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Abstract—The Kkrill herd algorithm was introduced mimicking
the herding behavior of krill individuals. The krill herd algorithm
obtains the optimum solution by considering two factors, namely
the density-dependent attraction of the Kkrill, and the areas of
high food concentration. The iterative optimization procedure is
based on the time-dependent position of the krill individuals of (1)
movement induced by other Krill individuals, (2) foraging activity,
and (3) random diffusion. In this paper, the krill herd algorithm
is investigated when run on a Hadoop cluster. The algorithm was
parallelized using MapReduce. Four different sets of experiments
are conducted to evaluate the krill herd algorithm in terms of
speed and accuracy. The first set of experiments investigates the
execution time and speedup of the krill herd algorithm applied to
six different benchmark functions. The second set of experiments
investigates the varying dimensions of the Alpine benchmark
function with regards to the effect on the execution time. The
third set of experiments analyzes the effect of different krill
sizes and numbers of maximum iterations on the execution time
but also on the objective value. The fourth set of experiments
compares the speed gain obtained when running the MapReduce-
enabled version of the krill herd algorithm compared to the
normal non-parallelized krill herd algorithm.

I. INTRODUCTION

Parallelization is the process where the computation is
broken up into parallel tasks. The work done by each task,
often called its grain size, can be as small as a single iteration
in a parallel loop or as large as an entire procedure. When
an application is broken up into large parallel tasks, the
application is called a coarse grain parallel application. Two
common ways to partition computation are task partitioning,
in which each task executes a certain function, and data
partitioning, in which all tasks execute the same function but
on different data.

There are several different parallelization techniques avail-
able, the oldest and most mature being message passing. The
message passing methodology (MPI) [1] has been used as the
defacto standard for parallelization for years. However, the
MapReduce programming model [2] has been introduced as an
alternative model for data parallel programming. MapReduce
presents a programming model that manages the distribution
of the tasks automatically, and at the same time provides
fault-tolerance and load balancing. The basic idea behind the
MapReduce methodology is that the problem is formulated
as a functional abstraction using two main operations: the
map operation and reduce operation.

Apache Hadoop [3] is the commonly used MapReduce
implementation, and it is an open source software framework

that supports data-intensive distributed applications. It en-
ables applications to work with thousands of computationally
independent computers and petabytes of data. The Hadoop
Distributed File System (HDFS - storage component) and
MapReduce (processing component) are the main core com-
ponents of Hadoop. HDFS enables high-throughput access to
the data while maintaining fault tolerance by creating multiple
replicas of the target data blocks. MapReduce is designed
to work together with HDFS to provide the ability to move
computation to the data and not vice versa. Figure 1 shows
the Hadoop architecture diagram with interactions between its
components. The Hadoop architecture consists of the HDFS,
which is responsible for the reading and writing of data as well
as the storage in the data nodes. The job driver is responsible
to interact with the job tracker whose task it is to manage the
map and reduce tasks via the task trackers [5]. The input of
the computation is a set of key-value pairs, and the output is a
set of output key-value pairs. An algorithm to be parallelized
needs to be expressed as map and reduce functions. The map
function takes an input pair and returns a set of intermediate
key-value pairs. The framework then groups all intermediate
values associated with the same intermediate key and passes
them to the reduce function. The reduce function uses the
intermediate key and set of values for that key. These values
are merged together to form a smaller set of values. The
intermediate values are forwarded to the reduce function via
an iterator. More formally, the map and reduce functions have
the following types:

map(ky,v1) — list(ka,va)

reduce(ka, list(vy)) — list(vs)

MapReduce technologies have also been adopted by a
growing number of groups in industry (e.g., Facebook [6],
and Yahoo [7]). In academia, researchers are exploring the
use of these paradigms for scientific computing, such as in
areas of Bioinformatics ([8], [9]) and Geosciences [10], where
codes are written using open source MapReduce tools. In
the past, these users have had a hard time running their
Hadoop codes on traditional High Performance Computing
(HPC) systems that they had access to. This is because it
has proven difficult for Hadoop to co-exist with existing HPC
resource management systems, since Hadoop provides its own
scheduling, and manages its own job and task submissions as
well as tracking.

