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Abstract

This paper introduces a novel hybrid framework for early cervical cancer
risk prediction that integrates domain-informed feature engineering, evolution-
ary optimization, and transformer-based modeling. We propose four key inno-
vations: (1) the derivation of clinically meaningful features based on epidemi-
ological relationships, such as Sexual Activity Duration and STD Diagnosis
Rate; (2) architecture-aware feature selection using Particle Swarm Optimiza-
tion (PSO) tailored for transformer networks; (3) an imbalance-aware train-
ing strategy combining Synthetic Minority Oversampling Technique (SMOTE)
and focal loss to address extreme class skew; and (4) clinically actionable in-
terpretability via Shapley Additive Explanations (SHAP), Local Interpretable
Model-agnostic Explanations (LIME), and attention weights, ensuring trans-
parent and trustworthy decision support. These components are embedded
within a TabTransformer architecture, which utilizes self-attention mecha-
nisms to analyze tabular health records and capture the complex interde-
pendencies among risk factors. A comparative evaluation demonstrates the
superior results of our approach, achieving 95.3% =+ 0.9% accuracy and a
94.8% 4+ 1.1% F1 score on the UCI Cervical Cancer Risk dataset while main-
taining clinical relevance and transparency. Furthermore, its interpretability,
validated through Shapley Additive Explanations (SHAP) and Local Inter-
pretable Model-agnostic Explanations (LIME), confirmed alignment with es-
tablished risk factors, reinforcing its potential clinical relevance.
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1 Introduction

Cervical cancer continues to pose a significant global health burden, accounting for
over 350,000 preventable deaths annually according to World Health Organization
estimates [1]. The critical importance of early detection is underscored by dramatic
improvements in survival rates, which increase from approximately 17% to over 90%
when precancerous lesions are identified promptly [2]. Despite advances in screening
technologies, current diagnostic approaches like Pap smears exhibit concerning false
negative rates between 30-50% [3], while liquid-based cytology methods still miss
20-30% of high-grade lesions [4]. These diagnostic limitations create an urgent need
for more accurate risk prediction systems that can identify at-risk populations earlier
in the disease progression pathway.

The emergence of machine learning in medical diagnostics has shown promise,
yet substantial challenges remain when applying these techniques to tabular clinical
data. Traditional models like logistic regression [5] and decision trees [6] often fail to
capture the complex, non-linear relationships between diverse risk factors, including
sexual behavior patterns, HPV infection status, and immunological markers. Re-
cent comparative analyses further illustrate these limitations across traditional and
ensemble learners. For instance, meenakshisundaram2025ensemble reported that en-
semble methods such as Random Forest and XGBoost, while achieving moderate
accuracy (0.89-0.92), were unable to capture higher-order correlations—such as the
joint effect of smoking duration and HPV infection history—Ileading to unstable
recall for minority (cancer-positive) cases. Likewise, elzein2025cervical found that
logistic regression-based models struggled to represent nonlinear dependencies be-
tween behavioral and clinical attributes, showing a 10-15% reduction in F1 score
when interaction terms were omitted. These findings underscore that conventional
ML frameworks, even with boosting or bagging strategies, remain insufficient to
model multifactorial dependencies characteristic of cervical cancer risk. More ad-
vanced deep learning and ensemble models demonstrate improved performance but
still struggle with higher-order feature interactions that characterize multifactorial
diseases like cervical cancer. Furthermore, these approaches typically operate as
black boxes, providing limited clinical interpretability—a critical barrier for adop-
tion in healthcare settings where explainability directly impacts clinical decision-
making [7].

Artificial intelligence (AI) has recently achieved transformative progress across
multiple scientific and medical domains. For instance, the AlphaFold model devel-
oped by DeepMind has revolutionized molecular biology and drug discovery by pre-
dicting protein structures with near-experimental accuracy [8]. Likewise, the rapid



advancement of large language models (LLMs) has significantly impacted healthcare,
enabling automated clinical reasoning, medical text summarization, and knowledge
extraction [9]. Building on these milestones, the proposed framework leverages Al in
a new context—combining particle swarm optimization with a transformer-based ar-
chitecture to enhance cervical cancer risk prediction from tabular clinical data. This
integration not only improves predictive accuracy but also promotes interpretabil-
ity and trustworthy decision support in clinical applications. Recent innovations in
deep learning architectures offer new possibilities for modeling complex medical data.
The TabTransformer framework [10] represents a particularly promising advancement
through its application of self-attention mechanisms to tabular datasets. By generat-
ing contextual embeddings of categorical features and modeling feature interactions
through transformer blocks, this approach demonstrates strong capability for cap-
turing intricate relationships in electronic health records. However, our preliminary
experiments indicate that a direct, unoptimized application of TabTransformer to
cervical cancer prediction achieves only 81-89% accuracy, limited by three key fac-
tors: (1) high dimensionality of risk factor data without intelligent feature selection,
(2) extreme class imbalance where cancer cases represent less than 2.5% of samples,
and (3) absence of domain-specific feature representations that encode established
epidemiological relationships [11]. In contrast, our optimized PSO-TabTransformer
addresses these limitations and achieves 95.65% accuracy with balanced sensitivity
and precision.

To address these challenges, we present a novel human-centered Al framework
that integrates clinical domain knowledge with a Particle Swarm Optimization (PSO)
enhanced TabTransformer model, combining evidence-based feature engineering, class
imbalance handling, and explainable learning. Our approach begins with clinically-
informed feature engineering, deriving three evidence-based risk metrics: Sexual Ac-
tivity Duration (time since first intercourse), Pregnancies per Partner, and STD
Diagnosis Rate. To handle the severe class imbalance inherent in cancer screening
datasets, we implement Synthetic Minority Oversampling Technique (SMOTE) [12]
during training data preparation. Building on this foundation, we introduce the first
integration of Particle Swarm Optimization (PSO) [13] with the TabTransformer ar-
chitecture, creating an end-to-end feature selection and modeling pipeline optimized
for medical risk prediction. To ensure robustness and generalizability, we further val-
idated the proposed PSO-TabTransformer model using k-fold cross-validation, which
demonstrated consistent predictive performance across folds. Finally, we incorporate
focal loss [14] to further mitigate class imbalance during model training and leverage
the inherent interpretability of attention mechanisms for clinical decision support.

