
A Cognitive Trust-Based Approach for Web Service Discovery and Selection

Ali Shaikh Ali, Simone A. Ludwig, Omer F. Rana
Department of Computer Science

Cardiff University, UK
{Ali.Shaikhali,Simone.Ludwig,Omer.F.Rana}@cs.cardiff.ac.uk

Abstract

Provision of services within a virtual framework for re-
source sharing across institutional boundaries has become
an active research area. Many such services encode access
to computational and data resources, comprising single ma-
chines to computational clusters. Such services can also be
informational, and integrate different resources within an
institution. Consequently, we envision a service rich envi-
ronment in the future, where service consumers are repre-
sented by intelligent agents. If interaction between agents
is automated, it is necessary for these agents to be able to
automatically discover services and choose between a set
of equivalent (or similar) services. In such a scenario trust
serves as a benchmark to differentiate between services. In
this paper we introduce a novel framework for automated
service discovery and selection of Web Services based on a
user’s trust policy. The framework is validated by a case
study of data mining Web Services and is evaluated by an
empirical experiment.

1. Introduction

The pervasiveness of online services facilitates a novel
form of communication between individuals and institu-
tions, thus supporting new flexible work patterns and mak-
ing institutional’s boundaries more permeable. Upcoming
standards for the description and advertisement of, as well
as the interaction with and the collaboration between, on-
line services promise a seamless integration of business
processes, applications, and online services over the Inter-
net. This seamless integration of business processes leads
to the need of having a semantic service discovery process
which allows a user to find the “right” service based on
semantic descriptions rather than keywords. As a conse-
quence of the rapid growth of Web Services, the issue of
trust becomes central for businesses. There are no accepted
techniques or tools for specification and reasoning about
trust. There is a need for a high-level, abstract way of spec-

ifying and managing trust, which can be easily integrated
into applications and used on any platform. A typical appli-
cation requiring a formal trust decision becomes apparent
when service consumers are faced with the inevitability of
selecting the “right” service. The distributed nature of these
services across multiple domains and organizations, not all
of which may be trusted to the same extent, makes the de-
cision of selecting the “right” service a demanding concern
especially if the selection proves to be automated and per-
formed by an intelligent agent. The above challenges ne-
cessitates the introduction of a new framework addressing
these challenges and enabling users to:

• Describe and discover Web Services semantically.

• Focus on the conceptual basis of their experiments
rather than understand the low level details of locating
services.

• Automatically select a trustworthy service that meets
the user’s trust policy.

In this paper, we introduce a novel framework to enable
automated semantic discovery and selection of Web Ser-
vices based on a user’s trust policy. We apply our approach
and framework to a data mining Web Services case study.

The reminder of this paper is structured as follows. First
we provide an overview of the data mining Web Services
case study. Then we provide an overview of related work
(section 3). In section 4 an overview of the proposed data
mining Web Services with a semantic description of the al-
gorithms is presented. In section 5 the proposed framework
is introduced. Finally, in section 6 we evaluate the frame-
work by an empirical experiment.

2. Case Study

In order to exemplify our approach and framework we
will apply it to an interesting case study, that is one of the
case studies identified within the FAEHIM project [25] [1].

1

The case study we are going to introduce is related to ex-
posing data mining algorithms as Web Services. In this case
study, we will show how our framework is used to discover
data mining services semantically and how it is used to se-
lect a service from a pool of discovered services based on
the user’s trust policy. We will also show how the factors
that produce the final decision for selecting a service de-
pend on the user’s trust disposition.

Data Mining and Knowledge Discovery is one of the
emerging technologies in todays corporate world. It has
ever increasing number of applications with the increas-
ing use of computers in every walk of life. A few exam-
ples of its use are customer profiling, market basket analy-
sis, decision-making, weather forecasting, biomedical and
DNA data analysis. Formally, it is the process of obtaining
hidden information or knowledge from huge data sets.

The availability of Web Service standards (such as
WSDL, SOAP), and their adoption by a number of com-
munities, including the Grid community as part of the Web
Services Resource Framework (WSRF) indicates that de-
velopment of a data mining toolkits based on Web Services
is likely to be useful to a significant user community. Pro-
viding data mining Web Services offers many benefits to the
existing data mining toolkits that are installed on the user’s
machine. Firstly, these Web Services offer the data mining
algorithm based on ”pay-per-use” basis. Therefore, users
do not require to purchase an expensive toolkit that pro-
vides a wide collection of different algorithms at the time
they merely need to use one or two algorithms or use an
algorithm for a limited period of time (cost benefits). Sec-
ondly, these Web Services could be hosted on fast machines,
e.g. clusters, which enable users to make use of the fast
processing power without the need to purchase such ma-
chines (cost and time benefits). Thirdly, these Web Services
could be integrated with other third party services, allow-
ing data mining algorithms to be embedded within existing
applications. However, exposing data mining Web Services
must be supported by a framework to enable users to focus
on the conceptual basis of their problems rather than under-
standing the low level details of locating services, hence se-
mantic discovery must be introduced. The framework must
also enable users to identify trustworthy services than they
believe will fulfil their requirements.

