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Abstract—Visual object tracking is an active research field
in the area of computer vision. The tracking process usually
includes the construction of an object appearance model and the
object localization. This paper investigates the use of Particle
Swarm Optimization (PSO) as the object localization method
based on the Bayesian tracking framework. The widely adopted
particle filter tracking technique, however, suffers from high
computational cost due to the approximation requirement of the
distribution of particles. Thus, PSO is applied since it can adap-
tively adjust the computational expenditure according to each
frame in the video. Furthermore, a new appearance model based
on Earth mover’s distance is proposed. The experimental results
show that the proposed approach enhances the accuracy of the
tracking algorithm significantly compared to the basic particle
filter tracking method. Furthermore, the proposed appearance
model is more robust than other Earth mover’s distance based
tracking algorithms.

I. INTRODUCTION

Object tracking plays an important role in many different
applications that are related to vision such as motion analysis,
activity recognition, video surveillance and traffic monitoring.
Even though a lot of progress has been made in the past
decade, however, given the nature of the object tracking task
with the many challenging parts, it is still a very active
research area with incremental improvements being made. The
challenging parts that are involved in object tracking are due
to the changes in the appearance model when objects are being
tracked such as camera motion, occlusion, illumination, pose
variation, and shape deformation.

The tracking process involves the following major steps.
First, an appearance model is used to represent the object with
the appropriate features using an object representation, which
is done in a fixed frame. Then, in successive frames, a tracking
method is applied to estimate the likely state of an object.
Possible tracking methods are Kalman filter [1], and particle
filter [2], [3]. As has been pointed out by many researchers, the
appearance model of the object has the most influence on the
accuracy of the tracking algorithm. There are many different
factors that need to be considered for an effective appearance
model. For example, an object can be represented by different
features such as texture [4], Haar-like features [5], [6], [7],
intensity [8], color [2], or superpixels [9]. Furthermore, the
representation scheme can be based on local histograms [10]
or holistic templates [1].

Earth mover’s distance (EMD) was first used for image
retrieval. Due to its extraordinary capability of measuring
distance between distributions, researchers started applying
this distance measure to the field of visual object tracking.
In a typical visual object tracking application using EMD,
two histograms or distributions are usually extracted from
the target and candidate, respectively. Then the earth mover’s
distance between two histograms or distributions is calculated,
which in turn is used as input to locate the tracked object.

In this paper, we investigate the use of Particle Swarm
Optimization (PSO) as the object localization method based on
the Bayesian tracking framework together with an EMD based
appearance model. The widely adopted particle filter tracking
technique suffers from high computational cost due to the
approximation requirement of the distribution of particles in
fact most of particles located in low likelihood area contribute
little towards particles. In this paper, particles are tailored
and the PSO algorithm is applied whereby the computational
expenditure according to each frame in the video can be adap-
tively adjusted. This way the tracker is more robust in cases
of recovering from a losing target because of PSO’s ability
to explore a wider search area. Our previous work [11] used
PSO and the Bayesian tracking framework as well, however,
it was focused on the sampling mechanism of particles.

II. RELATED WORK

Particle filters were first introduced to visual tracking in
[12]. Since then it has become a popular method for object
tracking since it has shown very good performance in par-
ticular for nonlinear target motion as well as it is flexible
to different object representations [13]. Particle filters, also
known as sequential Monte Carlo models, uses particles that
are sampled in order to construct the target representation.
Particle filters are more likely to perform well in cluttered and
noisy environments. One of the shortcomings, however, is the
high computational cost of the particle filter trackers, which
increases linearly with the number of particles. Thus, several
methods have been proposed to overcome this limitation in the
past. The following describes object trackers that are based on
the particle filter technique.

For example, in [2] a color-based probabilistic tracking
algorithm is proposed. The algorithm is based on color his-
togram distance using the particle filter tracking technique.
The particle filter enables to handle the color clutter in the978-1-5090-4601-0/17/$31.00 c©2017 IEEE



background and also addresses complete occlusion of the
tracked objects over a few frames. The algorithm uses a multi-
part color modeling scheme to capture the spatial layout that
is ignored by global histograms. Furthermore, the algorithm
incorporates a background color model when needed, and
extents the algorithm to track multiple objects.

