant services (R) within a set of
advertised services (A). Ra is the number of services in
the intersection of the sets R and A . Precision is the
fraction of advertised services which are relevant i.e.,

ARaPRECISION /= . The highest number is returned
when only relevant services are retrieved. Recall is the
fraction of relevant services which have been retrieved i.e.,

RRaRECALL /= . The highest number is returned when
all relevant services are retrieved.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Requests

Pr
ec

is
io

n
an

d
R

ec
al

l i
n

%

Precision UWA Precision FWA Recall UWA Recall FWA
Fig. 7. Precision and recall for UWA and FWA match

At the beginning of the evaluation, 10 services were

searched for by 10 users using the prototype system which
allows the semantic match with either user weight
assignment (UWA) or fuzzy weight assignment (FWA).
After evaluating the precision and recall values no
difference was found as the average precision value for
UWA was 63.0% and for FWA was 69.6%, and the recall
values were similar with 69.2% and 57.3% respectively. A
closer look at the data revealed, as expected, that there was a
difference between the users (3 of them) who were confident
in their search and the users (7 of them) who were not. It

was seen that the users confident in their search achieved a
higher match score using UWA, and the users not confident
in their search scored higher using FWA.

10 more users were asked to search for the services,
looking for users where 6 of them were confident in their
search and 4 were not. This resulted in an overall of 9 users
being confident in their search and 11 users not being
confident. The results, as shown in Fig. 7, confirmed the
tendency that the FWA match achieved higher precision
values than the UWA match for the users who were not
confident in their search. In return, the UWA match
achieved higher precision values than the FWA match for
the users who were confident in their search as evident from
the values given in Table 1.

TABLE I

AVERAGE VALUES OF PRECISION AND RECALL FOR UWA AND FWA
MATCH

 Precision
UWA (%)

Precision
FWA (%)

Recall
UWA
(%)

Recall
FWA
(%)

not
confident 58.4 80.6 78.9 50.8

confident 79.7 53.9 50.8 73.8

average 69.1 67.3 64.9 62.3

The average precision rate for UWA was 69.1% and for

FWA it was 67.3%, and the recall rate for UWA was 64.9%
and for FWA it was 62.3%. Furthermore, Fig. 7 shows the
relationship between precision and recall rate. Whenever the
precision rate for either FWA or UWA is increasing, the
recall rate is decreasing and vice versa. This is a logical
consequence of precision and recall rates, as increasing the
precision always results in a decrease of recall.

This evaluation shows that the fuzzy weight assignment
works better for the users who do not know exactly what the
correct search words are. However, the fuzzy sets were also
customized, so more measurements with more users are
necessary for further investigation.

V. CONCLUSION
The contextual information enhances the expressiveness

of the matching process, i.e. by adding semantic information
to services, and also serves as an implicit input to a service
that is not explicitly provided by the user. The introduction
of match scores serves as a selection criterion for the user to
choose the best match. Two different approaches to calculate
the match score were shown whereby one used precise
weight values assigned to service attributes, description and
metadata, and the second approach showed the usage of
fuzzy descriptions for the weight values. The first approach
is semi-automatic as the user needs to provide the weight
values by entering the query, resulting in a confidence value
of how good the user thinks the entered query attributes
were chosen. The second approach with the fuzzy weight
assignment allows for uncertainty to be captured and

represented. The benefit of the second approach is that user
intervention is not necessary anymore which helps the
automation of the matching process.

The evaluation showed that users confident in their
search, meaning that they are confident in the search words
they type in, had higher match scores using the user weight
assignment. On the other side, the users who were not
confident in their search achieved higher match scores using
the user fuzzy assignment approach where they choose the
weights for service attributes, description and metadata
respectively. However, the prototype was customized for the
application domain of e-shopping. Therefore, the question to
be answered is how good does the customized application
area reflect the overall nature of distributed services on the
whole and also different ontology domains. Another
investigation to be conducted is to compare how predefined
and hard coded weight values would influence the precision
and recall values. Furthermore, the fuzzy membership
functions were customized and further research is necessary
into how these can be efficiently defined to serve a broader
range of application areas.

In addition, due to the computational burden of the
Mamdani inference, the Sugeno inference might work better
in this area where quick response times are important.
However, the advantage of capturing expert knowledge
might be compromised. This also needs to be explored
further.

REFERENCES
[1] J. McGovern, S. Tyagi, M. Stevens, S. Mathew, “The Java Series

Books - Java Web Services Architecture”, Chapter 2, Service Oriented
Architecture, 2003.

[2] HTTP - Hypertext Transfer Protocol, W3C, 2004.
http://www.w3.org/Protocols/.

[3] Extensible Markup Language (XML), W3C, 2004.
http://www.w3.org/XML/.

[4] UDDI Technical White Paper.
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf.