3. Related Work

To the best of our knowledge, no existing literature di-
rectly addresses the topic of semantic discovery and selec-
tion of Web Services based on a user’s trust policy apart
from [22] in which we propose a framework to facilitate
reputation-based discovery and matchmaking of services
using semantic Web technologies. The framework has three
main components: (1) a matchmaker which semantically

discovers matching services and (2) a composer which will
retrieve a combination of services that provide the same
functionality as the requested service in case a service can-
not be matched by the matchmaker, and (3) a reputation
manager which will select a service based on reputation
metrics. The framework is limited to the service reputation
and does not take the user’s own experience into account in
the decision of selecting a service.

3.1. Trust

The significance of quantifying the trustworthiness of
agents in distributed systems is evident from on-going re-
search. Broadly speaking, there are two main approaches to
trust introduced in literature. Firstly, to allow agents to trust
each other, there is a need to endow them with the ability
to reason about the reliability, or honesty of their counter-
parts. This ability is captured through trust models. The
latter aim to enable agents to calculate the amount of trust
they can place in their interaction partners. A high degree
of trust in an agent would mean it is likely to be chosen
as an interaction partner. Conversely, a low degree of trust
would result in it not being selected (if other, more trusted
interaction partners are available). In this way, trust models
aim to guide an agents decision making in deciding on how,
when, and who to interact with. However, in order to do so,
trust models initially require agents to gather some knowl-
edge about their counterparts characteristics. This has been
achieved in three ways in the literature:

1. A presumption drawn from the agent’s own expe-
rience: Trust is computed as a rating of the level of
performance of the agent. The agent’s performance is
assessed over multiple interactions checking how good
and consistent it is at doing what it says it will. To this
end, Witkowski et al. [26] propose a model whereby
the trust in an agent is calculated based on its per-
formance in past interactions. Similar to Witkowski
et al.’s model, Sabater et al. [19] (through the RE-
GRET system) propose a similar model but do not just
limit the overall performance to the agent’s direct per-
ception, but they also evaluate its behavior with other
agents in the system.

2. Information gathered from other agents: Trust in
this approach is drawn indirectly from recommenda-
tions provided by others. As the recommendations
could be unreliable, the agent must be able to reason
about the recommendations gathered from the other
agents. The latter is achieved in different ways: (1)
deploying rules to enable the agents to decide which
other agents’ recommendation they trust more as intro-
duced by Abdul-Rahman et al. in [5]. (2) Weighting
the recommendation by the trust the agent has in the

2

recommender; EigenTrust [13] and PageRank [17]
are examples of this approach.

3. Socio-Cognitive Trust: Trust is drawn by character-
izing the known motivations of the other agents. This
involves forming coherent beliefs about different char-
acteristics of these agents and reasoning about these
beliefs in order to decide how much trust should be put
in them. An example of this is Castelfranchi’s work
[7].

Refer to [24] for more details on trust and reputation ap-
proaches.

3.2. Semantic Service Discovery

Automation of the service discovery process is essential
for the e-Science and e-Business communities. To provide
such an automatic location, the discovery process should be
based on the semantic match between a declarative descrip-
tion of the service being sought and a description being of-
fered. This problem requires not only an algorithm to match
these descriptions, but also a language to declaratively ex-
press the capabilities of services [15].

Similar research in this area was addressed by Tangmu-
rarunkit et al. with their resource selector and Deelman et
al. with their workflow generator. The ontology-based re-
source selector [11] exploits ontologies, background knowl-
edge, and rules for solving resource matching in the Grid.
In order to make the matchmaking more flexible and also
to consider the structure of Virtual Organization (VOs) the
framework consists of ontology-based matchmakers, re-
source providers and resource consumers or requesters. Re-
source providers periodically advertise their resources and
capabilities to one or more matchmakers using advertise-
ment messages. The user can then activate the matchmaker
by submitting a query asking for resources that satisfy the
request specification. The query is then processed by the
TRIPLE/XSB deductive database system [9] using match-
making rules, in combination with background knowledge
and ontologies to find the best match for the request.

Mandel and Sheila [16] automated Web Service dis-
covery by using a semantic translation within a semantic
discovery service. The approach uses a recursive back-
chaining algorithm to determine a sequence of service invo-
cations, or service chain, which takes the input supplied by
BPWS4J and produces the output desired by BPWS4J. The
translation axioms are encoded into translation programs
exposed as Web Services. The algorithm invokes the DQL
(DAML Query Language) [18] service to discover services
that produce the desired outputs. If the semantic discovery
services do not have a required input, the algorithm searches
for a translator service that outputs the required input and
adds it to the service chain. As the process is recursive it

terminates when it successfully constructs a service chain,
or the profiles in the knowledge base are exhausted.

4. Data Mining Web Services

Several Web Services are implemented to support the
data mining process. The following is a description of these
Web Services.

4.1. Classification Web Services

Each classification algorithm available in the WEKA
toolkit1 [2] is converted into a Web Service. For example,
a J48 Web Service that implements a decision tree classi-
fier, based on the C4.5 algorithm. The J48 service has two
key options: (1) classify and (2) classifyGraph. The clas-
sify option is used to apply the J48 algorithm to a data set
specified by the user. The data set must be in the Attribute-
Relation File Format (ARFF), which essentially involves a
description of a list of data instances sharing a set of at-
tributes. The result of invoking the classify operation is
a textual output specifying the classification decision tree.
The classifyGraph option is similar to the classify option,
but the result is a graphical representation of the decision
tree created by the J48 algorithm.