Since both systems are designed to have complete control
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over the resources that they manage, it is a challenge to
enable Hadoop to co-exist with traditional batch systems
such that users may run Hadoop jobs on these resources.
Furthermore, Hadoop uses a shared-nothing architecture [11],
whereas traditional HPC resources typically use a shared-disk
architecture, with the help of high performance parallel file
systems.

In this paper, a krill herd algorithm is parallelized and
evaluated when run on a Hadoop cluster. The organization
of this paper is as follows: In Section II, related work in the
area of MapReduce and Hadoop in terms of nature-inspired
algorithms is presented. Section III introduces and describes
the krill herd algorithm including the algorithmic description
and the equations involved. In Section IV, the experiments
conducted are given and the results obtained are outlined.
Section VI describes the conclusions reached from this study.

II. RELATED WORK

A review of nature-inspired algorithms parallelized with the
MapReduce framework is summarized. For example, a Genetic
Algorithm (GA) was first implemented with the MapReduce
framework in [12] featuring a hierarchical reduction phase.
Another MapReduce-enabled GA was introduced in [13],
where the authors investigated the convergence as well as the
scalability of their algorithm applied to the BitCounting prob-
lem. An application of GA using MapReduce was proposed
in [14]. The authors implemented a GA algorithm for job
shop scheduling problems running experiments with various

Hadoop Architecture Diagram [4]

population sizes and on clusters of various sizes.

McNabb et al. evaluated the PSO MapReduce model on a
radial basis function as the benchmark [15]. The authors state
that their approach scaled well for optimizing data-intensive
functions. An overlay network optimization algorithm based
on PSO was parallelized using MapReduce [16]. Wu et al.
proposed a MapReduce-based ant colony approach [17], and
outlined the modeling with the MapReduce framework. The
fireworks algorithm has been parallelized using the MapRe-
duce methodology applied to benchmark functions achieving
good speedup [18].

Furthermore, the parallelization of nature-inspired algo-
rithms using the MapReduce framework applied to data
mining has been done. For example in the clustering area,
two MapReduce-enabled algorithms were implemented, one
using PSO [4], and the other using a Glowworm Swarm
Optimization (GSO) approach [19]. Furthermore, a fuzzy c-
means clustering algorithm has been parallelized in [20].

III. KRILL HERD ALGORITHM

The krill herd algorithm is a nature-inspired algorithm
mimicking the behavior of krill individuals in krill herds.
The algorithm was proposed by Gandomi and Alavi in 2012
[21]. The krill herd algorithm describes observations made on
the Antarctic Krill species [22], which is considered as one
of the best studied marine animal species. These krills are
capable of forming large groups of swarms with no parallel
orientation existing between them. For decades, studies have



been carried out to understand the herding mechanism of
the krills, and the individual distribution of the krills among
the herds. The studies identified some of the factors in spite
of some uncertainties observed, mainly, the basic unit of
the organization is the krill swarm. Another important factor
considered is the presence of a predator. When one krill is
affected by a predator, that krill is abandoned from the herd,
which in turn reduces the density of the swarm. The increase
in the krill density, and the distance from the food is always
observable during the formation of the herds.

The krill herd algorithm was devised such that the optimum
solution is obtained by considering the two main objectives of
the density-dependent attraction of the krill, and the areas of
high food concentration. The relation between the objective
function and the krill position is proportionate. The global
optimum implies the minimum distance of a krill from the
highest density and food. The krill individuals always try to
move towards the best solution during this process, and thus,
improve the objective function.

The main process in the algorithm are the following motion
updates:

e Induced movement (V)

o Foraging (F))

o Random diffusion (D)

The induced movement relates to the density maintenance
of the krill herd given each krill individual and is given by:

Nl(t —|— 1) = Nmaajai —|— wnNZ(t) (1)

: target . . )
where a; = o + ;""" Ny, is the maximum induced

speed, w,, is the inertia weight, al°°® is the local effect the
it" krill individual has on its neighbors, """ is the best
solution of the *" krill individual and is determined by:

target best
a; =C Ki,bestXi,best (2)

3

where C?¢5t defines the effect of af-”gd on the " krill
individual. C®** is determined by:

r+1

Imam
where r is a random number in [0,1], ¢ is the current iteration,
and I,,,4, is the maximum number of iterations. The foraging

update is done by:
Fi(t + 1) = Vf,@i + (.dfFi(t) 4)

where 3; = /BZ-f""d + BY*st, V; is the foraging speed, wy is
the inertia weight, and BY**! indicates the food attraction and
is the best solution of the i'" krill individual so far. The third
motion update is mimicking the physical diffusion by random
activity and is given as:

1-1

Dz(t + 1) = Dmaﬁ( )6 (5)

Imax
where D™%* represents the maximum diffusion speed, and ¢
is a random directional vector in [-1,1]. The position of each
krill individual is updated as follows:

Once the position update is complete, the evolutionary opera-
tors such as crossover and mutation are applied as in [21].