[5] Web Services Description Language (WSDL) 1.1, W3C, 2004.
http://www.w3.org/TR/wsdl.

[6] SOAP Version 1.2, W3C, 2004.
http://www.w3.org/TR/soap/.

[7] H. Tangmunarunkit, S. Decker, C. Kesselman, “Ontology-based
Resource Matching in the Grid - The Grid meets the Semantic Web”,
Proceedings of the International Semantic Web Conference, Budapest,
Hungary. May 2003.

[8] S. A. Ludwig and S. M. S. Reyhani, “Semantic Approach to Service
Discovery in a Grid Environment”, Journal of Web Semantics, vol. 4,
no. 1, pp. 1-13, 2006.

[9] D. Bell and S. A. Ludwig, “Grid Service Discovery in the Financial
Markets Sector”, Journal of Computing and Information Technology,
vol. 13, no.4, pp. 265-270, 2005.

[10] S. A. Ludwig, O. F. Rana, J. Padget and W. Naylor, “Matchmaking
Framework for Mathematical Web Services”, Journal of Grid
Computing, vol. 4, no. 1, pp. 33-48, 2006.

[11] T. Gagnes, T. Plagemann, E. Munthe-Kaas, “A Conceptual Service
Discovery Architecture for Semantic Web Services in Dynamic
Environments”, Proceedings of the 22nd International Conference on
Data Engineering Workshops, April 2006.

[12] R. Baeza-Yates, B. Ribeiro-Neto, “Modem Information Retrieval”,
Addison-Wesley Publishing Company, 1999.

[13] E. Hagen, “An Information Retrieval System For Performing
Hierarchical Document Clustering”, Thesis, Dartmouth College, 1997.

[14] A. S. Pollitt, “Information Storage and Retrieval Systems”, Ellis
Horwood Ltd., Chichester, UK, 1998.

[15] M. Shoaib, A. Shah, A. Vashishta, “A Dynamic Weight Assignment
Approach for IR Systems”, 1st International Conference on
Information and Communication Technologies (ICICT), August 2005.

[16] R. M. Valdovinos, J. S. Sanchez, R. Barandela, “Dynamic and static
weighting in classifier fusion“, Lecture Notes in Computer Science,
3523: 59-66 2005.

[17] U. Straccia, “A Fuzzy Description Logic for the Semantic Web”, In
Capturing Intelligence: Fuzzy Logic and the Semantic Web, Elie
Sanchez, ed., Elsevier, 2006

[18] S. Agarwal, P. Hitzler, "Modeling Fuzzy Rules with Description
Logics", Proceedings of Workshop on OWL: Experiences and
Directions, Galway, Ireland, November 2005.

[19] U. Kuester, B. Koenig-Ries, M. Klein, M. Stern, "A Matchmaking-
Centered Framework for Automated Service Discovery, Composition,
Binding and Invocation on the Web", International Journal of
Electronic Commerce (IJEC), Special Issue on Semantic Matchmaking
and Retrieval, vol. 12 no. 2, 2007.

[20] T. R. Gruber, “ONTOLINGUA: A Mechanism to Support Portable
Ontologies”, Version 3.0, Technical Report KSL 91-66, Knowledge
Systems Laboratory, Department of Computer Science, Stanford
University, 1992.

[21] L. A. Zadeh, “Fuzzy sets”, Information and Control, 8:338-383, 1965.
[22] E. Cox, “The Fuzzy Systems Handbook”, AP Professional, 1995.
[23] L. H. Tsoukalas and R.E. Uhrig, “Fuzzy and Neural Approaches in

Engineering”, John Wiley & Sons Inc., New York 1996.
[24] B. Kosko. Fuzzy Engineering. Prentice Hall. Upper Saddle River,

New Jersey 1997.
[25] G. J. Klir, U. H. St. Clair, and B. Yuan, “Fuzzy Set Theory:

Foundations and Applications”, Englewood Cliffs: Prentice-Hall,
1997.

[26] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller”, International Journal of Man–Machine
Study (1975), pp. 1–13.

[27] M. Sugeno, “Industrial Applications of Fuzzy Control”, North-
Holland, Amsterdam, 1985.

[28] S. A. Ludwig and S. M. S. Reyhani, “Using Context Information for
the Discovery of Web Services” in “Ontologies: A Handbook of
Principles, Concepts and Applications in Information Systems”,
Springer, vol. 14, pp. 607-634, 2007.

[29] JESS, Java Expert Systems Shell.
http://herzberg.ca.sandia.gov/jess/docs/61/index.html.

[30] FuzzyJ Toolkit Web site.
http://www.iit.nrc.ca/IR_public/fuzzy/fuzzyJToolkit.html.

[31] C.L. Forgy, Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem, Journal of Artificial Intelligence 1982, 19-17-
37.

