
Object-tracking based on Particle Filter using
Particle Swarm Optimization with Density

Estimation
Gongyi Xia and Simone A. Ludwig

North Dakota State University
Fargo, ND, USA

{gongyi.xia,simone.ludwig}@ndsu.edu

Abstract—Visual object-tracking is a fundamental task ap-
plied in many applications of computer vision. Many differ-
ent tracking algorithms have been used ranging from point-
tracking, to kernel-tracking, to silhouette-tracking based on
different appearance models chosen. This paper investigates the
particle filter that is used as a tracking algorithm based on the
Bayesian tracking framework. The problems that the particle
filter tracking technique suffers from are degeneracy and the
impoverishment degradation. These two issues are addressed by
the use of Particle Swarm Optimization (PSO) as the sampling
mechanism. In particular, particles are generated via the PSO
process in order to estimate the importance distribution. Two
density estimation methods are used, one is a parametric method
using the Half-Normal distribution fitting, and the other is a
non-parametric method using kernel density estimation. The
experiments revealed that the non-parametric density estimation
method combined with PSO outperforms the other comparison
algorithms.

I. INTRODUCTION

Visual object-tracking is a very active research topic within
the area of computer vision. One of the reasons is the
increasing need for the automated analysis of videos. There
are usually three steps involved in video analysis namely
detection of interesting moving objects, tracking such objects
from frame to frame, and the analysis of object tracks to
recognize their behavior.

The aim of object-tracking is to estimate the target state
within a video sequence including the trajectory, orientation,
position and scale, etc. [1]. In particular, the tracker labels the
area of interest in a video frame as the target based on the
previous knowledge of the target.

Object-tracking is applied to many areas including [2]:
1) motion-based recognition whereby human identification

is performed based on gait, etc.;
2) automatic surveillance whereby a scene is monitored to

detect suspicious activities or unlikely events;
3) video indexing, whereby the videos in multimedia

databases are automatically annotated;
4) human-computer interaction such as gesture recognition,

eye gaze tracking, etc.;
5) traffic monitoring in order to gather real-time statistics

of traffic to direct traffic flow;

6) vehicle navigation using video-based path planning and
obstacle avoidance.

Object-tracking is defined as the problem of estimating the
trajectory of an object in the image plane moving around in a
scene. Thus, a tracker has to assign a consistent label to the
tracked objects in each frame of a video. The challenges of
the tracking of objects arise due to the following issues:
• noise in images,
• complex object motion,
• partial and/or full occlusion,
• scene illumination changes,
• complex object shapes,
• non-rigid or articulated nature of objects.
Object-tracking can be simplified by placing some con-

straints on the tracking task, which are based on the motion
and appearance of objects. Most trackers assume that the
object motion is smooth without abrupt changes. Furthermore,
the object motion can be set to be of constant velocity or
constant acceleration based on prior information. Moreover,
prior knowledge about the number and size of the objects as
well as the object appearance and shape can further simplify
the tracking task.

Numerous object-tracking approaches have been proposed.
These approaches differ from each other in the following ways:
• object representation;
• image features used;
• model to be used for motion, appearance and shape of

object;
Based on the appearance models, object-tracking algorithms

can be categorized as either generative [3]-[7] or discriminative
[8]-[12]. The generative algorithms usually learn a model to
represent the target object, and then use this model to search
for the image region with minimal reconstruction error. On the
other hand, the discriminative algorithms convert the tracking
problem to a binary classification task in order to find the
decision boundary for separating the target object from the
background.

Object-tracking is a challenging task since many different
circumstances play a role. For example, some trackers might
be good in handling different illuminations, but might have978-1-4799-7492-4/15/$31.00 c©2015 IEEE

difficulties in tracking objects when the appearance of the
object changes due to variations of object movement and
rotation. Another set of trackers might predict motion in order
to better track speed, but then others might have difficulty
following a bouncing object. Furthermore, a tracker may be
based on the detailed assumption of the appearance, but then
might fail on an articulated object [13].

