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Abstract—Image segmentation is considered an important ba-
sic task in the analysis and understanding of images. The process
of image segmentation involves the partitioning of an image
into multiple regions, i.e., each pixel in the image is assigned a
label that corresponds to certain visual characteristics. Therefore,
image segmentation is widely used for image processing tasks
such as classification and object recognition. The thresholding
process, however, is an NP-hard problem since n thresholds need
to be found and each threshold can take numbers from 0 to
255 according to the intensity values. Thus, exact methods are
only feasible for a small number of thresholds. Nature-inspired
algorithms have recently been applied to this hard optimization
problem and shown very good results. In particular, many
swarm intelligence methods have been applied to multi-level
thresholding. This paper uses a glowworm swarm optimization
(GSO) approach and further enhances it in order to improve the
accuracy of the thresholding as well as to improve the robustness
of the results. The proposed approach makes adjustments to the
local decision radius, the selection method, and the step size. The
proposed GSO algorithm shows improved results in particular
for larger numbers of thresholds as compared to the basic GSO
algorithm.

I. INTRODUCTION

Image processing is a method that converts an image into
digital form and performs some operation on it such as to
get an enhanced image or to extract some useful information.
Image processing is a sort of signal dispensation whereby the
input is an image such as a video frame or a photograph and
the output might be an image or characteristics that are asso-
ciated with a particular image. Generally, an image processing
system considers images as two dimensional signals that are
modified by applying signal processing methods.

There are three major steps involved in image processing:
• Import of an image via optical scanner or digital photog-

raphy;
• Analysis and manipulation of the image involving data

compression, image enhancement, and identifying pat-
terns that are not visible by the human eye such as
satellite photographs;

• Output of image processing can be either the altered
image or a report containing statistics based on the image
analysis.

The field of image processing is usually categorized into
the following five sections:
• Visualization: observation of objects that are not visible;
• Image sharpening and restoration: improved image;

• Image retrieval: Searching for the image of interest;
• Measurement of patterns: Measuring of various objects

in an image;
• Image recognition: Objects in an image are distinguished

from other objects or the background.
Image processing encompasses different techniques that

belong to signal processing, morphological processing and
segmentation for feature detection, as well as high level
artificial intelligence algorithms for object recognition, infor-
mation extraction, representation, and understanding. During
the different stages of image processing hard optimization
problems are encountered. One example is image thresholding,
which is a step in segmentation where n thresholds need to
be found all in the range [0-255] according to the intensity
values. This has be proven to be a NP-hard problem [1].

The image segmentation process partitions an image into
multiple regions, i.e., each pixel in the image is assigned a
label that corresponds to certain visual characteristics. For
example, for binary image segmentation, one threshold will
be found which identifies the pixels in the image that will
be represented as white (above the threshold), and the other
pixels as black (below the threshold). Image segmentation
is considered an important basic task in the analysis and
understanding of images. Therefore, image segmentation is
widely used for image processing tasks such as classification
and object recognition [2]. Image segmentation can be classi-
fied into different techniques based on the threshold method
[3], clustering algorithm [4], compression-based method [5],
histogram-based method [6], edge detection method [7], and
region based split and merging methods [8].

Thresholding methods are divided into two categories: op-
timal thresholding methods [9], [10], [11], [12], [13] and
property-based thresholding methods [14], [15], [16]. Optimal
thresholding methods search for the optimal thresholds based
on desired characteristics of the thresholded classes of the
histogram. This is usually achieved by the optimization of an
objective function. The property-based thresholding methods
obtain the thresholds by measuring some chosen property of
the histogram, and are fast methods, which make them suitable
for multilevel thresholding. However, the number of thresholds
has to be known in advance, which is difficult to determine.

Image thresholding is one of the most widely used segmen-
tation methods applied, which uses information contained in
the image histogram. The selection of the multiple thresholds



is the important portion in image segmentation since the
segmentation depends on the optimally identified thresholds.
Depending on the number of peaks of the histogram of an
image, the number of thresholds should be determined.