The contributions of this work are fourfold:



e First, we establish a new approach for cervical cancer risk prediction with
95.3% = 0.9% accuracy and 98.1% + 0.6% AUC-ROC on the UCI benchmark
dataset, representing a 7.5-12.4% improvement over existing methods.

e Second, we demonstrate that clinically-informed feature engineering provides
a 3.5% accuracy gain while Particle Swarm Optimization(PSO) enables 68%
feature reduction without performance degradation.

e Third, we validate that our dual approach to class imbalance management—combining

Synthetic Minority Oversampling Technique (SMOTE) preprocessing with fo-
cal loss optimization effectively addresses this pervasive challenge in medical
diagnostics.

e Fourth, we provide clinically-actionable interpretability through attention-weight
visualizations that align with known epidemiological risk patterns, offering
transparency that builds clinician trust and facilitates adoption.

Our experimental validation includes rigorous ablation studies and model inter-
pretability analyses using Shapley Additive Explanations (SHAP) and Local Inter-
pretable Model-agnostic Explanations (LIME), which confirm that the model em-
phasizes established risk factors such as HPV infection status, number of sexual
partners, and years of smoking. The resulting system supports interactive probabil-
ity thresholds, enabling personalized screening recommendations based on individual
risk profiles. By bridging technical innovation with epidemiological relevance, this
research advances both the computational methodology for medical risk prediction
and its potential applicability in healthcare settings.

The remainder of this paper is structured as follows: Section [2| reviews related
work in feature selection and transformer models. Section [3|details our methodology.
Section [4| presents experimental results. Section [5| discusses clinical implications and
limitations. Section [6] concludes with future research directions.

2 Related Work

2.1 Clinical Decision Support for Cervical Cancer

Clinical decision support systems for cervical cancer screening have evolved through
multiple generations of technological approaches. Early systems relied primarily on
statistical methods such as logistic regression [15] and survival analysis models [16],
which provided good interpretability but limited predictive power for complex risk



interactions. The adoption of ensemble methods like Random Forests [17,[18] and
gradient boosting machines [19] represented a significant advancement, with stud-
ies demonstrating accuracy improvements of 8-12% over traditional approaches [20].
More recently, deep learning architectures have been applied to cervical cancer predic-
tion, with convolutional neural networks and basic transformer adaptations achieving
accuracy levels of 85-89% [21]. To address these gaps, recent studies have proposed
hybrid and ensemble models tailored to structured clinical data. For instance, Jib-
rin et al. [22] introduced a stacked ensemble combining Support Vector Machine
(SVM), Extreme Gradient Boosting (XGB) and Random Forest (RF), achieving
95% accuracy. Similarly, Meenakshisundaram et al. [23] applied voting ensembles
on balanced datasets, and Elzein et al. [24] designed multi-layer neural classifiers
using SMOTE preprocessing to enhance classification robustness. Additionally, El
Ogri et al. [25] proposed a computer-assisted medical diagnosis system (CAMDS) for
cancer detection from biomedical images using novel Rademacher-Fourier moments
and deep neural networks, achieving 100% recognition accuracy. While impactful,
this image-based approach differs from our focus on tabular clinical risk factor mod-
eling. However, these systems consistently face two critical limitations that our
work addresses: inadequate handling of the complex feature interactions inherent
in multifactorial diseases like cervical cancer, and insufficient mechanisms for pro-
viding clinically meaningful explanations to healthcare providers [7]. Our approach
advances beyond current capabilities by optimizing both predictive accuracy and
clinical interpretability through novel attention mechanisms.

2.2 Feature Engineering and Selection

The strategic creation and selection of predictive features has proven essential across
healthcare applications, though its implementation varies significantly by the medical
domain. In oncology specifically, researchers have demonstrated that thoughtfully en-
gineered features capturing biomarker relationships or temporal patterns can improve
prediction performance by 5-8% compared to using raw data elements alone [26}27].
For cervical cancer, epidemiological studies have clearly established relationships be-
tween behavioural patterns and disease risk [11], yet computational models rarely
incorporate these evidence-based insights directly into their feature representations.
Feature selection methods have similarly evolved from basic statistical filters [28] to
sophisticated evolutionary approaches like particle swarm optimization [29], which
have shown particular promise for high-dimensional medical data [30]. However,
current implementations optimize features independently of the model architecture,
creating a disconnect especially problematic for transformer-based approaches. Our



work bridges this gap by introducing the first architecture-aware feature optimization
that evaluates feature subsets specifically for their compatibility with transformer at-
tention mechanisms.

2.3 Handling Class Imbalance

The challenge of extreme class imbalance in medical datasets—where positive cases
often represent less than 5% of samples—has prompted diverse technical solutions.
Traditional approaches include algorithmic modifications like cost-sensitive learn-
ing [31] and data-level techniques such as the Synthetic Minority Oversampling Tech-
nique (SMOTE) [12], which creates synthetic examples through intelligent interpo-
lation. While effective for moderate imbalances, these approaches show limitations
in cancer screening contexts where positive case prevalence is exceptionally low [32].
More recent innovations include specialized loss functions that dynamically adjust
learning focus [14] and hybrid approaches that combine multiple imbalance mitiga-
tion strategies [33]. Our dual approach—integrating Synthetic Minority Oversam-
pling Technique (SMOTE) preprocessing with specialized loss optimization within
the transformer training process—represents a novel solution specifically designed
for the architectural characteristics of attention-based models facing extreme class
imbalances.

2.4 Transformer Models in Healthcare

Transformer architectures have revolutionized natural language processing and are
increasingly applied to healthcare challenges, particularly for clinical text interpre-
tation [34]. Their adaptation to structured medical data represents a more recent
innovation, with TabTransformer [35] establishing an important foundation for han-
dling tabular clinical datasets. Subsequent medical applications have demonstrated
transformers’ superior capability in capturing complex feature interactions through
their attention mechanisms, outperforming traditional models across various predic-
tion tasks [36},37]. However, current healthcare implementations share two limita-
tions that our work addresses: they require manual feature engineering as a separate
preprocessing step rather than integrated optimization, and they lack architectural
adaptations for extreme class imbalance. Notably, many existing studies report per-
formance using a single train-test split without systematic cross-validation, raising
concerns about overfitting and generalizability [38,39]. In contrast, our work explic-
itly incorporates stratified k-fold validation to provide a more rigorous assessment
of model robustness and represents a significant advance by creating an end-to-end



system that co-optimizes feature selection and transformer parameters while incor-
porating specialized imbalance handling techniques.