This paper investigates particle filter based trackers, which
belong to the generative algorithm category. Given that in
order to model the underlying dynamics of a physical system
such as the object-tracking task, it is important to include
both elements of non-linearity and non-gaussianity. Thus, for
such cases particle filters can be used. Particle filters are
sequential Monte Carlo methods that are based on the point
mass representations of probability densities that are applied
to any state model. Therefore, particle filters can be used
for object-tracking by approximating the filtered posterior
distribution by a set of weighted particles. The particles are
weighted based on a likelihood score, and thus, propagates
these particles according to a motion model. One drawback
the use of particle filters in object-tracking exhibits is the
inability of samples to explore the probability distribution
effectively and efficiently. This is due to the particles that do
not move according to their former experience nor do they
consider the relationship to other particles. Thus, in this paper
we propose enhancements to the marginal particle filter by
applying Particle Swarm Optimization (PSO) [14] and kernel-
based estimation.

The paper is structured as follows. Section II describes re-
lated work in the area of object-tracking. In Section III the two
proposed approaches are described. Section IV describes the
experiments conducted and discusses the results and findings.
The conclusion and future work is given in Section V.

II. RELATED WORK

The visual object-tracking problem in the context of
Bayesian inference can be formulated by two models: system
model and measurement model. The system model given in
Eq. (1) represents the dynamic transition of the state as the
time proceeds; and the measurement model (Eq. (2)) represents
the observation of the state through the noisy measurement
process:

xk = fk(xk−1, vk−1) (1)

zk = hk(xk, nk) (2)

where the sequence {xk, k ∈ N} denotes the target state, the
sequence {zk, k ∈ N} denotes the measurement of the state
sequence, and vk and nk are system noise and measurement
noise, respectively. In the context of object-tracking, xk is
the target position. Depending on the specific application, the
target position could include coordinates of the target center,
in-plane rotation, or aspect ratio, etc. zk is the measurement
for the image at frame k in the video sequence.

The goal of Bayesian inference is to estimate xk based on
the prior knowledge about the system and the measurement

process and all measurements z1:k = {zi, i = 1, 2, . . . , k} up
to time k. By the criteria of the Minimum Mean-Squared Error
(MMSE), the optimal estimation is the expected value from
the posterior probability density [15].

In the case of Gaussian noise and linear system dynamics,
Kalman filters are optimal estimators [16]. For most of the
applications in visual object-tracking, however, the system and
measurement models can hardly be approximated as linear. In
such cases, the particle filter successfully solves the problem of
non-linearity by using particles to approximate a distribution,
i.e., Monte Carlo approximation to avoid the ever-increasing
dimension of the sampling space by sequential importance
sampling. In the particle filter, the weights for particles are
calculated recursively as in Eq. (3), where p(zk|xk) denotes
the likelihood, p(xk|xk−1) reflects the system motion, and q(·)
is the importance density. After obtaining weights for particles,
the estimation of the posterior density is approximated as in
Eq. (4).

wik ∝ wik−1
p(zk|xk)p(xk|xk−1)

q(xk|x0:k−1, z1:k)
(3)

p(x0:k|z1:k) =

N∑
i=1

winδXi
1:n

(x1:n) (4)

where wik is the weight for particle i at time k and δ(·) is
Dirac delta function.

A generic particle filter suffers from several problems that
are inherent in the particles. The first issue resulting from the
generic particle filter is degeneracy [17][18], where a large
portion of the particles have negligible weight after a few
iterations. Thus, these particles contribute very little towards
the distribution approximation because of their small weight.

An intuitive yet effective solution is Sampling Importance
Resampling (SIR), where particles of small weights have a
smaller chance to be forwarded to the next iteration. Typical
implementations of SIR include bootstrap particle filter [17],
and reject particle filter [19]. While alleviating the degeneracy
problem, however, the resampling may lead to the impover-
ishment problem, where the diversity of particles are reduced
especially in the case of small process noise. Multiple research
has been carried out to alleviate the impoverishment problem.
The Regularized Particle Filter proposed in [21] creates a
continuous posterior density by applying the kernel smoothing
to the discrete posterior density. Then, particles resampled
from the continuous posterior density are distributed more
evenly. The Auxiliary particle filter in [20] avoids resampling
from particles that have low likelihood by constructing an
importance density that has high conditional likelihood.

There are other methods which cope with the degeneracy
problem without giving rise to the impoverishment prob-
lem. These methods move particles away from low posterior
probability regions towards regions with higher probability.
The Kernel Particle Filter proposed in [22] employs Mean-
Shift to migrate particles towards higher probability locations
on the posterior probability landscape. However, the Mean-
Shift, as a deterministic search algorithm, needs a continuous

probability distribution, which is constructed by the kernel
density estimation [22].