This paper proposes an enhanced glowworm swarm opti-
mization (GSO) algorithm applied to the multi-level threshold-
ing segmentation task. The paper is structured as follows: Sec-
tion 2 presents related work in the area of image segmentation
including a description of different thresholding techniques.
In Section 3, first the Otsu method is described followed by
a description of the basic GSO algorithm and the enhanced
GSO algorithm. Section 4 consists of the benchmark images
used, parameters set, and evaluation measures used for the
evaluation. In Section 5, the results of the experiments are
given and discussed. Section 6 concludes this paper with a
summary of the findings.

II. RELATED WORK

As has been proven in [4], finding the optimal thresholds
using an exhaustive search method such as Otsu [11] (see
details in the following section) is computationally very ex-
pensive. As stated in the paper, the exhaustive search for n−1
optimal thresholds results in the evaluation of n(L−n+1)n−1

combinations of thresholds (L is the intensity level). Thus,
this method is not feasible for larger numbers of thresholds.
Therefore, approximate techniques have been applied to this
thresholding optimization problem.

In particular, nature-inspired algorithms have been applied
to the thresholding optimization problem since they have
been successfully applied in situations where conventional
optimization techniques cannot find satisfactory solutions, in
particular, when the function to be optimized is discontinuous,
non-differentiable, and/or involves too many nonlinear param-
eters [17].

Evolutionary computation and swarm intelligence algo-
rithms are very popular global optimization methods and have
been applied to the image segmentation thresholding problem.
A range of different algorithms has been applied to the multi-
level thresholding problem including genetic algorithm [18],
[19], particle swarm optimization [20], [21], [22], artificial bee
colony [23], [24], [25], differential evolution [26], [27], [28],
firefly algorithm [29], [30], and cuckoo search [31], [32]. All
these approaches have used different evolutionary techniques
and swarm intelligence concepts in combination with different
objective functions.

Glowworm swarm optimization (GSO) has also been in-
vestigated. In [33], a basic GSO algorithm has been applied
to the multi-level thresholding problem using the criterion
of minimum cross entropy. The GSO approach has been
compared to the exhaustive search algorithm, the honey bee
mating optimization, the firefly algorithm, the artificial bee
colony algorithm, and the particle swarm optimization algo-
rithm. The experiments were carried out using five benchmark
images and the experimental results showed that the proposed
GSO approach efficiently identifies up to five thresholds that
are very close to the optimal thresholds identified by the

exhaustive search method. Furthermore, compared to the other
thresholding techniques, the computational time of GSO is
competitive taking the second or third place behind the firefly
algorithm and the artificial bee colony algorithm.

Another GSO algorithm [34] optimizes the threshold image
segmentation problem using the Otsu method. Three test
images where used and the comparison is performed using
the Otsu method and the combined Otsu+GSO algorithm
for one, two, and three thresholds. The experimental results
demonstrate that the Otsu+GSO algorithm performs the image
segmentation more effectively, and also reduces the execution
time significantly as is the case with applying a meta-heuristic
in general.

This paper applies the standard GSO algorithm to six images
using the settings of the previous algorithm [34] (setting of
[33] can not be compared with since a different optimization
objective - criterion of minimum cross entropy - was used).
Furthermore, a few modifications are made in order to improve
the GSO algorithm applied to the image threshold segmenta-
tion problem, which are explained in detail in the following
section.

III. MULTI-LEVEL THRESHOLD SEGMENTATION
ALGORITHM USING GSO

There are several threshold segmentation algorithms avail-
able that use different objective functions to find the optimal
thresholds in an image. For example, the Tsallis entropy [35]
method uses a generalization of the standard Boltzmann-Gibbs
entropy (entropy is a measure of uncertainty of the information
content of a system). Another measure is the minimum cross
entropy method [36] whereby two probability distributions
are assumed to belong to the same set, and thus, the cross
entropy between these two distributions is minimized. The
most famous is the Otsu method, which is described in more
detail in the next subsection.