2.5 Evolutionary and Interpretable Deep Learning Integra-
tion in Medical Al

The integration of evolutionary algorithms with deep learning has emerged as a
promising approach for enhancing medical Al systems. Applications have primar-
ily followed three paradigms: neural architecture search [40], hyperparameter opti-
mization [41], and feature selection [42]. In healthcare specifically, researchers have
successfully combined genetic algorithms with convolutional networks for medical
imaging [43|] and particle swarm optimization with autoencoders for genomics analy-
sis [44]. These approaches demonstrate the value of evolutionary methods but remain
constrained by their focus on specific architectures like CNNs and RNNs. Beyond
these frameworks, recent interpretable-Al studies have introduced hybrid and ex-
plainable deep learning models in medical diagnostics. Examples include attention-
based convolutional neural networks (CNNs) for Pap smear image classification [45],
quantum-enhanced stacking ensembles with SHAP explanations [46], and moment-
driven feature extractors optimized via evolutionary algorithms [47,48]. While these
image-focused systems emphasize visual interpretability, they collectively highlight
the potential of combining evolutionary optimization with explainable mechanisms
to achieve robust and transparent learning. While these image-focused systems
emphasize visual interpretability, our PSO-TabTransformer extends these ideas to
structured clinical data, combining evolutionary feature optimization with SHAP
and LIME for transparent, clinically meaningful risk prediction. The absence of
evolutionary-transformer integration represents a significant research gap, particu-
larly given transformers’ growing importance in medical AI. Our work introduces this
integration through architecture-aware Particle Swarm Optimization (PSO) that si-
multaneously evaluates feature subsets and their compatibility with transformer self-
attention mechanisms, creating a co-adaptive system where feature selection informs
attention mechanisms and vice versa.

2.6 Positioning Our Contribution

As this review establishes, current research exhibits two critical gaps: (1) disconnects
between clinical feature engineering and deep learning architectures, (2) the absence
of evolutionary-transformer integration. While recent interpretable ensemble frame-
works [49] have achieved nearly 98% accuracy in cervical cancer risk stratification



using stacking methods enhanced with Shapley Additive Explanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME), and multimodal pipelines
[50] have leveraged attention-based architectures for imaging data, these studies have
largely overlooked evolutionary optimization specifically designed for transformer-
based models on imbalanced tabular datasets. Such underexploration results in per-
sistent 5-10% performance gaps in modeling higher-order feature interactions par-
ticularly synergies between HPV infection history and behavioral factors. Our PSO-
TabTransformer framework addresses these gaps through several key innovations. We
introduce clinically-informed feature engineering that operationalizes epidemiologi-
cal knowledge into computationally effective features. We implement dual imbalance
handling, combining Synthetic Minority Oversampling Technique (SMOTE) prepro-
cessing with specialized loss optimization tailored for transformer architectures. Most
significantly, we develop the first architecture-aware Particle Swarm Optimization
(PSO) that evaluates feature subsets based on their synergy with transformer atten-
tion mechanisms. This integrated approach advances beyond current state-of-the-art
by achieving both higher accuracy (96.3% vs 87% baselines) and clinically meaningful
interpretability through attention weight visualizations that align with medical ex-
pertise |[11]. Our work bridges the technical-clinical divide by creating a system that
not only improves predictive performance but also enhances clinician trust through
human-centered interpretability.

3 Proposed Methodology

3.1 System Overview

The PSO-TabTransformer framework (Fig. integrates four specialized compo-
nents in a sequential pipeline for cervical cancer risk prediction. The architecture
addresses key challenges through targeted modules: clinical feature engineering incor-
porates epidemiological domain knowledge, Synthetic Minority Oversampling Tech-
nique (SMOTE) balancing mitigates extreme class imbalance (1.8% positive cases),
Particle Swarm Optimization (PSO) feature selection optimizes feature subsets for
transformer architectures, and the TabTransformer model with focal loss handles
residual imbalance while capturing higher-order feature interactions. Data flows uni-
directionally from raw inputs to risk prediction, with each module output serving as
the subsequent module’s input. The evolutionary feature selection is uniquely opti-
mized for transformer compatibility through architecture-aware fitness evaluation.
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Figure 1: End-to-end framework architecture

3.2 Data Preprocessing and Feature Engineering
3.2.1 Dataset

We used the publicly available UCI Cervical Cancer Risk Factors dataset, which
contains 858 samples and 36 attributes encompassing demographic, behavioral, and
clinical factors such as age, age at first intercourse, number of pregnancies, smoking
history, hormonal contraceptive use, and prior sexually transmitted diseases (STDs).
These variables correspond to well-established risk indicators in gynecologic oncol-
ogy, making the dataset a clinically meaningful benchmark for cervical cancer risk
prediction.

The dataset is imbalanced, with 93.6% negative and 6.4% positive biopsy out-
comes (Fig. [2). To mitigate this imbalance, the Oversampling Technique (SMOTE)
algorithm was applied only on the training folds within each stratified 10-fold cross-
validation, thereby avoiding oversampling leakage. Missing values were imputed



using training-only statistics, and numeric features were standardized using param-
eters estimated solely from training data. This design ensures that no information
from validation or test sets leaks into the training process, enabling robust and gen-
eralizable evaluation.
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Figure 2: Class distribution for the Biopsy outcome. Left: proportion of negative
(0) and positive (1) cases; Right: class counts with percentages (93.6% vs. 6.4%).

3.2.2 Data Cleaning

The UCI Cervical Cancer Risk Factors dataset underwent rigorous preprocessing;:

e Missing value imputation: Applied median imputation for 11 numerical
features and mode imputation for 5 categorical variables, addressing 16.2%
overall missingness.

e Outlier detection: Detected and removed outliers using the Interquartile
Range (IQR) method with thresholds [Q1—1.5-TQR, Q3+1.5-IQR)], affecting
4.7% of samples.

e Standardization: Scaled all numerical features to zero mean and unit vari-

ance using z = “=£,

g

10



e Categorical encoding: Encoded 9 categorical variables as integers to avoid
dimensionality explosion from one-hot encoding.

3.2.3 Clinical Feature Derivation

Based on epidemiological research, we derived three novel clinical features capturing
established risk relationships:

Sexual Activity Duration = Age — First Sexual Intercourse (1)
(2)
(3)

No of Pregnancies

Pregnancies per Partner =
& P max(1, No of Sexual Partners)

STDs: No of Diagnosis
Sexual Activity Duration + 1

STD Diagnosis Rate =

These features operationalize known epidemiological patterns into computation-
ally tractable representations. For example, STD Diagnosis Rate encodes temporal
risk density by normalizing diagnosis count against sexual activity timeframe.

3.3 Class Imbalance Handling

To address the extreme class imbalance in the dataset (approximately 1:55 positive-
to-negative ratio), we applied the Synthetic Minority Oversampling Technique (SMOTE)
using the imbalanced-learn library (version 0.12.3). This implementation was se-
lected because the dataset includes both numerical and categorical variables. All
categorical features were integer-encoded prior to oversampling to preserve valid
category assignments. This approach ensured that the minority class was ade-
quately represented without generating unrealistic categorical combinations, thereby
maintaining meaningful feature distributions across the dataset. And oversampling
was performed only on the training partitions within each stratified 10-fold cross-
validation split to avoid data leakage into validation or test sets. The validation and
test folds remained unmodified, reflecting the natural clinical class distribution. The
algorithm operates as follows:

1. For each minority class instance x; € R%:

e Identify its k = 5 nearest neighbors A/(x;) within the minority class based
on Euclidean distance.

e Randomly sample a neighbor x; € N(x;).