PSO, as an optimization algorithm, is also employed by
some researchers formulating the object-tracking as an op-
timization problem. A hierarchical version of the PSO al-
gorithm (HPSO) is developed in [23] to track articulated
human motion. The authors claim that HPSO is superior to
the particle filter and related approaches in terms of tracking
results due to the elimination of the needs for a specific
motion model. Feng et al. in [24] proposed an enhanced
PSO for object-tracking where particles are assigned different
inertia parameters according to their local best quality avoiding
getting stuck in a local optimum.

Recently, there are research investigations trying to integrate
PSO with the particle filter to overcome the degeneracy
problem mentioned above. The authors in [25] use particles
sampled from the importance density using PSO. With the
set of particles moved to high likelihood regions, the authors
claim that the particle impoverishment is avoided. A similar
algorithm was proposed in [26], in which PSO was used to
move samples to a region where both the likelihood of the
target and the prior density are significant. Another similar
PSO based particle filter is proposed in [27], where the so-
called multi-layer importance sampling method is used to
move particles towards the region with high likelihood of ob-
servation. However, all these algorithms suffer from the same
problem even though these samples are originally propagated
forward through the system motion model. Since the particles
are moved by PSO, their distribution does not fit the system
motion model anymore. In other words, after applying the PSO
process to the particles the underlying system motion model
is modified to accommodate such transitions of the particles.

It is important to note, if the importance density q(·) in
Eq. (3) is always identical to the system motion p(xk|xk−1),
then above mentioned PSO based particle filters fall back
to the PSO-only tracking algorithm similar to the ones in
[23] and [24]. This operation effectively eliminates the sys-
tem motion model from the tracking process, thus, could
potentially increase the tracking performance according to
[23]. However, eliminating the system motion model does
not necessarily improve the performance. This is only true
if the system motion model is vague and can not reflect the
object motion effectively. In this case, the system motion has
a negative influence. On the other side, discarding the system
motion from the tracking process means that this information
is completely lost, which would positively contribute to a
better tracking performance if a more refined system motion
can be derived.

III. PROPOSED APPROACH

The Marginal Particle Filter is used instead of the conven-
tional particle filter to allow arbitrary particle sampling within
the state space without modifying the effective system motion
model.

A. Marginal Particle Filter

As discussed in [28], the importance sampling scheme
draws samples, i.e., particles, according to the importance
density in a joint state space. In practice, the sampling is
done in a sequential manner such that direct sampling in the
high dimensional joint space can be avoided. Each sample xik
drawn in the current state space xk by sequential importance
sampling together with its previous sample xi0:k−1 constitute
a sample in the joint space χk, where i = 1, 2, . . . N and N is
the number of particles. It is clear that as the path grows, the
dimension of the sampling space also increases. This situation
usually leads to the problem of degeneracy of the weights, and
this leads to the variance of the weights to increase without
bound [28].

The curse of high dimensionality of the sampling space is
inherited from the joint posterior density p(x0:k|z1:k) that is
being approximated by the particles. If we can reduce the di-
mension of the posterior density, then we could avoid problems
induced by the high dimensional sampling space. The authors
in [28] presented a Marginal Particle Filter (MPF), in which
only the marginal posterior density p(xk|z1:k) is estimated.
Thus, this essentially eliminates the need for sampling in a
high dimensional joint space.

The prediction and update steps in the marginal particle
filter are essentially the same as in the particle filter, which
are shown in Eq. (5) and Eq. (6).

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (5)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

(p(zk|z1:k−1)
(6)

Substituting Eq. (5) into Eq. (6), the update step becomes:

p(xk|z1:k) ∝ p(zk|xk)

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

(7)

Since p(xk−1|z1:k−1) is already approximated by a set of
particles {xik−1, wik−1}, the approximation of p(xk|z1:k−1) is
derived from:

p(xk|z1:k−1) =

N∑
i=1

wik−1p(xk|xik−1) (8)

Then, the posterior density can be estimated by:

p(xk|z1:k) ∝ p(zk|xk)

N∑
i=1

wik−1p(xk|xik−1) (9)

And the importance weights are updated by:

wk =
p(xk|z1:k)

q(xk|z1:k)
(10)

where q(xk|z1:k) is an arbitrarily chosen importance density
to draw samples. By deliberately designing the importance
density, the particles drawn can be distributed in the region
where the likelihood is significant.