4.2. Clustering Web Services

Similar to the classification algorithms, Web Services
have been developed and deployed for a variety of different
clustering algorithms. For example, a Web Service is im-
plemented for the Cobweb Clustering algorithm. The Web
Service has the following operations: (1) cluster and (2) get-
CobwebGraph. The cluster operation is used to apply the
algorithm on a specified data file. The data set must be in
the ARFF format. The result of the invocation is a textual
output describing the clustering results. The getCobweb-
Graph operation is similar to the equivalent operation for
the clustering algorithm, but the result is a tree created by
the cobweb algorithm.

4.3. Semantic Description

Semantic description of services can be used to enrich
the discovery process by enabling its usage in a more dy-
namic way. In order to describe service semantics an ontol-
ogy can be used. Gruber stated in 1992 “an ontology is a
set of definitions of content-specific knowledge representa-
tion primitives: classes, relations, functions, and object con-
stants” [10]. With this definition, an ontology is both human

1Weka is a collection of machine learning algorithms for data mining
tasks

3

and machine readable. An ontology, together with a syntax
and semantics, provides the language by which knowledge-
based systems can interoperate at the knowledge-level by
exchanging assertions, queries and answers.

The taxonomy of the data mining algorithms is shown in
Figure 1. The structure shows two branches:clusters
and classifiers . A further refinement of the algo-
rithms are the classification of the classifiers into the fol-
lowing categories:Bayes , Functions , Lazy , Meta ,
Trees , Rules andMisc . Each of these categories con-
tain various data mining algorithms. For example, in the
categoryTrees there are 4 algorithms specified. Each of
these data mining algorithms are furthermore described by
a functional attribute.

Figure 1. Algorithm Taxonomy

For the discovery of a data mining algorithm we have on
one hand the algorithm taxonomy allocating different sets
of algorithms to different categories, and on the other hand
a functional description of the algorithm. This allows an
automatic discovery of the data mining algorithms.

5. Framework

The key feature of our framework is the use of an agent
that conceptually resides between the service user and the
service itself. The user agent is a software component con-
figured to each service user system. This agent proxies all
the activities from the service user, exposing the same tasks
but additionally enabling other useful functionality. Instead
of communicating directly with the service, the service user
now communicates with the agent. In this manner, the agent
can add value to the user-service interaction.

• The service user: The user performs the same ac-
tivities as described in the Service Oriented Architec-
ture (SOA), including: service discovery and service
binding. No extra functionality is added, however, the
service discovery request is extended to include two
additional parameters: semantic description and trust
policy.

• The user’s agent: On capturing a service discovery
request from the user, it adds extra functionality to dis-
cover and select services based on the user’s trust pol-
icy.

The framework architecture of the user’s agent is shown
in Figure 2. The key bootstrap operation is the location
of the Discovery Manager Service (DMS), which interacts
with the two core services: Matchmaker Service (MS) and
Selection Service (SS). The DMS accepts an incoming ser-
vice request and attempts to retrieve a matching service.
The DMS will request the Matchmaker Service (MMS) to
retrieve matching services semantically. The MMS will at-
tempt to match the service request with the service descrip-
tions in the Service Repository (SR). Once the matching
services are retrieved, the DMS will instruct the SS to se-
lect a service from the matching services that matches the
user’s trust policy.

Figure 2. The User’s Agent Architecture

5.1. The Matchmaker Service (MS)

The Matchmaker service is responsible to semantically
match the service request with service descriptions stored
in a repository. The service repository might be made avail-
able either residing on the local machine or on a remote
machine. The MS uses the data mining algorithms speci-
fied in an ontology for the semantic matchmaking process.
MS loads and parses the ontology first. Then the ontology is

4

queried returning the algorithm name. Having the algorithm
name allows to lookup service descriptions stored in the ser-
vice repository. All services representing the requested data
mining algorithm are then returned to the DMS.

5.2. The Selection Service (SS)

The selection service is responsible for selecting a trust-
worthy service.Trust is the key concept in this paper. If
a consumerA trusts a services, then this signifies a pas-
sive construct that is synonymous to the phrase “A believes
services is trustworthy to perform a particular operation”.
Trust is articulated as an assumption or an expectation that
A makes abouts. This expectation is based upon more spe-
cific beliefs which form the basis or the components of trust
[7]. Those beliefs are the beliefs we have for someone we
want to trust; the basic components of the mental state of
trust. They are the answers for the question when we ask
ourselves “What do we have in mind when we trust a ser-
vice?”. For example, we may trust a service because we
believe that the service is able to do what we need (com-
petence), and it will actually do it quickly (promptness).
Competence and promptness are therefore examples of the
basic beliefs and mental state components of trust in this
instance. Those beliefs are the analytical account and the
components of trust, and we derive thelevel of trustdirectly
from the aggregation of its componential and supporting be-
liefs. Therefore, in our model, the trust level as defined by
Falcone et al [7] isa function of the subjective certainty of
beliefs. The level of trust is used to formalize a rational ba-
sis for the decision of relying and betting on the trustee, i.e.
the service.

5.3. Belief

A belief describes a state of the world from the point of
view of an agent. It is the state a user has in his mind for
a service. Many types of beliefs exist. Below we list the
relevant beliefs for our model:

• Competence (or Reliability) Belief: The service’s raw
ability to accomplish a task, such as providing accurate
results or performing a desired action [6].