The algorithmic description is given by Algorithm 1. The
algorithm starts with the random initialization of the krill
population reading in the necessary variables such as the forag-
ing speed, maximum diffusion speed, and maximum induced
speed. Then, the krill population is evaluated by determining
the objective value of all krill individuals. Afterwards, the main
loop of the algorithms starts by first sorting the krill population
from the best to the worst individual. Next follows the four
step process that is done on each krill individual and repeated
until the stopping criterion has been reached: (1) motion
updates (induced movement, foraging, random diffusion) are
calculated (Eq. 1-6); (2) genetic operators are applied; (3) krill
individual’s position is updated (Eq. 7); and (4) evaluation
of objective function of krill individual. At the end of the
algorithm, the best krill (solution) is returned. The stopping
criterion used is the completion of a predefined number of
function evaluations.

Algorithm 1 krill herd algorithm

Random initialization of krill population
Initialization of foraging speed
Initialization of maximum diffusion speed and induced speed
Evaluate all krill individuals
while stopping criterion is not met do
Sort the krill population from best to worst
for all krills do
Calculate motion updates (Eq. 1, 5, 6)
Apply genetic operators
Update the krill individual’s position (Eq. 7)
Evaluate the krill individual
end for
end while
return best krill

IV. EXPERIMENTAL SETUP

This section describes the MapReduce enabled krill herd
algorithm implementation, followed by the parameters used for
the experiments, the benchmark functions to be optimized, and
the execution environment used for running the experiments.

A. MapReduce-enabled Krill Herd Algorithm

Algorithm 2 describes the implementation of the MapRe-
duce enabled krill herd algorithm. The main krill herd al-
gorithm code is run in the Map function, and the Reduce
function aggregates the fitness values that were received by
the Map function, which emits the best value of the entire run.
The Main function first sets up the necessary parameters for
the execution of the MapReduce job. The parameters include
the number of mappers, number of reducers, input directory,
and output directory. Then, the Hadoop framework starts the
execution of the MapReduce job, which internally calls the
Map and Reduce functions. In the Map function, the entire
krill herd algorithm code is run and the best fitness is emitted.
Depending on the n mappers specified, n Map functions emit



the best fitness value of each run. In the Reduce function,
all n fitness values are iterated over in order to identify the
best fitness value of the entire run, which is then emitted. The
necessary timing information is also kept track off and all
results are written to a text file.

Algorithm 2 MapReduce-enabled Krill Herd Algorithm

function MAIN
configure krill herd algorithm
initialize system configuration
set up mapper nodes
set job configuration
run MapReduce job
write results to file

end function

function MAP
run krill herd algorithm
emit(key’,value’)

end function

function REDUCE
iterate over all fitness values and select best
emit(key’,value’)

end function

B. Krill Herd Algorithm Parameter Setup

The following parameters were set:

e Maximum Foraging Speed V; = 0.02;

e Maximum Induced Speed N4, = 0.01;

o Maximum Diffusion Speed D4, = 0.005;

o Inertia weight w, = wy = 0.1+ 0.8( ).
Since the population size and the maximum number of iter-
ations ([, ) varies for the different experiments conducted,
therefore, these values are explicitly given in Section V.

Imax

C. Benchmark Functions

Table I shows the benchmark functions used. The mathe-
matical expression, the search range, as well as the optimum
objective value are given.

D. Execution Environment - Hadoop Cluster

The experiments were conducted on the Rustler Hadoop
cluster hosted by the Texas Advanced Computing Center
(TACC)'. The TACC cluster consists of 65 nodes containing
48GB of RAM, 8 Intel Nehalem cores (2.5GHz each), which
results in 520 compute cores with 2.304 TB of aggregated
memory. Hadoop version 0.21 was used for the MapReduce
framework, and Java runtime 1.7 for the system implementa-
tion.