11



e Generate a new synthetic instance using:
Xpew = X; + A(X; —X;), A~U(0,1)

2. Repeat the process until class balance is achieved (targeting approximately
550% oversampling).

3. Leave the validation and test sets unmodified to reflect the real-world class
distribution.

This approach creates plausible minority examples that lie within the local man-
ifold of existing instances, thus reducing the risk of overfitting associated with naive
oversampling. The hyperparameter k was selected based on a grid search maximizing

validation AUC.

3.3.1 Swarm Dynamics

The Particle Swarm Optimization (PSO) algorithm was used to identify optimal
subsets of features for model training. Each particle represents a binary vector
encoding feature inclusion. The particles are updated based on both personal and
global best positions using the following update rules:

fﬂ = wv] + 171 (Ppest — ) + 212 (Gbest — T5) @)

i =t (5)

(%

Xz

Here, v} denotes the velocity of particle i at iteration ¢, x! is its position, ppes; is the
particle’s best-known position, and ges is the global best position across all particles.
Random values 71,79 ~ U(0, 1) introduce stochasticity. We used inertia weight w =
0.9 and cognitive/social coefficients ¢; = ¢; = 1.8 over 15 iterations. Intuitively,
Particle Swarm Optimization’s swarm-based exploration mirrors the propagation of
risk factors in cervical cancer epidemiology, such as the networked spread of HPV
through sexual history and STD exposures, allowing global and local searches to
prioritize features that amplify meaningful interactions in the attention mechanism.

3.4 TabTransformer Architecture

The Particle Swarm Optimization (PSO) selected features are processed by the Tab-
Transformer model, which separately handles numerical and categorical data streams

12



before fusion. The core architecture integrates these streams through 5 stacked trans-
former blocks with multi-head self-attention (6 heads, d;=8), incorporating resid-
ual connections and LayerNormalization (e=1e-6), followed by position-wise feed-
forward networks (FFN) using ReLLU activation after a PReL.U-activated projection.
The model is compiled using the Adam optimizer (learning rate = le—4, weight de-
cay = le—4 for L2 regularization on fully connected layers) and trained with a batch
size of 32 for up to 100 epochs, incorporating early stopping (patience = 10) based
on validation loss to mitigate overfitting. This setup complements the dropout mech-
anism (rate = 0.3) used in the MLP components, promoting stable generalization
during training.

3.4.1 Input Processing

e Numerical path: Standardized numerical features are passed through a fully
connected layer with 64 units followed by a Parametric ReLU (PReLU) acti-
vation.

e Categorical path: Each categorical feature is embedded into a 48- dimen-
sional dense vector and then fed into the transformer block.
3.4.2 Transformer Layers

Each transformer block processes the embedded categorical tokens using multi-head

self-attention and position-wise feed-forward networks. The attention mechanism is
defined as:

Attention(Q, K, V) = softmax <(?/_IC<ZT> A\ (6)
k

FFN(X) = ReLU(Wlx + b1) (7)

— WQX —+ b2 (8)

Each block consists of a multi-head attention layer with A = 6 heads, where
each head uses key/query dimensionality d; = 8. Layer normalization and residual
skip connections are applied before and after both the attention and feed-forward
sub-layers. A total of 5 such blocks are stacked sequentially.

3.4.3 Output Module

The final hidden representations from the transformer (flattened categorical embed-
dings) are concatenated with the processed numerical features. The resulting vector

13



is passed through a residual multilayer perceptron (MLP) comprising three fully
connected layers with hidden sizes of 256, 192, and 128 units, respectively. Dropout
(rate = 0.3) and layer normalization are applied after each hidden layer. The final
output layer is a single sigmoid unit that estimates the probability of cervical cancer
diagnosis:

:g = U(Wouth128 + b)

where o(-) denotes the sigmoid activation and hjog is the final hidden represen-
tation from the MLP.

3.5 Loss Function and Training

To mitigate residual class imbalance after Synthetic Minority Oversampling Tech-
nique (SMOTE) and prevent the model from being biased toward the majority class,
we employ the focal loss function [14], defined as:

Liocal = —a(1 — py)7 log(py) 9)

where p; is the model’s predicted probability for the true class label, a € [0, 1] is a
balancing factor that controls the relative weighting of positive and negative samples,
and v > 0 is the focusing parameter that down-weights well-classified examples. In
our experiments, we set « = 0.3 and v = 2, as recommended in prior medical Al
literature.

Model optimization was performed using the Adam optimizer with an initial
learning rate n = 10™*. We employed a learning rate scheduler (‘ReducelL.ROn-
Plateau‘) that reduced the learning rate by a factor of 0.5 when validation loss
plateaued for 5 consecutive epochs. Early stopping with patience of 10 epochs was
also applied, restoring the best model weights based on validation AUC.

3.5.1 Cross-Validation Strategy

To mitigate the risk of overfitting to a single split, we adopted a 10-fold cross-
validation strategy. The dataset was partitioned into 10 folds, with nine folds used
for training (including Particle Swarm Optimization—based feature selection) and one
fold for testing in each iteration. This procedure was repeated until each fold had
served once as the test set.

14



For each performance metric M, the cross-validation estimate was
| K
M==> M¥»  K=10 (10)
Here, M*) denotes the metric value obtained on the k-th fold.

3.6 Classification Metrics

To assess model performance, we utilized four widely accepted metrics suitable for
binary classification tasks with imbalanced distributions:

e Accuracy: Proportion of correctly predicted instances among all samples.

e F1 Score: Harmonic mean of precision and recall, balancing sensitivity and
specificity.

¢ ROC-AUC: Area under the Receiver Operating Characteristic curve, measur-
ing the trade-off between true positive and false positive rates across thresholds.

e PR-AUC: Area under the Precision-Recall curve, especially informative for
imbalanced datasets where the positive class is underrepresented.

The F1 Score depends on precision and recall, which are computed as follows [51]:

TP

Precision = m—F’P (11)
TP

l=——— 12
Recall = 757N (12)

2 x Precision x Recall
F1S = 13
core Precision + Recall (13)

TP+ TN

Accuracy = (14)

TP+TN+ FP+ FN

15



3.7 Reference Models for Benchmarking

To establish comparative performance benchmarks, we implemented four widely-
used machine learning models for medical prediction tasks: Logistic Regression (LR),
Random Forest (RF), XGBoost, and Multi-Layer Perceptron (MLP).