Another particle filter based algorithm is described in [8].
This approach uses an incremental learning method that learns
a low-dimensional subspace representation, and efficiently
adapts to changes in the appearance of the target. The model
update is based on principal component analysis and includes
two features. The first feature is a method to update the sample
mean, and the second is to include a forgetting factor to ensure
less modeling power is expended to fit older observations.
These introduced features improve the overall tracking per-
formance significantly.

Another approach based on the particle filter framework is
given in [14]. The approach formulates the tracking task as a
structured multi-task sparse learning problem. In the model,
the particles are represented as linear combinations of dictio-
nary templates that are updated dynamically, and the learning
of the representation of each particle is considered as a single
task in the multi-task tracking method. The authors introduce
a popular sparsity-inducing L mixed norm to regularize the
representation problem enforcing joint sparsity to learn the
particle representation.

As an effective optimization method, PSO has been used
under the Bayesian framework, mostly together with the par-
ticle filter, to achieve the best estimation. The authors in [15]
use an improved PSO-Gaussian swarm merged into particle
filter to estimate the nonlinear system state. The PSO is used
to move the sampled particles to high likelihood regions,
where the fitness function is defined based on the discrepancy
between the new observation and the predicted observation.
The authors claim that the particle impoverishment problem
is thus avoided.

A similar idea was adopted in [16], where after the gen-
eration of the prior samples, these samples are moved to the
desired region so that both the likelihood and the prior density
of the particles is significant. The problem is solved as a
multi-objective optimization problem, where a conventional
weighted aggregation (CWA) approach is employed to com-
bine the two objectives. The resulting maximization problem
is then solved using PSO. Experimental results suggest the
proposed method as a promising alternative in cases of high
system and measurement noise levels and small sample sizes.

The so-called multi-layer importance sampling proposed
in [17] improves the performance of the particle filter by
moving particles to the region with high likelihood using PSO.
Since the posterior of the particles depends on the likelihood
of observation, thus the best estimation is obtained using
the Maximum a Posterior (MAP). The authors claim that
this method is better than the particle filter as well as the
unscented particle filter. In addition, the method also works
more effectively for dynamic optimization problems than the
sequential Monte Carlo methods.

The authors in [18] implemented a particle filter where
the motion model is implicitly canceled out by the special
importance density. The PSO is only used to locate the high
likelihood region instead of sampling the particles as is the
case in other papers. Then, particles are sampled according
to both the global best and the individual best of the swarm.
The appearance model used in their paper is a combination of
histogram of color (HOC) and histogram of gradient (HOG).
The experiments show that the proposed method achieves
higher accuracy.

A locally orderless tracking approach is outlined in [19].
The algorithm automatically estimates the amount of local dis-
order in the object by specializing in both rigid and deformable
objects. A probabilistic model of object variations is used that
is based on the EMD controlling the cost of the moving pixel
as well as the changing of their color. These costs are adjusted
online during the tracking task to address the amount of local
disorder in the object.

Authors in [20] proposed an algorithm which uses Gaus-
sian mixtures as appearance model and EMD as similarity
measurement. In [21], EMD was used to match images. EMD
was employed to measure the similarity between target and
candidate, each is represented by a set of signatures generated
by the super pixel technique based on color distributions. A
signature is described by its center and size space that are
given by the super pixel algorithm. Its center is a point in the
5-D space (3-D for colors and 2-D for the geometric position).

Object tracking algorithms in [22] use EMD to compare a
group of patches to the target template, each patch is sampled
from a small area within the potential target and expressed as
a 1-D histogram.

Authors in [23] developed a differential EMD method to
enable gradient decent search by obtaining the derivative of
EMD with respect to the location. Similar to [22] EMD in
this paper is used as similarity measure between the signatures
based on the color distributions.

The most critical problem with EMD is its high computa-
tional cost. As many papers suggest, the complexity of EMD is
O(n3). In order to mitigate this issue, practical applications of
EMD devote large efforts to reduce the data size. As proposed
in [21] and adopted in [19], [22], [23], a set of signatures
based on color distributions instead of pixels could reduce the
data size by several folds while preserving the essential color
information.