A. Between-class Variance Method - Otsu

The Otsu method is a non-parametric segmentation method,
which divides an image into classes such that the between-
class variance is maximized. Let us assume an image has N
pixels and L gray levels. The number of pixels at level i is
represented by fi, then N = f1+f2+ ...+fl. The occurrence
probability of level i is defined by:

pi =
fi
N
, pi ≥ 0,

L∑
i=1

pi = 1 (1)

For bi-level thresholding, the optimum threshold t divides the
image into two classes, and the cumulative probabilities of
each class are described as:

ω0 =

t∑
i=1

pi, ω1 =

L∑
i=t+1

pi (2)

The mean level of the two classes are then obtained by:

µ0 =

t∑
i=1

ipi
ω0
, µ1 =

L∑
i=t+1

ipi
ω1

(3)



The between-class variance of the two classes is then defined
by:

f(t) = σ0 + σ1 (4)

σ0 = ω0(µ0 − µT )
2 (5)

σ1 = ω1(µ1 − µT )
2 (6)

where µT is the mean level of the entire image, µT =∑L
i=1 ipi. The optimum threshold t∗ is identified with an

exhaustive search by maximizing the between-class variance.
Thus, the optimal threshold is then:

t∗ = arg max
1≤t≥L

(f(t)) (7)

The Otsu method can be extended to multi-level thresholding
by the following. Let us assume an image is divided into M
classes, then the extended between-class variance of M classes
is calculated by:

f(t) =

M−1∑
i=0

σi (8)

The sigma terms are obtained by:

σ0 = ω0(µ0 − µT )
2,

σ1 = ω1(µ1 − µT )
2, ...,

σM−1 = ωM−1(µM−1 − µT )
2

(9)

And, the mean levels are calculated by:

µ0 =

t1∑
i=1

ipi
ω0
,

µ1 =

t2∑
i=t1+1

ipi
ω1
, ...,

µM−1 =

L∑
i=tM+1

ipi
ωM−1

(10)

Thus, the optimum thresholds are obtained by maximizing the
between-class variance as such:

t∗ = arg max
1≤t1,t2,...,tM−1≥L

(

M−1∑
i=0

σi) (11)

B. GSO based Multi-level Thresholding Segmentation Algo-
rithm

This subsection first describes the GSO algorithm, followed
by the GSO based multi-level thresholding algorithm, and the
enhanced version of the GSO based multi-level thresholding
algorithm.

1) GSO Algorithm: The GSO algorithm operates as fol-
lows. First, a swarm of glowworms are randomly initialized
within the search space. Each glowworm carries an individual
amount of luciferin li and this amount affects nearby glow-
worms within a variable neighborhood. Each glowworm has
its own vision scope referred to as the local decision range
rid(0 < rid < rs) (rs is the sensor range). Glowworm i uses
a probabilistic mechanism to select its adjacent glowworm
j with a larger luciferin value within the decision range.
The brighter the glowworm glows, the better is the position
(objective value). The regional decision radius is adaptively
adjusted depending on the number of neighbors a glowworm
has.

The luciferin update process is based on the glowworm’s
current position. In each iteration, the luciferin value is based
on the value of the last iteration, and is proportional to the
objective value of the current position (J(xi(t))) including
some decay with time. The update process is described by:

li(t) = (1− ρ)li(t− 1) + γJ(xi(t)) (12)

where ρ ∈ (0, 1) is a parameter to control the luciferin value,
γ is the luciferin enhancement constant.

The set of neighbors of each glowworm include only those
glowworms that have a higher luciferin value and are located
within the dynamic decision domain based on the sensor range
0 < rid(t) < rs. The neighborhood is defined by Ni(t) =
j : dij(t) < rid(t); li(t) < lj(t), where rid is the decision radius
of the ith glowworm, xj(t) is the jth glowworm’s position of
the tth iteration, li(t) is the ith glowworm’s luciferin value,
and dij is the euclidean distance between glowworm i and
j. Glowworm i uses a probabilistic mechanism to select its
adjacent glowworm j and will move towards the direction of
glowworm j according to:

Pij =
lj(t)− li(t)∑

k∈Ni(t)
lk(t)− li(t)

(13)

The movement update is performed by:

xi+1(t) = xi(t) + s(
xj(t)− xi(t)
||xj(t)− xi(t)||

) (14)

where s is the step size of the movement of glowworm i. The
local decision range is updated by:

rid(t+1) = min{rs,max{0, rid(t)+β(nt−|Ni(t)|}} (15)

2) GSO based Multi-level Thresholding Segmentation Al-
gorithm (GSO): Algorithm 1 outlines the steps of the GSO
based segmentation algorithm. The algorithm starts with the
random initialization of the glowworm population. Further-
more, the necessary parameters of the algorithm as well as the
maximum number of iterations, and the number of thresholds
are defined. Then, the while loops proceeds until the stopping
criterion (max. number of iterations) is reached, whereby all
glowworms are iterated over performing the following steps:
(1) calculate the luciferin value, (2) choose the neighbor within
the decision making radius, (3) determine the direction of
movement, (4) glowworm movement and update of location,



(5) calculation of fitness value (objective value) according to
Eq. (11), and (6) dynamic decision radius update. At the end of
the run, the best glowworm will be returned, i.e., the threshold
values are returned.