• Availability Belief: The availability of the service.

• Promptness Belief: The speed at which the service re-
sponds to task requests by accomplishing the agreed
upon task [6].

• Cost Belief: Cost refers to the monetary value that the
user is willing to pay.

5.4. Sources of Beliefs

Since the trust level is articulated as a function of the sub-
jective beliefs, the latter needs to be obtained first to com-
pute the level of trust. Beliefs are obtained from various
sources. Several models in literature propose a quantifica-
tion of the level of trust and make it dynamic. For example
in [12] and [21], the authors propose models in which they
consider the direct interaction (experience) or reputation as
sources. Experience is defined as the personal knowledge
derived from participation or observation from direct inter-
actions, whereas reputation is articulated as how the rest
of the world feels about the behaviour of a particular ser-
vice [4]. In [8] Falcone et al., consider two more possible
sources: categorization and reasoning. Categorization is the
process of grouping things based on prototypes, whereas
reasoning is the act of using reason to derive a conclusion
from certain premises.

In our model, we will restrict ourselves to the two com-
mon sources in literature: experience and reputation for
simplicity. The model, however, is flexible to include ad-
ditional sources in the future. For the purpose of our model,
we define the following two sources:

Definition 1 An Experience is the knowledge gained af-
ter having a transaction with a service. The experience with
a particular service is stored in a private repository as a set
of values termed asQuality of Experience(QoE). The term
(QoE) is defined as how the user feels about how a service
was delivered, relative to his expectations and requirements.
The QoE of a particular service in obtained from the repos-
itory by executing thegetQoE(Services) query.

Definition 2 Reputation of a service is defined on how
the service has performed with the users who have inter-
acted with the service. In other words, how the service com-
plied in delivering the expected qualities. The reputation of
the service is stored in a public repository as a set of values
termed as theQuality of Compliance(QoC). The term QoC
therefore is defined as the set of values which describe how
the service complied with delivering the promised quality of
service (QoS) as agreed upon with the user beforehand. The
QoC of a particular service in obtained from the repository
by executing thegetQoC(Services) query.

5.5. Trust Management

The trust management problem in SOAs derives from the
need to embed trust-based decision making support in ser-
vice selection and service composition. In our view, a trust
management for a SOA, in its simplest form, must have the
following functions in its life cycle as illustrated in Figure
3:

1. Capture the user’s trust disposition in a policy lan-
guage.

5

Figure 3. The Trust Management Life Cycle

2. Verify the trustworthiness of a service. This is usually
performed by exploring the reputation of the service
(global trust value) and combining it with the user’s
central view of the service (local trust value). The ver-
ification process results in a trust value assigned to the
service.

3. Make a practical decision on whether to trust or dis-
trust a service. The decision making is concluded by
taking the user’s trust policy into account.

4. If trust, evaluate/rank the service after a transaction
with the service has taken place.

A trust relationship exists between a user and a service
once the user makes a trust decision about the service’s
trustworthiness whether the trust decision is to trust or dis-
trust the service. For online interactions, particularly con-
sumers’ interactions with e-commerce sites, research has
shown that the user’s trust relationship with the e-commerce
site goes through various phases [3]. Their findings showed
that the relationship starts with users being unaware of the
site followed by a period where the user starts building some
amount of trust towards the site. The user then looks for
evidence or clues to confirm his trust and once confirmed
further experience is required to maintain the trust relation-
ship. In the context of our framework, we adopt the same
phases that a trust relationship goes through. At any point
in time, a trust relationship will exist in one of three phases:
unknown , volatile or mature . See Figure 4

The first phase of a trust relationship is theUnknown
phase. A relationship between a service consumer and a
service is in theunknown phase if the consumer has not
interacted with the service in the past. If the consumer de-

Figure 4. Phases of trust relationship - Arrows
indicate possible direction of phase transi-
tion

cides to interact with the service, the relationship enters
the Volatile phase. The trust relationship enters the
Mature phase when the user develops a mature experience
with the service by either being satisfied that the service’s
trustworthiness has reached a level whereby a more stable
trust relationship can be maintained or being assured that
the service’s trustworthiness has dropped to a level whereby
a relationship with the service is certainly vulnerable.

5.5.1 Capturing user’s policy

The first requirement in the trust management’s life cycle
is interpreting the user’s trust disposition. For this purpose,
a policy model is introduced. The trust policy provides a
model and corresponding syntax to describe the user’s trust
disposition. It provides a model for the expression of the
trust requirements and characteristics. The policy is defined
as:

Trust Policy =([t1, t2], <phase-specific rules>1,
<phase-specific rules>2,...,<phase transition rules>1,

<phase transition rules>2, ..)

where the range [t1, t2] is the time interval over which
the trust policy is valid,<phase-specific rules> is a set of
rules identified for a particular phase in the trust relation-
ship, and<phase transition rules> is a set of rules that gov-
ern the transition of the trust relationship from one phase to
another.