V. RESULTS

Four different sets of experiments are conducted to evaluate
the krill herd algorithm in terms of speed and accuracy.
The first set of experiments investigates the execution time

Uhttps://www.tacc.utexas.edu/systems/rustler

and speedup of the krill herd algorithm applied to six dif-
ferent benchmark functions. The second set of experiments
investigates the varying dimensions of the Alpine benchmark
function with regards to the effect on the execution time. The
third set of experiments analyzes the effect of different krill
sizes and numbers of maximum iterations on the execution
time but also on the objective value. The fourth experiment
compares the speedup that can be achieved when running
the MapReduce-enabled version of the krill herd algorithm
compared to the normal non-parallelized krill herd algorithm.

A. Execution Time and Speedup of all Benchmark Functions
with 30 dimensions

For the first set of experiments all benchmark functions
(Section IV-C) were run on the Hadoop cluster. The dimension
of the benchmark functions was set to 30, krill population
was 50, and the number of iterations was 10,000. Figure 2
shows the result of the experiments. The execution time is
plotted against the ratio. The ratio is defined as the number
of runs per mapper, i.e., how many independent algorithm
runs are completed in one mapper. The figure shows that
overall all execution times for all benchmark functions are
increasing with increasing ratio values as expected. The largest
increases are seen for the Ackley and Alpine benchmark
functions, however, all execution times are within a certain
range since all benchmark functions are approximately of the
same complexity.
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Fig. 2. Execution time versus ratio for all benchmark functions with 30

dimensions

The speedup graphs are given in Figure 3. The speedup
is calculated by the ratio of the execution time using one
node and the execution time of n nodes. All speedup figures
show the expected trend with the ideal speedup given as the
black line. The Alpine benchmark function obtains the best
speedup, which is very close to the ideal speedup followed by
the Ackley benchmark and Griewank benchmark. However,
the remaining benchmark functions also achieve good speedup



TABLE I
BENCHMARK FUNCTIONS

Benchmark Mathematical expression Range Objective value
Ackley  f(z) = —aexp(—0.02y/ Z=170) — exp(y/ 221220 | g 4 exp(1), a = 20 [-32.32] 0.0
Alpine flx) =0 |zesin(zs) + 0.1a] [-10,10] 0.0

Griewank F(@) = Y0, g5 — Tleos(%) +1 [-600,600] 0.0
Rastrigin f(z) =10n+ 3" (27 — 10 cos(27z;)) [-5.12,5.12] 0.0

Rosenbrock fx) =305 100(2i41 — 22)? + (1 — 23)*  [-2.048,2.048] 0.0

Sphere flx)y=3"a? [-5.12,5.12] 0.0

values. For example using 20 nodes, the highest speedup
obtained by the Alpine function is 19.05, and the lowest
speedup obtained is 14.86 by the Sphere function.

B. Various Dimensions of Alpine Benchmark Function

The second set of experiments examines the Alpine bench-
mark function for dimensions of 30, 60, and 90. Again, the
krill population was set to 50, and the number of iterations was
10,000. Figure 4 shows the results of running the krill herd
algorithm on the Hadoop cluster. As expected, with increasing
dimensionality of the Alpine benchmark function increasing
numbers of the execution time are observed. For example at
ratio 50 the execution times are 315 seconds, 763 seconds,
1,486 seconds for dimensions 30, 60, and 90, respectively.
However, the differences between the different dimensions are
more visible for the ratio of 250 were the execution times were
1,737 seconds, 4, 343 seconds, 7,361 seconds for 30, 60, and
90, respectively.
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Fig. 4. Execution time versus varying numbers of dimensions for Alpine

benchmark function

C. Objective Value and Execution Time for Varying Krill Size
and Iteration Combinations

It has been proven in [23] that the size of the population
has a significant effect on the performance of population-
based optimization algorithms, even when the total number
of function evaluations is kept constant. Thus, the third set
of experiments looks at the objective value obtained by the
krill herd algorithm as well as the execution time for varying
combinations of krill size and number of iterations used.
Table II shows the objective value and execution time for the
different combinations. The number of function evaluations
for each combination was kept constant at half a million. As
can be observed from the objective values, the best objective
value of 5.738E—08 is obtained for 400 krills and 1,250
iterations. The second best value (2.884E—08) is obtained for a
population of 300 krills and the execution of 1,667 iterations.
The execution times listed in the table are also given as a
graph in Figure 5. As expected, it can be observed that the
execution time rises for increasing number of krills used. The
reason for this is the higher storage requirement of increasing
krill populations.