Algorithm 1 GSO based Multi-level Thresholding Algorithm
Random initialization of glowworm population
Initialization l0, r0, rs, s, ρ, γ, xi(0)
Initialization of maximum number of iterations
Set number of thresholds
while stopping criterion is not met do

for all glowworms do
Set luciferin value to objective function value
Choose neighbor within decision making radius
Determine the direction of movement
Move and update the location
Update the fitness value according to Eq. (11)
Update the dynamic decision radius

end for
end while
return best glowworm (solution)

3) Enhanced GSO based Multi-level Thresholding Seg-
mentation Algorithm (EGSO): The GSO based multi-level
thresholding algorithm is enhanced as follows:
• The local decision radius is an important parameter that

affects the search ability. Thus, the sensor range of each
glowworm is extended to the whole image.

• As used in [33], instead of the probabilistic mechanism
outlined in Section II, a tournament selection mechanism
with k = 2 is used for the update of the location of each
glowworm.

• The step size s is a very important parameter that affects
the convergence of the GSO algorithm, and thus, the
step size should be smaller than the distance to the
optimal solution. A lower step size might lead to a
slower convergence speed whereas a large step size might
lead to no convergence at all. Thus, as is the case
with all evolutionary computation and swarm intelligence
algorithms, the exploration of the search space is favored
during the early iterations, and the exploitation is favored
during the later iterations of the search. Thus, a variable
step size is proposed by:

s(t) =
smax − (smax − smin)

( t
tmax

)d
(16)

where smax and smin are the maximum (set to 3)
and minimum step size (set to 0.001), respectively, t is
the current iteration, tmax is the maximum number of
iterations, and d is the dimensionality of the search space,
which is based on number of thresholds defined.

• Once 10% of the population have reached the same
solution, the random movement of 5% is performed.

• Different parameters than previously used are listed in
Table I.

IV. EXPERIMENTAL SETUP

This section describes the benchmark images used for the
experiments, the parameters used to run the algorithms, and
the evaluation measures used to identify the best performing
algorithm.

A. Benchmark Images

Six different benchmark images from the USC Viterbi
Image repository [37], and from the Waterloo Image repos-
itory [38] were selected for the experiments. The intensity
histograms are given in Figure 1.

B. Parameters of GSO and EGSO algorithms

Table I lists the parameter setup of the basic GSO and EGSO
algorithms. The parameters for the GSO algorithm are used
as given in [34]. Compared to other evolutionary algorithms
and swarm intelligence techniques, many more parameters are
involved and need to be predefined.

TABLE I
PARAMETERS OF GSO AND EGSO

Parameter GSO EGSO
Number of glowworms 50 50

Maximum number of iterations 100 100
Initial luciferin l0 5 5

Neighborhood threshold nt 3 3
Luciferin enhancement constant γ 0.6 0.6

Luciferin decay constant ρ 0.4 0.4
Step size s 0.3 see Eq. (16)

Decision domain update β 0.08 0.08
Initial sensing radius r0 5 255

C. Evaluation measures

Besides the objective measure given in Eq. (11), the segmen-
tation algorithms usually use the peak-to-signal-ratio (PSNR),
and the structural similarity index (SSIM) [39]. The PSNR is
given by:

PSNR(x, y) = 20log10(
255

RMSE(x, y)
) (17)

where

RMSE =

√∑X
i=1

∑Y
j=1(I(i, j)− I ′(i, j))2

X × Y
(18)

where X×Y is the size of the image, I is the original image,
and I ′ is the segmented image.