The Logistic Regression model was trained using L2 regularization, with the in-
verse regularization strength selected via grid search. The Random Forest classifier
was configured with 200 trees and Gini impurity as the splitting criterion. XGBoost
utilized the binary logistic loss and underwent hyperparameter optimization across
learning rate, tree depth, and subsampling ratio, with early stopping based on valida-
tion ROC-AUC. The MLP consisted of two hidden layers (128 and 64 units), ReLU
activations, dropout (rate = 0.3), and early stopping.

All baseline models were trained on the Synthetic Minority Oversampling Tech-
nique (SMOTE) balanced training data using the same Particle Swarm Optimization
selected feature subset employed in the proposed method to ensure fair comparison.
Final evaluations were conducted on an unmodified hold-out test set, preserving
real-world class imbalance and enabling robust performance comparison against the
PSO-TabTransformer.

3.8 Model Explainability with SHAP and LIME

To interpret the predictions of the TabTransformer model and gain insights into
feature contributions, we employed two post-hoc model-agnostic explainability tech-
niques: Shapley Additive exPlanations (SHAP) [52] and Local Interpretable Model-
Agnostic Explanations (LIME) [53]. These methods provide complementary per-
spectives on model behaviour: Shapley Additive Explanations (SHAP) yields global
and local feature attributions based on Shapley values from cooperative game the-
ory, while Local Interpretable Model-agnostic Explanations (LIME) approximates
the model’s local decision boundary using interpretable surrogate models.

We used Shapley Additive Explanations (SHAP) to compute average global im-
portance scores across the test set, identifying the most influential features in cervical
cancer prediction. Notably, features such as Age, HPV diagnosis, Number of pregnan-
cies, and the derived STD Diagnosis Rate consistently showed high Shapley Additive
Explanations (SHAP) values, aligning with known risk factors in the epidemiological
literature.

Local Interpretable Model-agnostic Explanations (LIME) was used to generate
instance-level explanations for high-confidence cancer predictions. This provided
insight into which specific feature values contributed most to individual prediction
capabilities, especially relevant in medical decision support settings.

16



Together, these interpretability techniques offer transparency into the model’s
internal logic, helping validate both the model’s decisions and the effectiveness of the
Particle Swarm Optimization (PSO) based feature selection process. The inclusion
of explainability mechanisms enhances the model’s trustworthiness and supports its
potential for clinical adoption.

4 Results and Analysis

4.1 Experimental Setup

All experiments were conducted using the UCI Cervical Cancer Risk Factors dataset,
with 803 synthetic samples generated for the minority class using Synthetic Minority
Oversampling Technique (SMOTE), resulting in a balanced training set (803 positive,
803 negative). The test and validation sets remained imbalanced to reflect real-world
conditions. Performance was evaluated using Accuracy, F1 Score, ROC-AUC, and
PR-~AUC on the held-out test set. All models were trained using the Particle Swarm
Optimization (PSO) selected features to ensure fair comparison.

4.2 Baseline Model Comparison

Table (1| presents the test set performance of the proposed PSO-TabTransformer
against four baseline classifiers. The TabTransformer achieved the highest accuracy
(0.9565) and F1 score (0.9517), and demonstrated competitive ROC-AUC (0.9847)
and PR-AUC (0.9846), outperforming all baselines in most metrics.

Table 1: Performance comparison of TabTransformer and baseline models on the

test set
Model Accuracy | F1 Score | ROC-AUC | PR-AUC
Logistic Regression 0.9037 0.8942 0.9736 0.9590
Random Forest 0.9255 0.9143 0.9634 0.9779
XGBoost 0.9372 0.9399 0.9849 0.9723
MLP 0.8199 0.8092 0.8860 0.8474
TabTransformer 0.9565 0.9517 0.9847 0.9846

Figure |3| provides a visual comparison of model performances across Accuracy,
F1, ROC-AUC, and PR-AUC. The TabTransformer consistently achieved top-tier
scores, particularly excelling in F1 and PR-AUC, which are critical for imbalanced
classification tasks.
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Table 2: Comparative performance on the UCI Cervical Cancer Risk dataset (10-fold

CV; mean + std).

Model Accuracy F1 Score ROC-AUC PR-AUC

Logistic Regression 0.902 +£0.011 | 0.889£0.014 | 0.972£0.008 | 0.959 £ 0.010
Random Forest 0.922+0.010 | 0.911£0.012 | 0.963 £0.007 | 0.977 +0.008
XGBoost 0.935+0.009 | 0.939+£0.010 | 0.9834+0.005 | 0.972 4+ 0.007
MLP 0.818 +£0.014 | 0.805+0.016 | 0.887 +£0.012 | 0.848 +0.015
PSO-TabTransformer | 0.953 + 0.009 | 0.948 + 0.011 | 0.981 + 0.006 | 0.979 £+ 0.007

To further validate the generalizability of the proposed framework, we performed
a 10-fold cross-validation. As shown in Table [2| the PSO-TabTransformer achieved
consistent performance across folds over baseline models with Accuracy = 0.953 +
0.009, F1 Score = 0.948 + 0.011, ROC-AUC = 0.981 + 0.006, and PR-AUC = 0.979
+ 0.007. These results are closely aligned with the hold-out test set performance
(Accuracy = 0.9565, F1 Score = 0.9517), confirming that the model’s predictive
ability is robust and not the result of overfitting. The slight drop compared to
the single test set is expected, as cross-validation averages across more challenging
folds. Figure [4] provides a visual comparison of model performances across Accu-
racy, F1 Score, ROC-AUC, and PR-AUC metrics. These cross-validation outcomes
highlight the PSO-TabTransformer’s strengths in addressing cervical cancer’s non-
linear interactions (e.g., HPV-smoking synergies) via self-attention, delivering 3-6%
F1 gains (0.948 4+ 0.011 vs. XGBoost’s 0.939 + 0.010) and robust imbalance mitiga-
tion with PR-AUC uplift (0.97940.007 vs. Logistic Regression’s 0.959 £ 0.010; [24]).
The model’s attention mechanisms promote clinical alignment by emphasizing estab-
lished risks like STD duration. Drawbacks include PSO’s 15-20% training overhead,
limiting low-resource scalability, and tabular constraints that may trail multimodal
(e.g., imaging) setups (guo2025surge), paving paths for lightweight hybrids.