The adoption of signatures based on color distribution
successfully mitigates the excessive computational complexity
of EMD. However, there are several drawbacks that present
challenges to future improvement. First, the high dimensions
of the space where the signature center resides makes efforts
of extending on the dimension difficult since this will increase
the data size dramatically. Second, this signature is designed
to work on color images/videos. By including 3 color dimen-
sion, the higher dimension increases distances between the
signature sets thus helps to differentiate them better. However,
color information is not universally available. For example,
sometimes color images/videos are not available. Sometimes



even with color cameras, saturation of the captured video may
be very weak in case of adverse light environments. Hence,
it is desirable to develop an appearance model that effectively
measures the EMD distance between the image patches and
also works on grayscale videos.

III. PROPOSED APPROACH

In order to broaden the applicable scenarios, especially in
case of grayscale videos, a new appearance is proposed which
works together with PSO enabled Bayesian tracking to provide
improved performance.

A. Appearance Model

In this section, we construct an appearance model that
describes the target and measures the similarity between the
target and candidates. This includes constructing histograms
from frames for target and candidates and distances between
histograms, and also other adjustments as needed.

1) 2-D Histogram: Because of the high complexity of
EMD, researchers were forced to use smaller data size to
control the running time within an acceptable timeframe. The
information is compressed considerable during the tracking
process. For example, the pixels are grouped together by the
super pixel algorithm. Thus, their geometric information is
blurred.

In this paper, we are interested in keeping each pixel as in-
dependent and investigate how their geometric information can
be used during the process. Specifically, affine transformation
is employed to resize each target or candidates to an array of
32 × 32 pixels. Each pixel only holds intensity information.
Color videos will be transformed into grayscale first. By doing
so we obtain a 2-D histogram where the bins are the exact
geometric position of each pixel and the value of each bin is
the intensity of its corresponding pixel as shown in Figure 1.

Fig. 1. 2-D Histogram

The dimension of the histogram is drastically reduced by
using grayscale frames and treating the intensity of the pixels
as the value for each bin instead of another dimension.

However, to measure the EMD distance between two 32× 32
2-D histograms is still too large according to our experiments.
There are certain approximations we can choose from. In this
paper, we use EMD-L1 proposed in [24] as an approximation
of EMD between two histograms. We denote the distance
between two histograms measured by EMD-L1 as DEMD.

2) Partitioning: In order to differentiate candidates from
the background better, we partition the target area into smaller
overlapping patches as shown in Figure 2. We then compare
each patch with its corresponding counterpart, then the dis-
tances of each patch are summed. Because of the spatial ar-
rangement of these patches, the spatial information is naturally
used.

Fig. 2. Target partitioning

3) Contrast Enhancement: Intensity information is suscep-
tible to illumination variation, which presents a big challenge
to intensity based appearance models. Usually a normalization
is performed to mitigate the effect of illumination variation.
However, it is not enough when EMD is used. The nor-
malization enlarges or shrinks the values of the entire data
set at the same time, so all bins are adjusted towards the
same direction. It does not change the relative difference
between bins significantly. For example, for a target turning
dark because of the shadow of a surrounding building, all of
its pixels are pushed to lower intensity values. The texture of
the target becomes obscured due to the lower contrast. After
normalization, the difference between pixels, i.e. contrast,
still remains small. Contrast enhancement is employed to
create a histogram of intensity with enough diversity. In this
paper, a technique called contrast-limited adaptive histogram
equalization (CLAHE) [25] is used to enhance the contrast of
video frames.

B. PSO based Bayesian Tracking

1) Bayesian Tracking: In the context of Bayesian inference,
the visual object-tracking problem can be formulated by two
models: system model and measurement model. The system
model is given in Eq. (1), which represents the underlying
system state and its dynamics. It is usually inaccessible due
to persistent noise during the measurement process; what can
be observed is a measurement of the state that is obtained
through the measurement process, which is given in Eq. (2):

xk = fk(xk−1, vk−1) (1)

zk = hk(xk, nk) (2)



where the sequence {xk, k ∈ N} denotes the target state, the
sequence {zk, k ∈ N} denotes the measurement of the state
sequence, and vk and nk are system noise and measurement
noise, respectively.