The SSIM index measures the similarity between the orig-
inal image and the segmented image and is expressed by:

SSIM(I, I ′) =
(2µIµI′ + c1)(2δII′ + c2)

(µ2
I + µ2

I′ + c1)(σ2
I + σ2

I′ + c2)
(19)

where µI is the mean of image I , µI′ is the mean of image
I ′, σ2

I is the variance of image I , and σ2
I′ is the variance of

image I ′. The two variables c1 = (k1D)2 and c2 = (k2D)2

are used to stabilize the division operation, D is the dynamic
range of the pixel-values, k1 = 0.01, and k2 = 0.03.



(a) Airplane (b) Boat (c) Hunter

(d) Lena (e) Mandrill (f) Peppers

Fig. 1. Intensity histograms

V. RESULTS

All results presented in the following tables are average
values of 50 independent runs. The runs of the GSO and EGSO
algorithms returned the threshold intensity values for threshold
values set from 1 to 5, the objective value, execution time,
PSNR value, and SSIM value.

Table II shows the threshold intensity values, objective
value, and the execution time for the predefined threshold
values of 1 to 5. The objective values of GSO and EGSO are
compared and the best values are given in bold font. As can be
seen from the table, the EGSO algorithm achieves the better
objective values for threshold values above 2. For threshold
values of 1 and 2, the GSO algorithm scores either equally
well or better. However, a Wilcoxon signed rank test revealed
that the objective values of EGSO compared to GSO are not
statistically significantly better. In terms of execution time, the
EGSO algorithm needs some extra time for the additions made
to the algorithm. However, the average increase is around
0.118s exhibiting larger values for larger number of thresholds.

Table III shows the average PSNR values and standard
deviation obtained of 50 independent runs. As can be seen in
the table, the PSNR values of the EGSO algorithm are better
than the GSO algorithm for threshold values including and
above 2 with the exception of the Boat image (at threshold=2,
the PSO algorithm has a higher PSNR value than the GSO
algorithm). The GSO algorithm achieves the same PSNR value
or above for a given threshold of 1. The EGSO algorithm
compared to GSO turns out to be more robust as can be seen
by the smaller standard deviation values. A Wilcoxon signed

rank test returned a p-value of 0.000028 and confirmed that
EGSO is significantly better than GSO in terms of PSNR.

Table IV shows the average SSIM values with standard
deviation obtained of 50 independent runs. The GSO algorithm
scores higher SSIM values for threshold=1, and also on the
Boat and Hunter images for threshold=2. However, for all
the other threshold values EGSO achieves the higher values.
Again, the EGSO algorithm is more robust compared to GSO
based on the smaller standard deviation values obtained. Some
of the standard deviation values are 0 indicating that the 50
runs produced the same result i.e., found the same thresholds.
A Wilcoxon signed rank test returned a p-value of 0.000262
and confirmed that EGSO is significantly better than GSO in
terms of SSIM.

VI. CONCLUSION

Image segmentation involves the partitioning of an image
into multiple regions, i.e., each pixel in the image is assigned
a label that corresponds to certain visual characteristics. Since
the thresholding process is an NP-hard problem, exact methods
are only feasible for a small number of thresholds. Thus,
nature-inspired algorithms have recently been applied to this
hard optimization problem and shown very good results. This
paper investigated a glowworm swarm optimization approach
with further enhancements made to improve the accuracy
of the thresholding as well as the robustness. The proposed
approach improves the basic GSO algorithm with adjustments
to the local decision radius, the selection method, and the
step size. The non-parametric segmentation method measuring



TABLE II
THRESHOLD INTENSITY, OBJECTIVE VALUE AND EXECUTION TIME

Image
GSO EGSO

Threshold intensity Objective value Exec. time (s) Intensity Objective value Exec. time (s)

Airplane

152 1.587E+03 1.148E+00 152 1.587E+03 1.216E+00
121; 178 1.757E+03 1.144E+00 121; 177 1.757E+03 1.209E+00

93; 146; 187 1.837E+03 1.229E+00 91; 141; 186 1.838E+03 1.265E+00
86; 140; 179; 200 1.877E+03 1.339E+00 84; 128; 169; 198 1.881E+03 1.553E+00