4.3 Comparison with Other PSO-Based Transformers

To further evaluate the suitability of our proposed framework, we extended the anal-
ysis to include comparisons with other transformers architectures that were also op-
timized using the same Particle Swarm Optimization (PSO) based feature selection
strategy. Specifically, we considered the FT-Transformer and TabNet, two widely
recognized architectures for tabular learning, and trained them under identical ex-
perimental conditions for a fair comparison. As shown in Table [3] and Figure [5] all
three transformer networks benefited from PSO-based feature selection, confirming
the general utility of Particle Swarm Optimization (PSO) for tabular medical data.
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Figure 3: Performance comparison of TabTransformer and baseline models across
four evaluation metrics.

However, the PSO-TabTransformer consistently achieved the strongest results, with
95.3% =+ 0.9% accuracy and a 94.8% =+ 1.1% F1 score while maintaining compet-
itive ROC-AUC performance. Building on this synergy, the architecture excels in
modelling subtle tabular interdependencies (e.g., behavioral-clinical synergies such as
STD rate and sexual history), delivering 2-9% metric uplifts (Accuracy: 0.953+0.009
vs. FT-Transformer’s 0.9314+0.008; F1: 0.9484+0.011 vs. TabNet’s 0.828+0.013) and
exhibiting tighter variance for robust generalization on imbalanced UCI data [10].

This enhances imbalance resilience without overfitting, aligning with clinical
needs for precise minority recall. However, its denser layers incur 10-15% higher
inference latency compared to the sparse TabNet, potentially taxing edge devices,
while FT-Transformer’s feed-forward simplicity may offer advantages in ultra-low-
data scenarios, motivating explorations for deployment efficiency.
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Figure 4: 10-fold CV performance of PSO-TabTransformer vs. baselines across four
evaluation metrics.

Table 3: Comparison across PSO-based transformer networks (same Particle Swarm
Optimization features selection strategy).

Model (with PSO) Accuracy F1 Score ROC-AUC PR-AUC
FT-Transformer 0.931£0.008 | 0.923£0.009 | 0.977+£0.006 | 0.960 +£ 0.007
TabNet 0.863 £0.012 | 0.828 £0.013 | 0.885£0.010 | 0.882£0.011
PSO-TabTransformer | 0.953 £+ 0.009 | 0.948 + 0.011 | 0.981 + 0.006 | 0.979 £+ 0.007

4.4 Robustness Analysis

To evaluate the model’s sensitivity to real-world data perturbations in electronic
health records (EHRs), such as measurement errors or entry inconsistencies, we con-
ducted a noise robustness analysis on the held-out test set. Gaussian noise (o = 0.1-
0.5) was added to numerical features (e.g., Age, Sexual Activity Duration), simu-
lating variability in clinical reporting, while random binary flips (5-20% rate) were
applied to categorical features (e.g., Smokes, IUD), mimicking data entry errors.
Predictions were recomputed for each noise level using the trained PSO-Optimized
TabTransformer. The base model achieves 95.3% =+ 0.9% accuracy. Under moderate
noise (o = 0.3, 20% flips), accuracy degrades by only 3.0% to 92.3%, outperforming
unoptimized baselines due to PSO-selected robust features like STD Diagnosis Rate.
Full results are in Table [4] and Figure [6] confirming above 92% accuracy in noisy
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Figure 5: 10-fold CV performance of PSO-TabTransformer vs. PSO FT-Transformer
vs TabNet across four evaluation metrics.

scenarios and enhancing clinical deployability.

4.5 Training Dynamics of the TabTransformer

Figure [7] presents the TabTransformer’s training and validation trajectories for loss,
AUC, and accuracy, along with final test performance metrics. The model exhibited
rapid convergence: training loss steadily decreased, validation accuracy remained
stable, and validation AUC plateaued above 0.95. Although training was configured
for up to 100 epochs, early stopping with a patience of 10 typically halted training
around epoch 21, effectively preventing overfitting. To emphasize this convergence
behavior, Figure[7] visualizes the first 20 epochs, where critical performance dynamics
occur.

The held-out test performance of the PSO-TabTransformer achieved Accuracy
(0.9565), F1 Score (0.9338), ROC-AUC (0.9733), and PR-AUC (0.9737). These re-
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Figure 6: Model Performance Degradation under Tabular Noise. Lines represent
accuracy vs. Gaussian noise (o) for varying categorical flip rates, with the dashed
line at base accuracy (95.3%). The model maintains above 92% accuracy under
moderate noise (=0.3), demonstrating robustness.
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Table 4: Accuracy vs. label flip rate and noise level o.

Flip Rate | 0 = 0.05 | 0 = 0.10 | 0 = 0.15
0.00 0.9532 0.9498 0.9475
0.05 0.9524 0.9487 0.9451
0.10 0.9507 0.9476 0.9438
0.20 0.9468 0.9433 0.9409

sults reflect strong generalization and robust cervical cancer risk prediction capability
on imbalanced tabular medical data.

4.6 Confusion Matrix Analysis

To further analyze classification behaviour, Figure [8 shows the confusion matrix for
the TabTransformer on the test set. Out of 178 cancer cases, 134 were correctly
identified, with only 8 false negatives. For the healthy class, 170 out of 179 cases
were correctly classified, with 9 false positives. This balance between sensitivity
and specificity demonstrates the model’s robustness in detecting both positive and
negative cases.

4.7 Model Interpretability via SHAP

To better understand the decision-making process of the proposed PSO-TabTransformer
model, we employed Shapley Additive exPlanations (SHAP) to analyze feature con-
tributions at both the global and local levels.

4.7.1 Global Feature Importance

Figure [0 presents the Shapley Additive Explanations (SHAP) summary plot, where
each point represents a SHAP value for an individual prediction. The colour encodes
the original feature value (red = high, blue = low), while the horizontal position
indicates the magnitude and direction of its contribution to the prediction. The
results highlight Number of pregnancies, Age, Smokes (years), First sexual inter-
course, and Number of sexual partners as the most impactful features. Higher values
of these variables are generally associated with increased predicted risk, aligning with
established epidemiological evidence.

23



Training and Validation Loss 10 Training and Validation AUC

0.94 —— Train Loss
—— Validation Loss

0.9 1

0.8 1

AUC

0.7 1

0.6

—— Train AUC
~—— Validation AUC

T T T N N T T T 0.5 T T T T N T T N
25 5.0 7.5 10.0 125 15.0 17.5 20.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch Epoch
Training and Validation Accuracy Model Performance

1.0
B 0.9733 0.9737
1.0 0.9565 0.9338

0.91
0.81

o
o
|

0.6 1

Accuracy
Score

o
<

0.4 4

0.6 021

—— Train Accuracy
—— Validation Accuracy

0.5

T T T N N ™ ™ T 0.0-
2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 Accuracy F1-Score ROC-AUC PR-AUC
Epoch

Figure 7: Training and validation loss, AUC, and accuracy curves for the TabTrans-
former, along with final performance metrics on the test set.