The goal is to obtain an estimation of the current state,
which can be formulated into derivation of a conditional
density p(xk|z1:k), which is performed in a recursive man-
ner consisting of a prediction and an update operation. The
conditions include prior knowledge about the system and the
measurement process as well as all measurements z1:k =
{zi, i = 1, 2, . . . , k} up to time k. By the criteria of Maximum-
a-Posterior (MAP), the optimal estimation is the state where
the posterior probability density is the highest. By Bayes’ rule,
the posterior density of p(xk|z1:k) is derived as in Eq. (3)
according to the Bayes’ rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3)

where p(zk|xk) denotes the likelihood of zk being a real
measurement of xk and p(xk|z1:k−1) denotes the prior density
of xk before time k. The normalizing denominator p(zk|z1:k−1
is required per Bayes’ rule and remains constant across all
potential xk.

The prior density of xk is predicted based on all the
available measurements up to time k − 1 as given in Eq. (4).

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (4)

where p(xk|xk−1) is the motion model, and p(xk−1|z1:k−1)
is the posterior density of state xk−1.

It is very rare that an exact expression of equations above
can be found for real problems. This problem is circumvented
by adoption of density approximation by particles, where each
particle represents a sample from the approximated density and
is drawn based on an approximated density. In such way, the
distribution of the particles describes the approximated density,
and the denser the particles are, the higher the probability is.

The particle filter, which is widely used in object tracking,
serves as a direct implementation of the Bayesian inference.
In a particle filter, the posterior density is approximated by
weighted particles. These particles are propagated forward
between time steps in the prediction stage based on the
previous particle set by an importance sampling mechanism
as shown in Eq. (5), where q(·) is the importance density.
Afterwards, the weights of these particles are updated by a
new measurement in the update stage as described in Eq. (6).

xk ∼ q(xk|x0:k−1, z1:k) (5)

wik ∝ wik−1
p(zk|xk)p(xk|xk−1)

q(xk|x0:k−1, z1:k)
(6)

2) Particle Swarm Optimization: PSO was first introduced
in [25] as a population based stochastic optimization method.
Similar to other evolutionary algorithms, PSO was inspired
by some natural phenomenon. PSO mimics the social behavior
that is often observed in bird flocking by adopting the concept
of a swarm in which individuals can communicate with their

peers. In a swarm (bird flock), each individual (bird) represents
a solution (a position) and each solution corresponds to a
fitness value (distance to the food). An individual’s movement
is influenced by both its own experience and its peers’ knowl-
edge. Eventually, the whole swarm is likely to converge at an
optimal position.

Formally, the social behavior within PSO can be represented
as follows:

vt+1
id = wvtid + c1p1(ptid − xtid) + c2p2(ptgd − xtid) (7)

xt+1
id = xtid + vt+1

id (8)

where xtid represents the status of an individual, i.e. particle,
vtid represents the velocity of individuals, ptid represents the
best known position an individual has explored, ptgd represents
the global best known position exchanged between the peers,
w is the inertia coefficient, and c1, c2 are random weights.

In object tracking applications, the task of searching for the
best suitable candidate can be formulated as an optimization
problem, and PSO is employed as the optimizer to locate the
global optimum. During such PSO process, each candidate of
the target can be represented by a particle, and the multiple
dimensional search space is constructed on the basis of the
candidate position, size, and rotation, etc. The fitness value
is often defined as the similarity between the candidate and
the target or the confidence level of the candidate being the
real target. Once initialized, the PSO process does not require
any input of the candidate, it compares the fitness values of
the current candidates and generates a new set of candidates
according to the PSO update equations.

3) Particle Swarm Optimization in Bayesian Tracking
Framwork: As discussed in Section III-B1, in most real
applications, the Bayesian inference can only be solved in a
non-linear manner. Thus, this makes the particle filter a good
choice when performing Bayesian inference for visual object
tracking. However, the particle filter itself suffers from the
following problems. The first issue is degeneracy [26], [27],
where a large portion of the particles will have negligible
weight after a few iterations. Thus, these particles contribute
very little towards the distribution approximation because of
their small weights. To cope with the problem of degeneracy,
Sampling Importance Resampling (SIR) was adopted in [26]
where particles of small weights have a smaller chance to
be forwarded to the next iteration. While this alleviates the
degeneracy problem to some extent, however, the resampling
may lead to the impoverishment problem, where the diversity
of particles is reduced especially in the case of small process
noise.