B. Sampling by PSO
As suggested above, to mitigate the problem of degeneracy

the key is to derive particles that have significant posterior
probability. In [25] and [26], this is done by moving particles
through the PSO process. However, such abrupt manipulation
of particles completely eliminates the connection of parti-
cles established by particle propagation between consecutive
frames, thus, results in ignorance of system motion informa-
tion during the tracking process of the particle filter.

An ideal importance density should yield particles that
minimize the variance of the importance weights [29]. That
is equivalent to finding an importance density that matches
the posterior density. The marginal particle filter does not
necessarily need particle propagation between consecutive
frames. Thus, it can freely sample particles from the current
state space xk based on any importance density.

An intuitive solution is to define an importance density
that is identical to the posterior density. Since the posterior
density is unknown while sampling, and usually is impossible
to fully derive, we use the density of the likelihood as the
basis to perform the importance sampling. Even though it is
still costly to obtain the density of the likelihood for the entire
state space. In this paper, we choose a “reverse direction” to
accomplish this. First, we locate the high likelihood regions
and scatter the particles in such regions. Then, we estimate the
underlying importance density from the current particles and
in turn calculate the importance probability for each particle
based on the estimated importance density.

1) Particles sampling: In this section, we present the
method to distribute particles in high likelihood regions for
the use with the particle filter. We use the canonical PSO
process to explore the state space and use the likelihood as
the fitness value for the PSO process. Upon convergence, the
particles should move towards and finally gather around the
convergence position.

Let us assume the posterior p(xk−1|z1:k−1) for time step
k − 1 is available, and we are proceeding to the next frame.
The particle sampling at time step k is done by the following
steps:

Initialize: Particles are distributed across the possible region
in the search space as in general PSO. Depending on the
implementation, this region could be around the optimal
estimation of the target position at time step k − 1.

Iterate: Let the particles move according to the PSO
iteration equations, whereby the particles in each iteration are
denoted as {xi,jk }Nj=1, i is the index of the current iteration,
and N is the swarm size.

Converge: If the convergence criteria are met (the details
will be discussed later in this paper), then the iteration is
stopped. If the maximum number of generations has been
reached before the convergence criteria are met, then this
particular execution of sampling has failed.

Combine: Place particles from all iterations into the same
set, denoting the set as {xik}Ti=1, where T = M ∗ N is the
number of total particles, M is the number of iterations, and
N is the swarm size of the population.

2) Importance Density Estimate: The importance density is
empirically estimated from the aggregated particles {xik}Ti=1

obtained above, which is then used to update the particle
weights. This can be done either in a parametric or non-
parametric manner.

Parametric density estimation:
Here we assume that the distance of particles from their cen-

ter conforms to the Half-Normal distribution. Its probability
density function is given by:

p(y) =

√
2

σ
√
π

exp
(
− y2

2σ2

)
y > 0 (11)

The reason we chose the Half-Normal distribution is be-
cause it only depends on one parameter, which introduces less
deviation during the method of finding the maximum likeli-
hood. First, the center of particles is obtained by retrieving
the mean of all the particles. Then, the Euclidean distance
between the particles and the center are calculated. Finally,
the parameter σ can be estimated by:

σ̂ =

√√√√1

2

n∑
1

d2i (12)

where di is the distance to the center for particle i, and n is
the number of particles.

Since the fitting of the Half-Normal distribution depends
on only one parameter (distance to the center), the posterior
density is also symmetrical around the center. Which might
not always be true, however, in this paper we hold on to such
approximation in the case of the parametric estimation.

Non-parametric density estimation:
In order to relieve the restriction for the assumption of some

known distribution and symmetrical posterior, non-parametric
density estimation is also employed in this paper. This ap-
proach makes less rigid assumptions about the distribution of
the observed data. In this paper, we use the kernel density
estimation with the Gaussian kernel function [30]. Given the
particle set {xik}Ti=1, its kernel density estimation is obtained
by:

q(xk|z1:k) =

T∑
i=1

Kλ(xt − xik) (13)

where Kλ is the scaled kernel, and λ is the kernel width.
Compared to the parametric approach, the kernel density es-

timation makes no assumption about the potential distribution
of the particle set. Therefore, it adapts better to the multi-
model likelihood situation.

In addition, the given particle set is further tailored before
the estimation stage. For example, the particle set could be
reduced by discarding particles whose likelihood are less than
a certain threshold. This operation is meaningful in terms of
both cost and performance. Usually, particles with small likeli-
hood contribute to the posterior density little. Excluding them
from the subsequent process saves unnecessary computations.
On the other hand, a smaller particle set reduces the variance
of the particle weights.