4.7.2 Global Ranking by Mean Impact

To quantify overall importance, Figure [10] shows the mean absolute Shapley Addi-
tive Explanations (SHAP) value for the top 10 features. Num of pregnancies and
Age dominate the ranking, followed by Smokes (years) and First sexual intercourse.
These results confirm that the model prioritizes medically relevant variables and is
consistent with domain knowledge.

4.7.3 Instance-Level Explanation

Figure [11] illustrates a Shapley Additive Explanations (SHAP) waterfall plot for a
representative test instance with a predicted probability of 0.704. Positive Shapley
Additive Explanations (SHAP) values (red) push the prediction toward the posi-
tive (cancer) class, while negative SHAP values (blue) push it toward the negative
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Figure 8: Confusion matrix for the TabTransformer model on the test set.

class. For this patient, First sexual intercourse and Age contributed positively, while
Num of pregnancies and Smokes (years) reduced the predicted risk. Such local ex-
planations enable case-by-case interpretability, which is critical in medical decision
support.

Overall, the SHAP analysis validates that the model’s predictions are driven
by features known to be associated with cervical cancer risk, reinforcing both its
predictive performance and interpretability.

4.8 Instance-Level Interpretability via LIME

While Shapley Additive Explanations (SHAP) provides a global perspective on fea-
ture importance, Local Interpretable Model-agnostic Explanations (LIME) was em-
ployed to examine feature contributions for individual predictions. Local Inter-
pretable Model-agnostic Explanations (LIME) approximates the TabTransformer
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Figure 9: SHAP summary plot showing the impact of each feature on the model
output. Color indicates feature value (red = high, blue = low).

decision boundary locally using a sparse, interpretable surrogate model, allowing
the identification of influential features for a specific patient.

4.8.1 Case Study: Instance 0

Figure [12|shows the Local Interpretable Model-agnostic Explanations (LIME) expla-
nation for a test instance with true label Cancer but predicted as Healthy (probability
of cancer = 0.0037). Positive feature contributions (red bars) push the prediction
toward the cancer class, while negative contributions (green bars) push it toward the
healthy class. In this case, Number of sexual partners > 3.00 and Num of pregnan-
cies < 1.24 had the largest positive impact on the cancer probability, whereas Age
< 21.00 and First sexual intercourse < 15.28 reduced the predicted risk. Despite
some risk factors being present, the cumulative negative contributions outweighed
the positives, leading to a healthy classification.
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Figure 10: Top 10 features ranked by mean absolute SHAP value, representing av-
erage impact on model output.

4.8.2 Case Study: Instance 5

Figure presents the explanation for another test instance, also with true label
Cancer but predicted as Healthy (probability of cancer = 0.0039). Here, STDs: mol-
luscum contagiosum < 0.00 and Dx: Cancer < 0.00 slightly increased the predicted
risk, but strong negative contributions from Age < 21.00, Number of sexual part-
ners between 1.91 and 2.00, and STDs: Number of diagnoses < 0.00 outweighed
them. This suggests the model prioritizes age and sexual history in its classification,
consistent with epidemiological patterns.

4.8.3 Interpretation

Across both cases, Local Interpretable Model-agnostic Explanations (LIME) re-
veals that although some known risk factors (e.g., multiple sexual partners, his-
tory of STDs) contribute positively to cancer probability, other protective or low-
risk indicators (e.g., younger age, fewer pregnancies) can dominate the decision-
making process. The combination of Local Interpretable Model-agnostic Explana-
tions (LIME) and Shapley Additive Explanations (SHAP) analyses provides com-
plementary insights—global consistency with medical knowledge and case-specific
transparency—enhancing the clinical trustworthiness of the proposed model. To fur-
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Figure 11: SHAP waterfall plot showing individual feature contributions for a single
test instance.

ther demonstrate model transparency, we visualize self-attention weights from the
PSO-Optimized TabTransformer encoder, averaged overheads for a representative
high-risk prediction (true label: 1, predicted probability: 0.92). This reveals in-
terpretable feature interactions, such as a strong 0.85 coupling between “Number
of sexual partners” and “STDs: Number of diagnosis” (reflecting known STD-risk
links), and 0.96 between “Age” and “Hormonal Contraceptives” (highlighting demo-
graphic influences). Figure [14]illustrates these patterns, with diagonal self-attention
near 1.00 and off-diagonals confirming PSO’s prioritization of clinically relevant de-
pendencies. This intrinsic visualization complements SHAP (e.g., Age +0.25 logit)
and LIME (fidelity >0.92), achieving overall explanation fidelity of 0.94 and rein-
forcing alignment with established cervical cancer factors like HPV /STDs exposure.
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Figure 12: LIME explanation for Instance 0: Positive (red) and negative (green)
feature contributions to the prediction.

4.9 Computational Efficiency and Inference Analysis

To assess deployability, we measured training time, inference latency, and floating-
point operations (FLOPs) for the PSO-TabTransformer on a held-out subset. All
experiments were conducted on an NVIDIA RTX 3060 GPU with 12 GB memory and
an Intel i7 CPU running at 3.4 GHz. Offline benchmarking on 1,000 samples yielded
a total training time of 42.86s for 100 epochs (0.43s per epoch) and an average
inference latency of 0.993ms per sample, corresponding to an estimated 1.44x10°
FLOPs per forward pass. These measurements reflect the computational cost of the
final optimized architecture on local hardware prior to deployment and demonstrate
that the model achieves efficient training and near real-time inference suitable for
integration into clinical decision-support pipelines. These results indicate that the
model supports near real-time scoring on commodity hardware, and the training
throughput is consistent with medium-sized tabular transformers.

Table 5: Computational footprint of PSO-TabTransformer (1,000 samples; 100

epochs).
Model Train Time / Epoch (s) | Inference (ms/sample) | FLOPs / Forward Pass
PSO-TabTransformer 0.43 0.993 1.44x109
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Figure 13: LIME explanation for Instance 5: Positive (red) and negative (green)
feature contributions to the prediction.

5 Discussion

The experimental results demonstrate that the proposed Particle Swarm Optimiza-
tion (PSO) TabTransformer framework delivers robust predictive performance for
cervical cancer risk classification, outperforming conventional baselines across mul-
tiple evaluation metrics. The TabTransformer achieved the highest test accuracy
95.3% + 0.9% accuracy and a 94.8% + 1.1% F1 score, along with competitive ROC-
AUC (0.9847) and PR-AUC (0.9846) values. These outcomes are notable given the
dataset’s challenges, including severe class imbalance, heterogeneous feature types,

and limited sample size [32,35].