<phase-specific rules> formally consists of the<target
phase>, <trust sources>, <trust beliefs> and <trust
utility>. <target phase> indicates the trust relationship
phase (unknown, volatile or mature) in which the rules are
applied to.<trust sources> defines the trust sources in the

6

form (name, influence), where name indicates the name of
the source and influence is the level that the source influ-
ences the trust value.<trust beliefs> defines a sequence of
beliefs that the user is concerned of. Each element in the
sequence is of the form (name, influence), where name in-
dicates the name of the belief and influence is the level that
the belief influences the trust value.<trust utility> defines
a set of the user subjective utilities. Four types of utilities
are identified: the utility when the service does not deceive
the user, the utility when the service deceives the user if he
trusts the service, the utility when the service does not de-
ceive the user if he distrust the service, and the utility when
the service deceives if the user distrusts the service.

<phase transition rules> is a sequence of<phase tran-
sition rule>. Each<phase transition rule> consists of
<target phase>, <phase to> and<condition>. <target
phase> specifies the trust relationship phase (unknown,
volatile or mature) in which the rule is applied to.<phase
to> specifies the phase in which the target phase should be
changed to. The<condition> details the condition in which
the phase of the relationship should be changed. Figure 5
illustrates a fragment of a trust policy.

<trust policy>
<phase_rule target="unknown">

<belief_source name="QoE" influence="0.7">
<nelief_source name="QoC" influence="0.5">
<belief name="reliability" influence="0.6">
<belief name="promptness" influence="0.7">
<belief name="availability" influence="0.66">
<belief name="cost" iinfluence="-0.41">
<utility action="trust" decieve="yes" value="0.7">
<utility action="trust" decieve="no" value="0.8">
<utility action="distrust" decieve="yes" value="0.5">
<utility action="distrust" decieve="no" value="0.5">

</phase_rule>
<phase_transition target="unknown">

<phase_to>volatile</phase_to>
<condition>

<trust_level operand="greaterThan" value="0.5">
<number_of_transactions operand="greaterThan"

value="1">
</condition>

<phase_transition>
...........
.......

</trust policy>

Figure 5. A fragment of a trust policy

5.5.2 Verifying Trustworthiness

Verifying the trustworthiness of a service is the process of
computing the trust level of a service. The computed trust
level is a degree of trust instead of a simple probability fac-
tor since it evaluates the trustworthiness in a rational way.
As the trust level is articulated as a function of the subjec-
tive certainty of beliefs, an implementation of the function
is needed.

An implementation of such function, which we also use

in this model, is proposed by Falcone et al [8]. The authors’
implementation is based on Fuzzy Logic and more specif-
ically on a special type of fuzzy system called Fuzzy Cog-
nitive Maps (FCM) [14]. An FCM is an additive fuzzy sys-
tem with feedback; it is suited for representing a dynamic
system with cause-effect relations. An FCM has several
factors; representing belief sources, and edges, represent-
ing the casual power of a factor over another one. A posi-
tive cause means casual increase, whereas a negative cause
means casual decrease. The degree of how much a factor
causes another is computed from two values: the value of
the causing factor and a value of the edge which represents
how much the cause factor influences the other factor. The
values of all the edges are assigned by a human and propa-
gate in the FCM until a stable state is reached; so the values
of the other factors are computed. Once the initial values
for the first layer (i.e. belief sources) are set, the FCM starts
running. The state of a factorN at each steps is computed
using the following algorithm:

Loop i over all factors of system
Current value of factor i is Vi
Loop j over all factors of system
Calculate new value of factor i as
affected by factor j:
Vij = Vi + Eij (Vj - Vi) Iij / 100
Level Vij must be between 0 and 100.

If Vj < 0 then snap to Vij = 0.
If Vij > 100 then snap to Vij = 100.

End of loop j
End of loop i

Formally speaking, the state of a factorN at each steps
is computed taking the sum of all the inputs, i.e., the current
values at steps − 1 of factors with edges coming intoN
multiplied by the corresponding edge weights. The value is
then squashed (into the -1,1 interval) using a threshold func-
tion. The FCM run ends when an equilibrium is reached,
i.e., when the state of all factors at steps is the same as that
at steps− 1.

Suppose we want to use the fuzzy cognitive maps to
model the behaviour of the user’s trust level towards a
services which he has not interacted in the past. The
user’s pertinent beliefs fors are: the reliability, prompt-
ness, availability and cost. Those beliefs are obtained from
two sources: the user own experience registry as QoE and
the compliance registry as QoC. The user relies on the QoE
more than the QoC and, therefore, he weights the QoE and
QoC by 0.7 and 0.5 respectively. The user believes that the
promptness and reliability of the service are two important
elements for increasing his trust level. Hence, he assigns
high positive weights for them (+0.6 and +0.7). The avail-
ability of the service is not very important but will also add
to the trust level and therefore a small positive weight is al-
located to it (+0.3). The cost of the service has a significant
impact on the trust level. An increase in the cost leads to a

7

Figure 6. An example of FCM to compute trust level

decease in the trust level. Therefore, a high negative weight
is allocated to it (-0.7). The user specifies these information
in the trust policy as illustrated in Figure 5. The FCM model
for this scenario is illustrated in Figure 6.

Obtaining the trustworthiness value is the second steps in
the trust management life cycle. In order to make a decision
to trust, other factors must be taken into consideration, such
as risk and utility.

