
Immune Network Algorithm applied to the
Optimization of Composite SaaS in Cloud

Computing
Simone A. Ludwig and Kevin Bauer

North Dakota State University
Fargo, ND, USA

simone.ludwig@ndsu.edu

Abstract—In order to serve the different application needs of
the different Cloud users efficiently and effectively, a possible
solution is the decomposition of the software or so-called com-
posite SaaS (Software as a Service). A composite SaaS constitutes
a group of loosely-coupled applications that communicate with
each other to form higher-level functionality. The benefits to
the SaaS providers are reduced delivery cost and flexible SaaS
functions, and the benefit for the users is the decreased cost of
subscription. For this to be achieved effectively, the optimization
of the process is required in order to manage the SaaS resources
in the data center efficiently. In this paper, the optimization task
of composite SaaS is investigated using an Immune network
optimization approach. The approach makes use of activation
and suppression that are mimicked by the natural immune system
triggering an immune response not only when antibodies interact
with antigens but also when they interact with other antibodies.
Experiments are conducted with a series of SaaS configurations
and the proposed immune network algorithm is compared with a
formerly proposed grouping genetic algorithm. The results show
that the immune network algorithm outperforms the grouping
genetic algorithm.

I. INTRODUCTION

Cloud computing is the provisioning of computer process-
ing, networks, data, and applications to a consumer over the
Internet [1]. This is becoming the preferred way for businesses
to provision resources so they may outsource part of their
workload to reduce costs in labor and in maintaining hardware
[2], [3]. These resources are delivered on demand and are
scalable in a pay-as-you-go approach.

Cloud computing can also be comprised of a large quantity
of physical machines with heterogeneous computing resources
distributed around different geographic locations [3]. The
consumer is unaware of the infrastructure or platform details
of the system, but expects that the service is always operational
and that the service performs as if it always has the optimal
amount of resources available on-demand.

The scalability of cloud computing must address the scal-
ing up or the scaling down of resources. In addition, the
balance between proactively scaling resources and reactively
scaling resources has to be achieved [3]. For example, when
a consumer no longer requires a service, the resources are
quickly relinquished. Or, when a consumer requires a service,
resources are allocated quickly. These operations must be
implemented in a manner that is non-disruptive.

Although cloud computing by definition is still evolving [4],
[5], cloud computing usually falls into one or a hybrid of three
service models: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS).

IaaS is the provisioning of computer processing, networks,
and storage to the consumer so that their operating systems and
software applications may utilize them. An example of IaaS
is Amazon’s EC2 (Elastic Cloud Computing) [6]. However,
consumers must still manage the services that run on IaaS.
For example, operating systems must be updated, databases
must be administered, and, if consumers are administering a
web service traffic must be managed by them.

PaaS hides infrastructure details from the consumer that are
visible in IaaS: database administration, load balancing, and
server configuration. The PaaS provider manages infrastruc-
tures for customers. The consumer may then deploy on top
of this service applications, libraries, and other tools [6]. A
well-known example of PaaS is Google’s App Engine [7].

SaaS, the service that is the focus of this paper, is applica-
tions that are available to a consumer via a client. Clients that
connect to SaaS are usually browsers [6]. Examples of SaaS
are Microsoft’s Office 365 and Google Drive.

Optimally provisioning resources for cloud computing ser-
vices is a difficult problem, because the physical machines that
deploy the resources can be in different geographic locations
yet together must sufficiently deliver services to the consumer.
In addition, Virtual Machines (VMs) that run atop these
physical machines appear to be uniform, but usually they are
not [8]. The machines that comprise the infrastructure are
heterogeneous with storage disks that read/write at different
rates or the VMs are sharing physical machine resources
with other VMs servicing other consumers. Load balancing is
also a difficult problem in cloud computing. Migrating VMs
to different physical machines without negatively affecting
Quality of Service (QoS) is problematic [9].

Applications that demand resources should be provisioned
enough to fulfill the Service Licensing Agreement (SLA),
yet no more then is required. Then, service providers can
distribute resources economically. There are many methods
for determining the best placement for an application among
a selection of VMs.

In this paper, the optimization task of composite SaaS



is investigated by searching for the optimal distribution of
resources in a cloud computing environment. In particular,
SaaS application components and the associate data compo-
nents are to be placed onto computing servers and storage
servers optimally. An immune network optimization approach
is applied that is inspired by natural immune system using the
idea of activation and suppression when antibodies interact
with antigens.

The organization of this paper is as follows: In Section II,
related work in the area of optimization applied to cloud
computing is given. Section IV introduces and describes the
proposed approach as well as the comparison algorithm. In
Section V, the experiments conducted and results obtained are
outlined. Section VI describes the conclusions reached from
this study.

II. RELATED WORK

Related work in the area of optimization in a Cloud environ-
ment include the following. For large scale cloud-computing,
service deployment architectures may aid in efficiently provi-
sioning resources. In [10], the cloud-computing environment
is engineered to be SLA aware. Content Delivery Networks
(CDN), like Akamai, contain edge servers that are physically
close to clients and deliver content to them. The problem with
this architecture is that all content is considered equal and
unexpected bottlenecks can occur at these edge servers. For
example, data in cloud environments can be active or passive.
Active and passive data have different read/write requirements.
Thus, [10] suggests providing different tiers of servers for
different types of content and the resources that they require.
First, the CDN is a tree of service resource providers. The leaf
nodes are the edge servers that deliver content to customers.
Next, each Named Node Server (NNS) and its corresponding
Block Servers (BS), together they act as the edge servers, have
multiple Resource Monitors (RM) and Resource Allocators
(RA), the inner nodes of the tree. The RMs monitor the rates
of data moving uplink and downlink from the BSs. As needed,
the delta of the rate of data transfer that is bottlenecking and
overloading the constraints set for the tiered BS can be sent to
parent RAs in the CDN, ameliorating the breach in the SLA.
The MiniMax algorithm strictly regulates the rates of resource
transfer sent from children to parent nodes and from parent to
children nodes. These methods coupled with h tiers of service
in the BS servers also mitigate overloading the BSs, because
each tier can be allotted its required resources that are usually
expected for the type of content that they are holding.