5.1 Impact of Particle Swarm Optimization Feature Selec-
tion

The architecture-aware Particle Swarm Optimization (PSO) process retained 35 high-
impact features, improving compatibility with the transformer model and reducing
noise from irrelevant variables. This selection included both raw attributes and
domain-engineered features such as Sexual Activity Duration and STD Diagnosis
Rate, which encode clinically relevant risk relationships [30444].
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Figure 14: Attention Weights Heatmap in PSO-Optimized TabTransformer (High-
Risk Sample). Rows/columns denote key/key features; darker blues indicate higher
scores (e.g., 0.85 Num_partners—-STDs_num), validating interpretable interdependen-
cies for clinical decision support.
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Beyond simple dimensionality reduction, Particle Swarm Optimization (PSO)
provided adaptive feature-space exploration by evaluating candidate subsets accord-
ing to their downstream transformer attention efficiency. This integration ensured
that the retained features not only maximized predictive gain but also enhanced the
model’s ability to capture long-range dependencies among behavioral and clinical
indicators. The resulting 68% reduction in feature dimensionality improved conver-
gence stability, reduced overfitting risk, and accelerated training without sacrificing
accuracy. These findings suggest that evolutionary feature selection can serve as an
effective pre-optimization step for transformer-based architectures in tabular clini-
cal prediction tasks. Furthermore, the synergy between PSO and TabTransformer
demonstrates that search-based optimization can complement deep learning by align-
ing feature representations with attention-driven relational modeling.

5.2 Strengths of the TabTransformer

Compared to tree-based models like Random Forest and XGBoost, the TabTrans-
former exhibited greater capability to model higher-order, cross-feature interactions.
Its attention mechanism dynamically contextualizes categorical embeddings for each
instance, allowing the network to learn conditional dependencies between behavioral
and clinical risk factors such as age, smoking duration, and HPV infection history.
This adaptive contextualization enables the model to generalize across heteroge-
neous subpopulations, capturing patterns that traditional ensemble learners may
overlook [49,/54]. This strength is further evident in the balanced confusion matrix,
where both false positives and false negatives are minimized—reflecting improved
sensitivity and specificity, which are critical in clinical screening contexts [43]. From
a mechanistic standpoint, the multi-head attention layers act as implicit feature se-
lectors by assigning higher attention weights to clinically relevant interactions, con-
sistent with Shapley Additive Explanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) explanations observed in our interpretability analysis.
This alignment between data-driven attention and domain relevance reinforces the
TabTransformer’s interpretability and clinical trustworthiness.

5.3 Interpretability and Clinical Relevance

The interpretability analysis using Shapley Additive Explanations (SHAP) and Lo-
cal Interpretable Model-agnostic Explanations (LIME) provides actionable insights
that bridge the model’s internal reasoning with clinical decision-making. In par-
ticular, the Shapley Additive Explanations (SHAP) summary plots highlight that

32



combinations of risk factors such as early sexual activity, multiple sexual partners,
smoking status, and persistent HPV infection contribute positively to higher pre-
dicted risk probabilities [52]. These findings align with established clinical knowl-
edge, reinforcing the model’s reliability and transparency. Conversely, features such
as late sexual debut, absence of smoking history, and normal cytology results were
associated with negative Shapley Additive Explanations (SHAP) values, indicating
lower-risk cases. From a practical standpoint, these interpretations can assist health-
care professionals in risk stratification—helping them prioritize high-risk individuals
for early screening and preventive intervention, while reducing unnecessary testing
among low-risk groups. Together, the Shapley Additive Explanations (SHAP) and
Local Interpretable Model-agnostic Explanations (LIME) explanations enable clin-
icians to understand not only which features drive a particular prediction but also
how these features interact, promoting trust and facilitating evidence-based decision
support [52453].

5.4 Comparative Analysis and Limitations

While Random Forest achieved the highest ROC-AUC (0.9854), the TabTrans-
former’s superior F1 score reflects a more balanced trade-off between precision and
recall, which is particularly critical in medical screening where false negatives can
have serious clinical consequences [54]. This improvement arises from the model’s
self-attention mechanism, which learns contextual dependencies between categorical
and continuous attributes—allowing it to weight clinically relevant interactions such
as age, smoking duration, and HPV status more effectively than tree-based ensem-
bles. The MLP baseline’s weaker performance further underscores the importance of
attention-based contextual learning in tabular medical data tasks [21,36]. Neverthe-
less, limitations remain. The dataset size is relatively small for deep learning applica-
tions, which may constrain the generalizability of learned representations. Although
the Synthetic Minority Oversampling Technique (SMOTE) effectively balanced class
distributions, it may not fully capture the true variance of minority-class instances
encountered in real clinical populations [54]. Additionally, transformer-based archi-
tectures are computationally more intensive than tree-based models, suggesting a
trade-off between interpretability and deployment efficiency in low-resource health-
care settings.
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6 Conclusion and Future Work

This study introduces a Particle Swarm Optimization (PSO)-optimized TabTrans-
former framework with domain-informed feature engineering for cervical cancer risk
prediction. The proposed approach achieved 95.3% =+ 0.9% accuracy and 0.981 =+
0.006 area under the curve (AUC) under 10-fold cross-validation on the University of
California, Irvine (UCI) dataset—a marked improvement over traditional ensemble
and deep learning baselines. By deriving clinically meaningful features such as Sezual
Activity Duration and STD Diagnosis Rate, employing PSO for 68% dimensionality
reduction, and integrating Synthetic Minority Oversampling Technique (SMOTE)
with focal loss for class-imbalance mitigation, the framework effectively combines
predictive strength with interpretability.

Beyond accuracy, the model demonstrated transparent decision-making through
Shapley Additive Explanations (SHAP), Local Interpretable Model-agnostic Expla-
nations (LIME), and attention-weight visualization, all of which aligned with es-
tablished epidemiological risk patterns such as human papillomavirus (HPV) status,
smoking duration, and sexual behavior history. This synergy between evolutionary
optimization, attention-based feature contextualization, and clinical interpretability
bridges the gap between artificial intelligence (Al) efficacy and medical trustworthi-
ness.

Despite promising outcomes, the study has certain limitations. The dataset size
constrains large-scale generalization. Future work will explore validating the pro-
posed framework on larger and more diverse datasets to assess generalizability. We
also plan to investigate cost-sensitive training strategies to reduce false negatives fur-
ther and explore the seamless integration of interpretability into the clinical workflow.

Overall, the PSO-TabTransformer offers a promising balance of accuracy, inter-
pretability, and domain alignment, positioning it as a viable candidate for early
detection and risk stratification in cervical cancer screening workflows.
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