C. Marginal Particle Filter with PSO

Our PSO based particle filter differs from other PSO based
particle filters (mentioned in Section II) in two ways:
• marginal particle filter is used to allow a fixed-dimension

state space;
• particles are drawn first in the high likelihood region

before the importance density is derived.
These differences bring performance improvements to our

particle filter in the following ways:
1) instead of using only the last generation of particles,

our approach considers all generations, which increases
the number of available particles dramatically by several
folds without extra computational expense;

2) the particle set covers a much broader area including
the area around and further away from the convergence
position. In contrast, the last generation of PSO usually
gathers close around the convergence position;

3) adaptive to multi-model likelihood density;
4) able to globally search for high likelihood particles in-

stead of only deriving particles from the last generation.
Algorithm 1 shows the pseudo code of general form of our

particle filter.

Algorithm 1 Marginal Particle Filter with PSO

Input: Particle set from previous frame {x(·)k−1, w
(·)
k−1},

measurement zk
Output: Target estimation p̂(xk|z1:k)

Generate particle set {xik}Ti=1 by performing PSO
if Parametric Estimation then

Estimate σ̂ according to Eq. (12)
for each xik in the particle set do

Calculate likelihood p(xik|zk) based on appearance model
Calculate p(xik|z1:k−1) based on Eq. (8)
Obtain importance density estimation q(xik|z1:k) based on
Eq. (11)
Calculate particle weights wi

k =
p(xi

k|z1:k−1)∗p(xi
k|zk)

q(xi
k
|z1:k)

end for
elseNon-Parametric Estimation

Discard particles from {xik}Ti=1 whose likelihood is less than
a designated value
for each xik in the particle set do

Calculate likelihood p(xik|zk) based on appearance model
Calculate p(xik|z1:k−1) based on Eq. (8)
Obtain importance density estimation q(xik|z1:k) based on
Eq. (13)
Calculate particle weights wi

k =
p(xi

k|z1:k−1)∗p(xi
k|zk)

q(xi
k
|z1:k)

end for
end if
Return target estimation p̂(xk|z1:k) =

∑
wi

kx
i
k

IV. EXPERIMENTS AND RESULTS

To demonstrate the performance of our object tracker based
on marginal particle filter with PSO (MPFPSO), we evaluate
the tracker on a video dataset comprised of a wide range
of videos. In this section, we first examine the validity of
our sampling method to verify that particles are sampled as

expected and the importance density estimation results are
also evaluated. Then, the performance of our object trackers
is evaluated against other trackers including the particle filter
with PSO (PFPSO) [26], the bootstrap particle filter (BPF)
[31], and the basic marginal particle filter (MPF).

A. Experimental Setup

The experiments are implemented based on the object-
tracking framework developed in [32]. The video set is also
provided by this framework, which includes 51 videos of
different scenes. All of the code is run in Matlab R2015 on a
Windows machine equipped with Core i5@2.8GHz*4 Cores,
16GB RAM.

For other settings of the experiments, we use the appearance
model and similarity measurement as defined in [33] because
of its high resolution and peaked likelihood landscape. In this
appearance model, objects are described by sparse represen-
tation of a dictionary which contains the vectorized pixels.
The pixels are represented by its intensity and similarity is
measured through l1 minimization. To simplify the problem,
we only track the target location in the image plane. The state
is defined as xt = (x, y), where {x, y} are the coordinates of
the target center. The system motion model is assumed to be
of Gaussian distribution p(xk|xk−1) ∼ N(xk−1,Σ), where Σ
is the diagonal covariance matrix.

The PSO process in the tracker is set up as a ‘Standard
PSO’ [34] with the population size of the particle swarm set to
50. In this paper, we use this set of parameters throughout our
experiments due to the observation that changes in the PSO pa-
rameters do not change the tracking performance significantly.
The swarm of the particles are initialized uniformly within
±32 pixel on both the horizontal and vertical axis around the
previous target position. The stopping criteria used are:

1) the PSO process stops after 20 iterations, or
2) if the overlap ratio of the best bounding box of the

previous 4 frames as compared to the current frame is
at least 98%.

Fig. 1. Comparison of empirical data and Half-Normal Distribution.

(a) Aggregated particles on one frame. (b) Tailored particle set. (c) Results of kernel density estimation.

Fig. 2. Illustration of kernel density estimation.