5.6. Deciding to Trust

Decision makingis the cognitive process of selecting a
course of action from among multiple alternatives mutually
exclusive actions. In other words, from among the alterna-
tives, one and only one choice can be made. Each of these
choices might have one or more possible consequences that
are beyond the control of the decision maker, which again
are mutually exclusive. The rational procedure in such a sit-
uation is to identify all possible outcomes, determine their
values (positive or negative) and the probabilities that they
will result from each course of action, and multiply the two
to give an expected value. The action to be chosen should
be the one that gives rise to the highest total expected value.
In reality people do not behave like this otherwise no-one

would either gamble or take out insurance. Within behav-
ioural decision theory, this has led to various dilutions of
the expected value theory; for example, objective probabil-
ities can be replaced by subjective estimates, and objective
values by subjective utilities, giving rise to the subjective
expected utility or SEU theory, developed by Savage [20].
Subjective expected utility is a method in decision theory
in the presence of risk. It combines two distinct subjective
concepts: a personal utility function and a personal proba-
bility analysis based on Bayesian probability theory. If an
agentA believes an uncertain event has possible outcomes
xi each with a utility toA of u(xi) and where A believes
that the probability of each outcome isP (xi), thenA’s sub-
jective expected utility will be∑

i

u(xi)p(xi)

A may be able to make a decision which changes the pos-
sible outcomes ofyj in which caseA’s subjective expected
utility will become ∑

j

u(yj)p(yj)

Which decision the agent prefers depends on which sub-

8

jective expected utility is higher. Different agents may make
different decisions because they may have different utility
functions or different beliefs about the probabilities of dif-
ferent outcomes. The SEU theory applies perfectly in the
trust decision making. In any situation, a userA endowed
with the opportunity of utilising a services has two course
of actions: (1) to trust or (2) to distrust. We calculate the
expected value associated with each possible course of ac-
tion, and select the course of action that has the highest ex-
pected value. To calculate the expected value for a course
of action, we multiply each possible payoff associated with
that course of action with its probability, and sum up all the
products for that course of action. In order to do that for
the two actions, we should consider the following abstract
scenario (illustrated in Table 1) where we call:

• Uta: The utility when the services does not deceive if
userA trustss.

• Utb: The utility when the services deceives if userA
trustss.

• Uda: The utility when the services does not deceive if
userA distrustss.

• Uda: The utility when the services deceives if userA
distrustss.

In the above scenario, the agent’s preference to trust must
be greater than the agent’s preference to distrust. If we re-
place the probability of each outcomeP (xi) by the trust
value of the outcome, then applying the SEU theory, in or-
der to trust we must have:

(TL)(Uta)+(1−TL)(Utb) > (TL)(Uda)+(1−TL)(Udb)

whereTL is the trust level that agentA has ins and
which it is calculated in the previous section. Considering
the example given in Figure 5 and the computed trust level,
we get:

((0.77)(0.8)+(1−0.77)(0.7)) > (0.77)(0.5)+(1−0.77)(0.5)

∼= 0.777 > 0.5

Since the expected value for the trust action is higher
than the expected value for the distrust action, the decision
is concluded to trust the service.

5.7. Evaluating a Transaction with a Service

Evaluating a transactionwith a service is the cognitive
process of making a judgment to assign a set of qualities
for the experience that the user had with the service in that

transaction. When a userA requests a task t from a ser-
vice s, the quality of completing the task reflectsA’s expe-
rience withs. Therefore, in experience, the qualities drawn
from that experience are important. In the context of the
our model, two types of qualities are identified: (1) Quality
of Experience (QoE) and (2) Quality of Compliance (QoC).
QoE is used as a feedback to the user’s own experience reg-
istry while QoC is used as a feedback to a public compli-
ance registry. The main difference between the two qualities
is that QoE is used solely by the user who evaluates them
while QoC is used by other users too. Therefore, a formal
framework for evaluating and updating the QoC must be
presented. This framework is discussed in details in [22].

QoE is expressed as a set of characteristics of the envi-
ronment, perception and opinion of the user as he interacts
with the service. Formally, we define QoE as:

QoE = exp, opn

Theexpis the expectation that the user had about the ser-
vice before being involved in a transaction with the service.
The expectation contains the expected trust level before the
transaction takes place. Theopn is the opinion that the user
has about the service after the transaction has been taken
place. The value represents the user’s subjective view of
how the service was obeyed to contract’s terms. How the
subjective view is computed is beyond the scope of this pa-
per.

The concept of QoC, on the other hand, stems from the
fact that there has been no practice of recording the achieved
service levels once a transaction has been completed. Doing
so gives an insight into the providers past performance by
providing necessary data to progressively assess the com-
pliance levels over a range of past transactions. Refer to
[23] for more information on how the QoC is computed.

6. Experiment

The primary goal of our experiment is to show the bene-
fits of our framework and precisely the benefits of introduc-
ing a semantic service discovery and a trust approach for
service selection. In the experiment we also show how the
selection of services change when the components of trust
change.

We construct a simulation that allows the creation of var-
ious data mining Web Services, e.g. classification and clus-
tering Web Services. In addition, the simulation allows the
creation of sources of beliefs, e.g. QoC and QoE, which
feed a service consumer with belief values for the availabil-
ity, reliability, promptness and cost for each Web Service.
The user uses the information given to make a trust-based
decision to select one of the Web Services.