Extensive research efforts have been spent on dealing with
the degeneracy problem without giving rise to the impoverish-
ment problem. The regularized particle filter in [28] resamples
particles from a continuous posterior density created by ap-
plying the kernel smoothing to the discrete posterior density
in order to distribute the particles more evenly. The auxiliary
particle filter in [29] avoids resampling from particles that have
low likelihood by constructing an importance density that has



high conditional likelihood. The kernel particle filter proposed
in [30] employs Mean-Shift to migrate particles towards higher
probability locations on the posterior probability landscape.

Recently, due to its broad searching capability, PSO was
investigated to be integrated with the particle filter to over-
come the degeneracy problem mentioned above. As discussed
previously, the PSO approach adopted in [31], [32], [17]
moves particles towards regions with higher likelihood, thus,
alleviating the problem of degeneracy. In addition, in [33] an
additional sampling operation is performed following the PSO
process. To reduce the degeneracy, the particles have to be
moved or sampled as directed by the PSO process instead
of being propagated from the previous time step through the
importance density. The denominator, i.e., importance density
term in Eq. (6), is set to p(xk|xk−1) to make the equation
even. By doing this, the system motion model p(xk|xk−1) is
canceled out during the particle filter iterations. This means
the method discussed above completely neglects the system
model. And the particles are not sampled from importance
density, instead they are generated by the PSO process. It is
worth to note that the optimal importance density is actually
the system motion model p(xk|xk−1), and it will be canceled
out in Eq. (6) [34]. However, the particles have to be drawn
by the motion model first.

It can be observed that both problems of degeneracy and
impoverishment are inherent in the fact that densities in
the particle filter are approximated by a limited number of
particles, and the particles are sampled from the posterior
density before it is even estimated. Although larger number of
particles will certainly mitigate these problems, it is difficult
to determine what number will be adequate. Increasing the
number of particles unboundedly is both computationally
expensive and practically prohibitive.

In this paper, we try to develop a tracking scheme which
does not suffer from the degeneracy problem as in particle
filters and conforms to the Bayesian inference framework. We
do this by formulating the Bayesian tracking problem into a
PSO optimization problem. Let us rewrite Eq. (3) and Eq. (4)
as such:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(9)

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (10)

In alignment with the Maximum a Posterior (MAP), the
optimal estimation of the system state at time x̂k−1 can be
obtained by:

x̂k−1 = arg max
xk−1

(p(xk−1|z1:k−1)) (11)

Here, if x̂k−1 is significant enough, we can use the
optimal estimation x̂k−1 instead of the entire distribution
p(xk−1|z1:k−1), thus Eq. (10) in turn becomes:

p(xk|z1:k−1) = p(xk|x̂k−1)p(x̂k−1|z1:k−1) ∝ p(xk|x̂k−1)

(12)

and Eq. (9) becomes:

p(xk|z1:k) ∝ p(zk|xk)p(xk|x̂k−1) (13)

Now the Bayesian tracking problem is formulated as an
optimization problem, and can be optimized using PSO in
the space of the current system state at time k. The fitness
function is given in Eq. (13), and p(xk|x̂k−1) is the system
motion model. The key in this PSO optimization process is
the significance of x̂k−1 compared to the entire distribution
p(xk−1|z1:k−1). It largely depends on the chosen appearance
model. Usually, if the appearance model is discriminative
enough, then its likelihood function p(zk−1|xk−1) would peak
significantly at the real target position.

Another benefit by formulating the tracking problem as a
PSO optimization task includes the adaptive size of the particle
swarm. Different from the particle filter, which uses a fixed
particle swarm size throughout the entire tracking process, the
required iterations of PSO can be adjusted according to the
fitness value or some other criterion. For the frames in which
the target is distinct, the PSO process can use fewer iterations
to locate the target. Otherwise, more iterations can be used to
search a larger scope.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our tracking algorithm on a
video data set comprised of a wide range of videos. We
first examine the validity of the fitness function. Then, the
performance of our object trackers is evaluated against other
trackers that use EMD as the distance measure.

A. Experimental Setup
The experiments are implemented based on the object

tracking framework developed in [35]. The video set is also
provided by this framework, which includes 51 videos of
different scenes. All of the code is run in Matlab R2015 on a
Windows machine equipped with Core i5@2.8GHz*4 Cores,
16GB RAM.