B. Results

We run our object tracker on the video sequence named
“CarDark”, and we randomly choose a frame during the
tracking process. For that particular frame, PSO converges at
iteration 7, so there are in total 350 particles in the data set.
Figure 1 shows that the histogram of the distance of particles
to the center fits the Half-Normal distribution very closely
while using parametric density estimation.

The non-parametric density estimation is performed with the
kernel density estimation tool kit developed in [35]. Figure 2
shows how the density estimation is performed on particles
drawn by the PSO process. The particles are drawn first by
the PSO process as shown in Figure 2a, then the particle set
is tailored according to the particle weights as displayed in
Figure 2b. Figure 2c is an illustration of the kernel density
estimation of the tailored particle set. It can be observed in
Figure 2c that the tailored particle set consists of particles
from all over the frame because their likelihood is above the
threshold. It is worth to mention that some of the particles are
not from the current iteration of PSO, and thus are relatively
further away from the convergence position. This is partic-
ularly desirable in the case of a multiple-peaked likelihood
where the last generation of particles is usually attracted to
the highest peak. This is how the tailoring operation exploits
the exploratory power of PSO.

1) Tracking Results: We use precision and success rate
as in [32] for quantitative analysis of the tracking ability
of our approach. In detail, precision measures the accuracy
of tracking in terms of distance between the tracking result
and the ground truth. Specifically, the distance is derived by
calculating the Euclidean distance between the centers of the
tracking result and the ground truth. Given {x, y}r is the center
of the tracking window, and {x, y}g is the center of the ground
truth, then the precision is obtained based on Eq. (14):

precision =
N‖{x,y}r−{x,y}g‖≤threshold

Ntotal
(14)

where Ntotal is the number of total frames on which the track-
ing is performed, N‖{x,y}r−{x,y}g‖≤threshold is the number
of frames which is within given distance of threshold from

ground truth and ‖ · ‖ represents the Euclidean distance. The
success rate on the other hand measures the robustness of the
tracking in terms of overlap between the tracking result and the
ground truth. Given Pr is the set of pixels within the tracking
result bounding boxes, and Pg is the set of pixels within the
ground truth bounding boxes, whereby the success rate is given
by Eq. (15):

success rate =
NS≥threshold

Ntotal
(15)

where Ntotal is the total number of frames on which the
tracking is performed, NS≤threshold is the number of frames
whose overlap score S is equal or greater than the given
threshold, and S =

|Pr∩Pg|
|Pr∪Pg| is the overlap score between the

tracking result and the ground truth, | · | measures the number
of pixels in the pixel set.

Fig. 3. Success rate versus overlap threshold.

In order to evaluate the tracking performance more thor-
oughly and alleviate potential dependencies on specific videos,
both precision and success rate are measured on all 51 video
sequences. As shown in Figure 3 and Figure 4, our MPFPSO

Fig. 4. Precision versus location error threshold.

with kernel density estimation (MPFPSO-KDE) performs best
in terms of both precision and success rate, followed by
PFPSO, MFPSO with Half-Norm (MFPSO-HN) fitting, BPF
and MPF sequentially. The x-axis in both figures are thresholds
as used in Eq. (14) and Eq. (15).

The performance margin that MPFPSO and PFPSO have
brought against BPF and MPF comes mostly from the sam-
pling mechanism. In MPFPSO-KDE and PFPSO, the particles
are either sampled from or moved to high likelihood regions,
which in turn heightens the matching degree between the
importance density and the posterior density. For MPFPSO-
HN it considers all the particles. Although the variance of
the particle weights increases because of that, with the help
of PSO it still outperforms basic MPF. MPFPSO-KDE is
superior to PFPSO because of its adaptive particle sampling.
In MPFPSO-KDE, only those particles with high likelihood
are selected, thus, the number of selected particles is not
necessarily equal to the PSO swarm size and they are not
necessarily located at the convergence position. Generally,
the size of the particle set varies according to the likelihood
landscape and the PSO process. For example, in the case of
narrow likelihood peaks and fast convergence of PSO, the
size of the particle set could be relatively small. This way
the particles are sampled to match the resulting importance
density to the likelihood as good as possible. In contrast,
PFPSO always uses the last iteration of particles from the
PSO process. Depending on the convergence criterion, those
particles from the last generation may distribute only around
the convergence point, thus, ignoring the likelihood landscape
anywhere else. As we discussed previously, this may lead to
higher variance of the particle weights. Another advantage of
MPFPSO compared to PFPSO is that it includes the system
model during the tracking process.