9

Action Utility mmm Expected Value
s does not deceive (probability =pa) s deceive (probability =pb)

Trust Uta Utb (pa)(Uta) + (pb)(Utb)
Distrust Uda Udb (pa)(Uda) + (pb)(Udb)

Table 1. Analysis of trust decision making

6.1. Setup Summary

We conduct two experiments. In the first experiment, we
show how the framework works by discovering and select-
ing a matching service. In the second experiment we show
how the selected service changes if the trust parameters de-
fined in the user’s trust policy change.

6.2. Experiment 1

In this simulation we create six Web Services: three clas-
sification Web Services (J48 Classifier), and three clustering
Web Services (Cobweb cluster).J48 is an implementa-
tion of C4.5, a standard algorithm that is widely used for
practical machine learning producing decision tree models.
This algorithm works by forming pruned partial decision
trees (built using C4.5’s heuristics), and immediately con-
verting them into a corresponding rule [27]. Semantically,
the J48 algorithm can be found in the taxonomy by tra-
versing the tree structure as follows:classifiers ->
trees -> J48 . The function attribute of the algorithm is
forming pruned partial decision trees .

We also create two sources of beliefs: QoC and QoE
which feed the user with the belief values for the six Web
Services as shown in Table 2.

We send the following service request to the user-agent
to discover and select a service considering the matching
parameters and trust policy.

As a result of the service request shown above in Fig-
ure 7, the service request is sent to the DMS and forwarded
to the MMS. As a first step the MS reads the service re-
quest parameters responsible for the matchmaking iden-
tified by the matchingParameters tag. Having the
two attributes allows to discover the algorithm semantically.
The parametertrees breaks the search further down and
results into one out of four algorithms. The function at-
tribute partial decision trees then matches the
J48 algorithm . As there are four J48 Web Services
available in the service repository, the MMS returns those
services to DMS. In this step, the same result is obtained
each time.

Once DMS forwards the three matching services to SS,
the later computes the trust value for each service. To do
so, SS acquires the belief values for each requested trust
parameter from our simulated sources of beliefs (i.e. QoC

<ServiceRequest> <Service name=’’>
<matchingParameters>

<parameter name="trees" value="">
<parameter name="function"

value="partial decision trees">
</matchingParameters>

<trust policy>
<phase_rule target="unknown">

<belief_source name="QoE" influence="0.7">
<nelief_source name="QoC" influence="0.5">
<belief name="reliability" influence="0.6">
<belief name="promptness" influence="0.7">
<belief name="availability" influence="0.66">
<belief name="cost" iinfluence="-0.41">
<utility action="trust" decieve="yes" value="0.7">
<utility action="trust" decieve="no" value="0.8">
<utility action="distrust" decieve="yes" value="0.5">
<utility action="distrust" decieve="no" value="0.5">

</phase_rule>
<phase_transition target="unknown">

<phase_to>volatile</phase_to>
<condition>

<trust_level operand="greaterThan" value="0.5">
<number_of_transactions operand="greaterThan"

value="1">
</condition>

<phase_transition>
...........
.......

</trust policy>
</ServiceRequest>

Figure 7. An example of a service request

and QoE) and computes the trust value using a FCM as dis-
cussed in section 5.5.2. The computed trust value for the
three services are 77, 48, 24 respectively. Since the first ser-
vice has the highest trust value, the service is selected. The
next step is to decide to trust or distrust the service. Using
the formula in section 5.6 we get:

((0.77)(0.8)+(1−0.77)(0.7)) > (0.77)(0.5)+(1−0.77)(0.5)

∼= 0.777 > 0.5

Since the expected value for the trust action is higher
than the expected value for the distrust action, the decision
is concluded to trust the service.

6.3. Experiment 2

In the second experiment, we perform the same opera-
tion as in the first experiment but we modify some of the
parameters in the trust policy. Mainly, we change the im-
portance values of the reliability, availability, promptness

10

Table 2. "Experiment 1 values"
Service Reliability Availability Promptness Cost

QoE QoC QoE QoC QoE QoC QoE QoC
1 54 34 51 87 87 67 54 23
2 46 58 66 78 45 65 22 13
3 37 22 16 19 14 23 18 17
4 65 34 32 23 54 33 43 35
5 62 65 32 56 75 67 76 88
6 12 23 42 44 23 41 15 17

and cost into 30, 20, 30 and 90 respectively. This modifica-
tion reflects the user’s strong disposition towards the cost of
the service.

On running the experiment we get the following trust
value for the three services: 51, 88, 15 for service 1, 2,
and 3 respectively. The result shows that the second service
has the highest trust value in this case. This reflects the fact
that service 2 costs less than the first service, and the user’s
desire for cheaper services.

7. Conclusion

Online service provision commonly takes place between
parties who have never had transactions with each other be-
fore, in an environment where the service consumer often
has insufficient information about the service provider and
about the goods and services offered. In such environment,
several challenges regarding discovering and selecting the
“right” service need to be addressed. In this paper, we in-
troduced a framework for semantic discovery and selection
of Web Services using a trust management model. The in-
troduced trust management model identifies four phases in
trust management: (1) capturing user’s trust disposition, (2)
verifying trustworthiness level, (3) making trust decision
and (4) evaluation after a transaction has taken place.