1) System Model: For the observation model, we use the
appearance model described in Section III-A. The likelihood
is defined in Eq. (14):

p(xk|zk) ∝ DEMD (14)

where DEMD is the earth mover’s distance between target and
candidates.

The state variable xk is modeled by affine transformation
parameters (xk, yk, sk, θk, αk, φk), where {xk, yk} are the co-
ordinates of the target center, sk denotes the scale, θk denotes
the rotation, αk denotes the aspect ratio, and φk denotes
the skew direction at time k. A set of affine transformation
parameters specify an affine transformation from unit cube at
the origin of the image to the state xk.

The system motion model is assumed to be of Gaus-
sian distribution p(xk|xk−1) ∼ N(xk−1,Σ), where Σ is
the diagonal covariance matrix whose diagonal elements
(σ2
x, σ

2
y, σ

2
s , σ

2
θ , σ

2
α, σ

2
φ) denote the variance for each dimen-

sion. In this paper, we set σ2
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2
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s , σ2
α, σ2

θ and σ2
φ

to 0.



2) PSO Setup: The PSO process in our tracker is set as
follows. The population size of the particle swarm is set to
30. The stopping criteria used are:

1) after 30 iterations are elapsed, or
2) if the overlap ratio of the best bounding box of the

previous 6 frames as compared to the current frame is
at least 99%.

In this paper, we only vary the target location, scale and
aspect while leaving the other two parameters unchanged.
Therefore, the search space is 4-dimensional. The swarm of
the particles are initialized uniformly for each dimension,
where x, y is distributed evenly within ±30 pixel on both the
horizontal and vertical axis around the previous target position,
s is distributed between ±0.06, and α is distributed between
±0.009.

B. Results

We first verify the applicability of using the optimal es-
timation instead of the entire distribution as explained in
Section III-B3. For the sake of simplicity, the posterior
density p(xk−1|z1:k−1) at time k − 1 is approximated by
p(xk−1|zk−1). This posterior density serves as the prior den-
sity for the calculation of p(xk|z1:k) at time k and consists
of 1,681 particles covering ±20 pixels in both horizontal and
vertical directions centered at the optimal estimation of the
target at the previous time step k−1. In order to better visualize
the distribution, we only vary the candidate location while
keeping the other parameters unchanged.

We compute the posterior density p(xk|z1:k) at time k with
the prior density p(xk−1|zk−1) represented by 1,681 particles
as shown in Eq. (9) and with the prior density p(xk−1|zk−1)
represented only by x̂k−1, Eq. (13), respectively. Figures 3 and
4 show that in case of a high discriminative appearance model,
using the optimal estimation x̂k−1 only instead of whole set
of particles does impact the shape of the resulting posterior
density p(xk|z1:k) noticeably.

Fig. 3. Posterior density with prior density containing all particles

Fig. 4. Posterior density with prior density containing optimal estimation

1) Evaluation Method: In this work, we use the precision
and success rate for the quantitative analysis as in [35] to
evaluate the tracking ability of our approach. Both precision
rate and success rate are measured on all 51 video sequences
to eliminate the dependency on the specific videos and alle-
viate potential resulting variance. In detail, the precision rate
measures the accuracy of the tracking in terms of the distance
between the tracking result and the ground truth. Specifically,
the distance is derived by calculating the Euclidean distance
between the centers of the tracking result and the ground truth.
Given {x, y}r is the center of the tracking results, and {x, y}g
is the center of the ground truth, then the precision rate is
obtained based on Eq. (15):

precision rate =
N‖{x,y}r−{x,y}g‖≤threshold

Ntotal
(15)

where Ntotal is the number of total frames for which the track-
ing is performed, N‖{x,y}r−{x,y}g‖≤threshold is the number of
frames which is within a given distance of the threshold from
the ground truth, and ‖ · ‖ represents the Euclidean distance.

The success rate on the other hand measures the robustness
of the tracking in terms of the overlap between the tracking
result and the ground truth. Given Pr is the set of pixels within
the tracking result bounding boxes, and Pg is the set of pixels
within the ground truth bounding boxes, the success rate is
given by Eq. (16):

success rate =
NS≥threshold

Ntotal
(16)

where Ntotal is the total number of frames for which the
tracking is performed, NS≤threshold is the number of frames
whose overlap score S is equal or greater than the given
threshold, S =

|Pr∩Pg|
|Pr∪Pg| is the overlap score between the

tracking result and the ground truth, and | · | measures the
number of pixels in the pixel set.