65; 111; 135; 180; 202 1.900E+03 1.440E+00 67; 106; 142; 177; 201 1.908E+03 1.839E+00

Boat

112 1.622E+03 1.513E+00 105 1.622E+03 1.182E+00
93; 156 1.892E+03 1.609E+00 101; 168 1.892E+03 1.497E+00

72; 125; 165 2.027E+03 1.685E+00 83; 128; 153 2.027E+03 1.786E+00
55; 93; 129; 168 2.071E+03 1.801E+00 67; 109; 148; 185 2.099E+03 2.060E+00

52; 85; 114; 139; 174 2.135E+03 1.919E+00 61; 118; 140; 161; 203 2.128E+03 2.340E+00

Hunter

83 2.523E+03 3.078E+00 84 2.523E+03 2.808E+00
56; 122 2.947E+03 3.217E+00 56; 123 2.948E+03 3.146E+00

39; 91; 142 3.127E+03 3.323E+00 38; 91; 141 3.127E+03 3.482E+00
28; 79; 118; 151 3.199E+03 3.410E+00 34; 81; 123; 163 3.209E+03 3.750E+00

23; 56; 92; 130; 156 3.243E+03 3.672E+00 27; 64; 99; 133; 171 3.255E+03 4.131E+00

Lena

117 1.601E+03 1.533E+00 117 1.601E+03 1.238E+00
91; 150 1.961E+03 1.623E+00 92; 150 1.962E+03 1.549E+00

82; 123; 170 2.126E+03 1.635E+00 79; 125; 170 2.128E+03 1.839E+00
75; 107; 144; 179 2.188E+03 1.728E+00 74; 113; 144; 179 2.191E+03 2.104E+00

76; 88; 111; 145; 183 2.200E+03 1.829E+00 72; 108; 135; 159; 187 2.217E+03 2.409E+00

Mandrill

127 1.219E+03 1.543E+00 127 1.219E+03 1.247E+00
96; 148 1.548E+03 1.595E+00 96; 148 1.548E+03 1.525E+00

85; 124; 161 1.638E+03 1.701E+00 84; 124; 160 1.638E+03 1.878E+00
72; 107; 136; 165 1.692E+03 1.787E+00 71; 105; 136; 167 1.692E+03 2.114E+00

63; 104; 131; 153; 171 1.711E+03 1.908E+00 66; 98; 124; 148; 173 1.718E+03 2.382E+00

Peppers

102 2.594E+03 1.484E+00 103 2.594E+03 1.228E+00
48; 115 2.866E+03 1.602E+00 48; 115 2.866E+03 1.506E+00

41; 100; 151 3.065E+03 1.670E+00 42; 98; 152 3.066E+03 1.773E+00
37; 91; 140; 176 3.149E+03 1.869E+00 40; 88; 134; 174 3.152E+03 2.081E+00

38; 91; 120; 149; 186 3.187E+03 1.959E+00 38; 79; 117; 149; 181 3.196E+03 2.399E+00

TABLE III
PSNR - MEAN AND STANDARD DEVIATION

Image Level
GSO EGSO

Average PSNR Std. dev. PSNR Average PSNR Std. dev. PSNR

Airplane

1 1.151E+01 5.216E-03 1.151E+01 7.022E-03
2 1.483E+01 5.656E-01 1.494E+01 3.346E-03
3 1.760E+01 1.090E+00 1.900E+01 0.000E+00
4 1.955E+01 1.286E+00 2.099E+01 1.628E-02
5 2.077E+01 1.124E+00 2.322E+01 1.121E-02

Boat

1 1.387E+01 4.718E-01 1.372E+01 4.327E-01
2 1.557E+01 8.822E-01 1.495E+01 5.915E-01
3 1.832E+01 1.083E+00 1.891E+01 5.843E-01
4 1.914E+01 1.704E+00 2.045E+01 5.940E-01
5 1.948E+01 2.854E+00 2.112E+01 7.015E-01

Hunter

1 1.374E+01 1.770E-02 1.376E+01 2.550E-02
2 1.687E+01 2.896E-01 1.703E+01 2.607E-03
3 1.881E+01 5.807E-01 1.943E+01 0.000E+00
4 2.009E+01 7.352E-01 2.097E+01 1.379E-02
5 2.129E+01 6.322E-01 2.258E+01 1.501E-02

Lena

1 1.207E+01 9.537E-03 1.206E+01 1.569E-02
2 1.520E+01 3.990E-01 1.534E+01 0.000E+00
3 1.692E+01 4.952E-01 1.738E+01 0.000E+00
4 1.798E+01 8.766E-01 1.866E+01 9.433E-03
5 1.894E+01 1.165E+00 1.969E+01 3.549E-01