The significance of our framework is proven by the ex-
periment results. Without the MatchMaker service, the user
would require to have a low level knowledge about the var-
ious data mining algorithms. Without the trust-based Ser-
viceSelector, the user would select one of the three services
randomly which might not match the user’s trust policy.
Therefore, we believe that our framework has significant
advantages regarding the traditional service discovery and
selection approach.

Applying the approach and framework using the case
study shows how the trust factors that produce the final trust
value for each service are dependent on:

• the initial strength of the different beliefs (on which
trust is based on), but also

• how much a specific belief impacts the final trust (the

casuality power of a belief).

References

[1] Faehim. available at:
http://users.cs.cf.ac.uk/ali.shaikhali/faehim/index.htm.
last viewed: July 2005.

[2] The weka toolkit, university of waikato. Available at:
http://www.cs.waikato.ac.nz/ml/weka/. last viewed: Novem-
ber 2004.

[3] E-commerce trust study. Cheskin Research and Studio
Archetype, 1999.

[4] Roget’s II: The New Thesauru. Houghton, 2003.
[5] A. Abdul-Rahman and S. Hailes. Using recommendations

for managing trust in distributed systems.Proceedings
IEEE Malaysia International Conference on Communica-
tion, 1997.

[6] R. Falcone and C. Castelfranch. Cognitive anatomy, social
importance and quantification.Proceedings of the Interna-
tional Conference on Multi-Agent Systems, 1998.

[7] R. Falcone and C. Castelfranch. Social trust: A cognitive
approach.Trust and Deception in Virtual Societies Journal,
pp. 55-90, 2001.

[8] R. Falcone, G. Pezzulo, and C. Castelfranch. A fuzzy ap-
proach to a belief-based trust computation.Lecture Notes
on Artificial Intelligence, pp. 73-86, 2631, 2003.

[9] T. X. R. Group. Xsb.http://xsb.sourceforge.net.
[10] T. Gruber. Ontolingua: A mechanism to support portable

ontologies. Technical Report KSL 91-66, Knowledge Sys-
tems Laboratory, Department of Computer Science, Stan-
ford University, 1992.

[11] C. K. H. Tangmunarunkit, S. Decker. Ontology-based re-
source matching in the grid - the grid meets the semantic
web. In the proceedings of the First Workshop on Seman-
tics in Peer-to-Peer and Grid Computing (SemPG03). In
conjunction with the Twelfth International World Wide Web
Conference 2003. Budapest, Hungary, 2003.

[12] C. Jonker and J. Treur. Formal analysis of models for the
dynamics of trust based on experiences.Proceedings of the
Autonomous Agents ’99 Workshop on Deception, Fraud, and
Trust in Agent Societies, 1999.

[13] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in p2p net-
works.Proceedings of the Twelfth International World Wide
Web Conference, 2003.

11

[14] B. Kosko.Fuzzy Thinking: The New Science of Fuzzy Logic.
Hyperion, 1994.

[15] S. A. Ludwig. Flexible semantic matchmaking engine.Pro-
ceedings of 2nd IASTED International Conference on Infor-
mation and Knowledge Sharing (IKS), AZ, USA, 2003.

[16] D. Mandell and S. McIlraith. A bottom-up approach to au-
tomating web service discovery, customization, and seman-
tic translation.Proceedings of the 12th International World
Wide Web Conference, Workshop on E-Services and the Se-
mantic Web(ESSW’03), Budapest, 2003.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web.Stanford
Digital Library Technologies Project, 1998.

[18] P. H. R. Fikes and I. Horrocks. Daml query language.Ab-
stract Specification, 2002.

[19] J. Sabater and C.Sierra. Regret: a reputation model for gre-
garious societies.Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agents Sys-
tems, 2002.

[20] L. J. Savage.Foundations of Statistics. New York: John
Wiley & Sons, 1954.

[21] M. Schillo, P. Funk, , and M. Rovatsos. Who can you trust:
Dealing with deception. Proceedings of the Autonomous
Agents ’99 Workshop on Deception, Fraud, and Trust in
Agent Societies, 1999.

[22] A. Shaikh Ali, S. Majithia, O. Rana, and D. W. Walker.
Reputation-based semantic service discovery.Concurrency
and Computation: Practice and Experience, 2005.

[23] A. Shaikh Ali, O. Rana, and D. W. Walkeri. Ws-qoc: Mea-
suring quality of service compliance.Proceeding the 2nd
International Conference on Service Oriented Computing
(short paper), November 2004.

[24] A. Shaikh Ali, O. F. Rana, and R. J. Al-Ali. Evidence-aware
trust model for dynamic services.Book Chapter, in ”High
Performance Computing: Paradigms and Infrastructure”,
edited by Laurence Yang and Minyi Guo, John Wiley, 2005.

[25] A. Shaikh Ali, O. F. Rana, and I. J. Taylor. Web services
composition for distributed data mining.Workshop on Web
and Grid Services for Scientific Data Analysis (WAGSSDA),
Oslo, Norway, 2005.

[26] M. Witkowski, A. Aritikis, and J. Pitt. Experiments in build-
ing experiential trust in a society of objective-trust based
agents.Trust in Cyper-societies, pages 111-132, 2001.

[27] I. H. Witten and E. Frank. Data mining: Practical machine
learning tools and techniques with java implementations.
Morgan Kaufmann, ISBN 1-55860-552-5, 1999.

12