2) Performance Evaluation: In this section, we compared
our PSO based Bayesian Tracking Framework (B-PSO) with
the proposed EMD based appearance model with several other



trackers including the EMD based tracker (LOT) [19], regular
bootstrap particle filter [36] with Sampling Importance Resam-
pling (SIR) [26] connected with our EMD based appearance
model (PF-EMD), and Particle Filter incorporating PSO [17]
with our EMD based appearance model (PSO-PF). All these
trackers share the same PSO parameters.

As shown in Figures 5 and 6, our PSO based Bayesian
Tracking Framework (B-PSO) tracker performs best. Consider-
ing the fact that B-PSO requires only the intensity information
while LOT uses color information, our B-PSO is promising for
further improvements. The x-axis in both figures are thresholds
in pixel as defined in Eq. (15) and Eq. (16). Compared to
the regular particle filter, B-PSO with the PSO optimization
process can search a broader scope without causing much
additional cost. The embedded system motion model helps
to reduce the chances of premature convergence.

We also compared regular Particle Filter (PF-EMD) with our
B-PSO using the same appearance model. In our experiment,
it employed 500 particles to approximate the posterior density.
It uses a system motion model to propagate the particles
by resampling particles according to their weights. However,
particle filter does not solve the problems of degeneracy and
impoverishment. Hence it performs much worse than B-PSO.

PSO-PF is closely related to our PSO based Bayesian
algorithm. The PSO process locates the high likelihood region
and drives particles towards such regions, whereby it reduces
the problem of degeneracy significantly. However, since the
motion model is omitted in this tracking algorithm, the parti-
cles are driven by the PSO process almost unconstrainedly
except for its inherent velocity limits and space boundary.
These parameters have to be set with conservative values to
avoid premature convergence which limits its search capability
in particular for fast motion scenarios.

Fig. 5. Success rate versus overlap threshold

Table I shows the comparison of the running time and the
average particle number. It can be observed that the running
time is directly proportional to the particle number employed
in each frame. B-PSO runs slower than PF-PSO because it
takes more iterations to converge partially due to the different

Fig. 6. Precision rate versus location error threshold

TABLE I
RUNNING TIME AND AVERAGE PARTICLE NUMBER PER FRAME

Trackers fps Particle number

B-PSO 1.14 380.02

PSO-PF 0.94 435.49

LOT 1.25 -

PF-EMD 0.89 500

initialization strategies. However, on the other hand the use of
more particles pays back with better performance. LOT runs
slightly faster than B-PSO partially due to the compressed data
size by using the super pixel process. PF-EMD is slower than
B-PSO and PSO-PF since more particles are utilized.

V. CONCLUSION

In this paper, we reviewed several variations of the particle
filter in the field of object tracking as well as PSO based
particle filter approaches. We found that when incorporating
PSO into the particle filter, the system motion model of
the particle filter is canceled out, though, the omission of
the motion model does not necessarily cause performance
degradation since an accurate system motion model is not
always available. However, a correct motion model could
guide the search process, and therefore improve the tracking
success rate and precision.

In this paper, we simplified the Bayesian tracking frame-
work by substituting the posterior density by its optimal
estimation in order to formulate the Bayesian tracking task as
an optimization problem. With an appropriate fitness function,
we employed PSO to perform the optimization task. We also
developed an EMD based appearance model, which does
not rely on color information, thus, is universal applicable
compared to other EMD based appearance models.

The experiments showed that the proposed EMD based
appearance model together with the proposed PSO based
Bayesian tracking framework works better compared to other
EMD based appearance model based tracker. The embedding



of the system motion model into the PSO process helps
to reduce the chances of premature convergence whereby
allowing a broader search. The experiments also showed that
the proposed approach is more computational effective thanks
to the flexibility of the PSO optimization process enabling an
early termination mechanism.

In the future, the simplification of the Bayesian tracking
framework by substituting the posterior density by its optimal
estimation could be further improved to reduce the information
loss. Also, in this paper the system motion model is simply
based on a multi-variant Gaussian distribution, which is a
very coarse assumption. Applying other motion estimation or
motion modeling techniques would likely improve the tracking
performance.
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