Figure 5 shows the tracking results on the video sequence
‘Boy’. The target in this sequence is fast moving and causes
motion blur. It can be observed that both MPFPSO-KDE

and PFPSO are more robust compared to the other tracking
method.

2) Running Time: The running time is another performance
measure for object trackers. We evaluate the running time by
the number of frames per second (fps) a tracker can process
in the video sequences. Although the running time depends
on many factors, such as the appearance model, coding style,
platform, etc., however, in our experiment, we fix as many
factors as possible to focus on the difference among the
trackers. Since we use the same platform and appearance
model in the trackers, the discrepancy of the running time
basically boils down to how the trackers sample the particles
and how they are used.

TABLE I
RUNNING TIME AND AVERAGE PARTICLE NUMBER PER FRAME

Trackers fps Particle number

MPFPSO-KDE 8.48 455.62

PFPSO 16.43 276.56

MPFPSO-HN 9.07 458.59

BPF 9.72 500

MPF 6.81 500

Table I shows the comparison of running time and average
particle number. It can be observed that the running time
is directly related to the average particle number per frame.
PFPSO runs at almost double speed compared to MPFPSO
because it generates only half of the particles. The reason
behind this lies in the different initialization strategies for
the PSO process. In PFPSO, the particles are initialized by
the propagation from the previous generation which usually
are more concentrated. Whereas in MPFPSO, the particles are
initialized evenly in a larger area, thus, it takes more iterations
to reach convergence. However, on the other hand the broader
initialization inspires a wider search of the particles.

V. CONCLUSION

This paper first reviewed the current state of visual object-
trackers with connection to evolutionary optimization, then
discussed past research on the application of the particle
filter and PSO applied to object-tracking and investigated their
drawbacks. A novel particle filter has been proposed to over-
come the problems identified by previous approaches, where
a sampling by the PSO mechanism is used together with the
marginal particle filter. Experiments and results demonstrated
that the proposed method (MPFPSO-KDE) does improve the
tracking performance without introducing extra computational
cost.

Overall, it is shown that our sampling by PSO method
works quite well together with the marginal particle filter.
Its performance is better than the particle filter with PSO
previously developed as well as the bootstrap particle filter
and pure marginal particle filter. It is also demonstrated that
the sampling by PSO method is an efficient yet effective
sampling mechanism. This approach is capable of sampling
particles in the high likelihood region while keeping the system

(a) Frame 90 (b) Frame 100 (c) Frame 110 (d) Frame 120

Fig. 5. Tracking results on video ‘Boy’.

motion model the same. Our experiments also indicate that this
approach works well in the case of multiple-peaked likelihood
landscapes.

In the future, our marginal particle filter with sampling by
PSO could be further investigated in the following ways: (1)
accelerate convergence of PSO to reduce the number of parti-
cles further to save computational cost; (2) the motion model
could be further enhanced to reflect the real target motion; (3)
the relation between swarm size, tracking performance, and
computational cost is yet to be examined in more detail.

REFERENCES

[1] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. V. D. Hengel. A survey
of appearance models in visual object tracking. ACM transactions on
Intelligent Systems and Technology (TIST), 4(4), 58, 2013.

[2] A. Yilmaz, O. Javed, M. Shah. Object tracking: A survey. ACM Comput.
Surv. 38, 4, Article 13, 45 pages, 2006.

[3] M. Black, A. Jepson. Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation. IJCV 38, 63-84,
1998.

[4] A. Jepson, D. Fleet, T. Maraghi. Robust online appearance models for
visual tracking. PAMI 25, 1296-1311, 2003.

[5] D. Ross, J. Lim, R. Lin, M.-H. Yang. Incremental learning for robust
visual tracking. IJCV 77, 125-141, 2008.

[6] H. Li, C. Shen, Q. Shi. Real-time visual tracking using compressive
sensing. In: CVPR, pp. 1305-1312, 2011.

[7] X. Mei, H. Ling. Robust visual tracking and vehicle classification via
sparse representation. PAMI 33, 2259-2272, 2011.