D. Speedup comparing MapReduce-enabled Version with Nor-
mal Krill Herd Algorithm Implementation

For this experiment we compare the execution time of
the krill herd algorithm when run as a non-parallelized Java
implementation versus the MapReduce-enabled Java imple-
mentation. Fifty runs are executed for both algorithms on the
Alpine benchmark function. The fifty runs for the MapReduce-
enabled version were executed on two nodes. The speedup is
calculated by the ratio of the execution time of the normal
krill herd algorithm and the MapReduce-enabled version.

Table III shows the results tabulating the execution time
in seconds and the calculated speed gain for the Java imple-
mentation (listed as Java) and the MapReduce-enabled Java
implementation (listed as MapReduce). The execution time
has increased for both versions with increasing dimensionality.
The speed gain values achieved for 30, 60, and 90 dimensions
are 2.686, 3.099, and 4.633, respectively. With increasing
dimensionality of the benchmark function, the higher speedup
can be obtained. The reason for this is that the MapReduce
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Fig. 3. Speedup for all benchmark functions

TABLE I
OBJECTIVE VALUE AND EXECUTION TIME FOR VARIOUS NUMBERS OF
KRILL AND ITERATION COMBINATIONS FOR ALPINE WITH 30
DIMENSIONS

# krills  # iterations  Obj. value  Exec. time (s)

50 10,000 1.717E-07 315
100 5,000 3.031E-07 435
200 2,500 3.751E-07 671
300 1,667 2.884E-08 966
400 1,250 5.738E-08 1159
500 1,000 3.367E-06 1700

overhead weighs more on the smaller dimensions since they
have shorter overall execution times, and thus, better speedup
values are obtained for higher dimensions.

VI. CONCLUSION

In this paper, the krill herd algorithm was investigated
when run on a Hadoop cluster. The algorithm was parallelized
with MapReduce. Four different sets of experiments were
conducted to evaluate the krill herd algorithm in terms of speed
and accuracy. The experiments were as follows:

o Investigation of the execution time and speedup of the
krill herd algorithm applied to six different benchmark
functions;

o Investigation of varying dimensions of the Alpine bench-
mark function with regards to the effect on the execution
time;

50 krills & 10,000 iterations
100 krills & 5,000 iterations
200 krills & 2,500 itarations
300 krills & 1,667 iterations
400 krills & 1,250 itarations.
500 krills & 1,000 iterations

Fig. 5. Execution time versus various number of krill and iteration
combinations for Alpine with 30 dimensions

o Analysis of the effect of different krill sizes and numbers
of maximum iterations on the execution time but also on
the objective value;

o Comparison of the speedup that can be achieved when
running the MapReduce-enabled version of the krill herd
algorithm compared to the java-based krill herd imple-
mentation.

The results overall demonstrate that the execution of the krill
herd algorithm is particularly useful for higher dimensional



TABLE III
EXECUTION TIME IN SECONDS AND SPEED GAIN OF BOTH
IMPLEMENTATIONS OF THE KRILL HERD ALGORITHM ON ALPINE
BENCHMARK FUNCTION

Dimension Java MapReduce Speed gain
30 846 315 2.686
60 2364 763 3.098
90 6885 1486 4.633

problems, and thus, achieving very good speedup values. Since
the six different benchmark functions are of similar com-
plexity, no major differences in execution times can be seen.
The best objective value for the Alpine benchmark function
using 30 dimensions is obtained using 400 krills and running
the algorithm for 1,250 iterations. However, for the other
combinations of krill size and maximum number of iterations,
the objective value were close. The last experiment showed
that experiments can be run much faster when executed on
a Hadoop cluster. In summary, the larger the problem to be
optimized (in our case the higher dimensionality), the larger
the speedup obtained.

Overall, should a Hadoop cluster be available, then the
execution of nature-inspired algorithms on the whole could
be performed much faster in particular when large set of
experiments and difficult function optimization are involved.
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