Mandrill

1 1.098E+01 4.055E-02 1.095E+01 5.032E-02
2 1.524E+01 5.311E-01 1.549E+01 0.000E+00
3 1.718E+01 1.079E+00 1.782E+01 3.150E-03
4 1.927E+01 1.066E+00 2.031E+01 3.987E-02
5 2.016E+01 1.395E+00 2.177E+01 7.831E-02

Peppers

1 1.294E+01 9.602E-03 1.295E+01 1.374E-02
2 1.589E+01 3.887E-01 1.614E+01 8.408E-02
3 1.821E+01 8.511E-01 1.886E+01 0.000E+00
4 1.928E+01 8.808E-01 2.041E+01 2.351E-02
5 2.049E+01 8.560E-01 2.183E+01 2.165E-02



TABLE IV
SSIM - MEAN AND STANDARD DEVIATION

Image Level
GSO EGSO

Average SSIM Std. dev. SSIM Average SSIM Std. dev. SSIM

Airplane

1 6.060E-01 3.860E-04 6.057E-01 5.200E-04
2 7.324E-01 1.466E-02 7.379E-01 4.100E-05
3 7.964E-01 2.944E-02 8.172E-01 0.000E+00
4 8.152E-01 3.195E-02 8.288E-01 2.560E-04
5 8.293E-01 3.154E-02 8.585E-01 4.940E-04

Boat

1 4.183E-01 4.019E-03 4.171E-01 3.745E-03
2 5.062E-01 3.182E-02 4.836E-01 1.443E-02
3 6.102E-01 3.583E-02 6.382E-01 1.538E-02
4 6.520E-01 6.391E-02 7.107E-01 2.141E-02
5 6.747E-01 9.542E-02 7.484E-01 2.726E-02

Hunter

1 3.516E-01 1.420E-04 3.515E-01 2.040E-04
2 4.604E-01 1.003E-02 4.599E-01 2.270E-04
3 5.461E-01 1.849E-02 5.599E-01 0.000E+00
4 5.921E-01 1.755E-02 6.020E-01 2.870E-04
5 6.297E-01 2.638E-02 6.581E-01 4.410E-04

Lena

1 4.199E-01 1.192E-03 4.187E-01 1.961E-03
2 5.303E-01 2.786E-02 5.304E-01 0.000E+00
3 5.986E-01 2.415E-02 6.050E-01 0.000E+00
4 6.278E-01 4.069E-02 6.435E-01 3.350E-04
5 6.608E-01 4.305E-02 6.805E-01 1.422E-02

Mandrill

1 3.750E-01 1.605E-03 3.740E-01 1.992E-03
2 6.104E-01 2.422E-02 6.227E-01 0.000E+00
3 6.862E-01 3.612E-02 7.069E-01 6.000E-06
4 7.566E-01 3.254E-02 7.949E-01 9.650E-04
5 7.820E-01 3.872E-02 8.321E-01 9.620E-04

Peppers

1 3.534E-01 3.000E-04 3.532E-01 4.290E-04
2 5.169E-01 7.593E-02 5.645E-01 2.340E-02
3 5.881E-01 1.648E-02 5.975E-01 0.000E+00
4 6.161E-01 2.341E-02 6.395E-01 6.120E-04
5 6.507E-01 2.552E-02 6.732E-01 5.560E-04

the between-class variance (Otsu) was used as the objective
measure for the evaluation.

The enhanced GSO algorithm (EGSO) is compared against
the basic GSO algorithm. The experiments are performed
using six standard benchmark images measuring the PSNR
(peak-to-signal-ratio) and SSIM (structural similarity index).
Besides these measures, the algorithms obtains the threshold
intensity values, objective value, and execution time. The
results reveal that the EGSO algorithm is more robust than
GSO as seen by the standard deviation values. Furthermore,
EGSO obtains significantly better PSNR and SSIM values for
threshold values of 2 and above.

Further work will investigate the proposed algorithm us-
ing different objective measures such as Tsallis entropy and
minimum cross entropy in order to see whether the same
improvements of EGSO can be achieved.
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