[8] S. Avidan. Support vector tracking. PAMI 26, 1064-1072, 2004.
[9] R. Collins, Y. Liu, M. Leordeanu. Online selection of discriminative

tracking features. PAMI 27, 1631-1643, 2005.
[10] H. Grabner, M. Grabner, H. Bischof. Real-time tracking via online

boosting. In: BMVC, pp. 47-56, 2006.
[11] H. Grabner, C. Leistner, H. Bischof. Semi-supervised On-Line Boosting

for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008, Part I. LNCS, vol. 5302, pp. 234-247. Springer, Heidelberg, 2008.

[12] B. Babenko, M.-H. Yang, S. Belongie. Robust object tracking with
online multiple instance learning. PAMI 33, 1619-1632, 2011.

[13] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A.
Dehghan, M. Shah. Visual Tracking: An Experimental Survey, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no.
7, pp. 1442-1468, July 2014.

[14] J. Kennedy, R. Eberhart. Particle swarm optimization. In: Proc. of IEEE
Int. Conf. on Neural Networks, pp. 1942-1948. IEEE Press, Piscataway,
1995.

[15] B. D. Anderson, J. B. Moore. Optimal Filtering, 1979.
[16] M. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE
Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.

[17] P. Green, Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination, Biometrika, vol. 82, no. 4, p. 711, 1995.

[18] J. Liu, R. Chen, Sequential Monte Carlo Methods for Dynamic Systems,
Journal of the American Statistical Association, vol. 93, no. 443, p. 1032,
1998.

[19] J. Liu, R. Chen and W. Wong, Rejection Control and Sequential
Importance Sampling, Journal of the American Statistical Association,
vol. 93, no. 443, pp. 1022-1031, 1998.

[20] M. Pitt and N. Shephard, Filtering via Simulation: Auxiliary Particle
Filters, Journal of the American Statistical Association, vol. 94, no. 446,
p. 590, 1999.

[21] C. Musso, N. Oudjane and F. Gland, Improving Regularised Particle
Filters, Sequential Monte Carlo Methods in Practice, pp. 247-271, 2001.

[22] C. Chang and R. Ansari, Kernel particle filter for visual tracking, IEEE
Signal Processing Letters, vol. 12, no. 3, pp. 242-245, 2005.

[23] J. Vijay, E. Trucco, and S. Ivekovic. Markerless human articulated
tracking using hierarchical particle swarm optimisation. Image and Vision
Computing 28, no. 11 (2010): 1530-1547

[24] S. Feng, C. Bae, G. Liu, X. Zhao, Y. Y. Chung, and W. Yeh. A cate-
gorized particle swarm optimization for object tracking. In Evolutionary
Computation (CEC), 2015 IEEE Congress on, pp. 2737-2744. IEEE, 2015

[25] G. F. Tong, Z. Fang, and X. H. Xu. A particle swarm optimized particle
filter for nonlinear system state estimation., Evolutionary Computation,
2006. CEC 2006. IEEE Congress on, pp. 438-442, 2006.

[26] A. Klamargias, K. Parsopoulos, P. Alevizos and M. Vrahatis, Particle
filtering with particle swarm optimization in systems with multiplicative
noise, Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation - GECCO ’08, 2008.

[27] X. Zhang, W. Hu, S. Maybank, Xi Li and M. Zhu, Sequential parti-
cle swarm optimization for visual tracking, 2008 IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[28] M. Klaas, N. D. Freitas, and A. Doucet. Toward practical N2 Monte
Carlo: the marginal particle filter. arXiv preprint arXiv:1207.1396, 2012.

[29] A. Doucet, S. Godsill and C. Andrieu, Statistics and Computing, vol.
10, no. 3, pp. 197-208, 2000.

[30] B. W. Silverman, Density estimation for statistics and data analysis. Vol.
26. CRC press, 1986.

[31] N. Gordon, D. Salmond and A. Smith, Novel approach to nonlinear/non-
Gaussian Bayesian state estimation, IEE Proceedings F Radar and Signal
Processing, vol. 140, no. 2, p. 107, 1993.

[32] Y. Wu, J. Lim and M. Yang, Online Object Tracking: A Benchmark,
2013 IEEE Conference on Computer Vision and Pattern Recognition,
2013.

[33] X. Jia, H. Lu and M. Yang, Visual tracking via adaptive structural local
sparse appearance model, 2012 IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

[34] D. Bratton, J. Kennedy. Defining a standard for particle swarm opti-
mization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pp.
120-127. IEEE, 2007.

[35] Kernel Density Estimation Toolbox for MATLAB. [Online]. Available:
http://www.ics.uci.edu/∼ihler/code/kde.html. [Accessed: 08- Jan- 2016].