The Hadoop Yarn system is commonly used for adminis-
tering resources for scheduled tasks [11]. Resource managers
assign application managers to worker nodes that monitor
how many resources the worker nodes are using. The appli-
cation managers also negotiate with the resource managers
for resources to complete their scheduled tasks. Then, the
resource managers will deliver the requirements according to
the set policies. For example, one simple policy is queue based
(FIFO). The tasks are scheduled for resources and Worker
Nodes in the order of their arrival. Fair policies evaluate all

the tasks and the resource managers attempt to distribute equal
amounts of resources to all of the tasks in the job queue or
the average equal share of the dominant resource requirements.
The last common policy is the capacity policy. For each task
the resource manager attempts to schedule an equal share of
the resources for each task in the queue. The leftover resources
that are still free are given to tasks that are using more than
what was scheduled for them. And, some tasks within the
queue are prioritized and provisioned resources accordingly.
However, according to [11] these policies are not optimal.

Another approach uses the genetic algorithm for distribut-
ing resources by focusing on obtaining near optimal quality
of service from infrastructures rather than finding optimal
placement for VMs [12]. SaaSs are modeled as a cell. The
cell is composed of application requirements: processing,
memory, storage, network latency, and read/write times. These
constraints must be fulfilled. VMs that satisfy the requirements
are stochastically paired with the application components.
After the pairings, the roulette wheel selection of the genetic
algorithm and the probabilistic application of the crossover
operation and the mutation operation are applied. Once these
operations finish, if new cells were generated they are added
to the population. Then, each cell’s fitness is determined. The
fitness calculation is the distance from constraints to constraint
satisfaction, so the smaller the difference the better the fitness.
Thus, the fitness function is to be minimized. The cell with the
best fitness is employed and should have near optimal quality
of service for its application components.

Another approach is based on an auction system. Markets
are considered efficient distributers of resources. Therefore,
modeled after market resource allocation, VMs are distributed
via an auction system. Traditionally, cloud providers bundle
together homogenous VMs that remain static, and then they
sell these to the highest bidder. However, this is not always the
most efficient use of the infrastructure [13]. This is because
customer requirements and the VMs that are required are not
homogeneous. Consequently, a method that takes into account
the heterogeneous requirements of customers was proposed in
[14].

For example, for each customer the cloud provider builds
a number of VMs from a set of combinations of attributes.
Customers bid on these VMs and the top bidder wins. Yet,
this method is susceptible to shill bidding. Shill bidding occurs
when a customer impersonates multiple customers to lower
the price of VMs. In addition, customers may conspire to
bid at lower prices to bring down the overall cost. These
problems lead to low profits for the service provider. To make
VM auction systems shill bidding proof and to maximize
cloud provider revenue, a variation of the previously proposed
method was proposed in [14], [15].

Another novel method for efficiently distributing resources
in a cloud-computing environment is via the ant colony
algorithm [16]. The cloud is modeled as an undirected graph.
The vertexes are clusters of VMs, and the edges connect these
resources in a cloud-computing environment. The clusters of
VMs have boundary conditions on the load that they can



accept for processing, memory, storage, and bandwidth. If
these boundaries are broken k times out of n, k and n are
set arbitrarily, that vertex or rather that cluster of nodes is
identified as a hotspot, meaning it is overloaded. To find avail-
able resources to offset the overloaded hotspot, the ant colony
algorithm is employed to find a node in the undirected graph
representing the cloud that can provision more resources.

For example, in the hotspot, VMs belonging to the cluster
are searched for idle resources. Idle resources are the minimum
amount of resources that are available from all VMs in that
cluster. This constraint is enforced so other VMs are not
overloaded. If none are found, then neighboring clusters are
searched on a path from the hotspot. As neighboring clusters of
VMs are searched for idle resources the following operations
are performed: the pheromone density is calculated for each
node visited on the path from the hotspot, the nodes are added
to an avoidance list, and the pheromone evaporation rates are
calculated for previously visited nodes. Eventually, a path to
a node with idle resources obeying the constraints converges.
Else, there are no nodes that satisfy the constraints to alleviate
overloaded hotspots in the cloud-computing environment. One
benefit for using this method is that the search process for
finding idle resources in node clusters may utilize parallel
processing.

III. PROBLEM FORMULATION

The composite SaaS optimization problem can be described
as follows. The SaaS application components and the associate
data components are placed onto computing servers and stor-
age servers, whereby the application components (ACs) are
deployed within the virtual machine (VM) for execution. It
is necessary for the VM hosting the ACs to have sufficient
resources in order to guarantee users’ service level agreement.
Since the workload of Cloud data centers varies with time,
the initial deployment may need to be modified. Therefore,
scheduled reconfiguration of the VM is initialized at certain
time intervals in order to maintain the performance of the
application components and to minimize resource usage. This
reconfiguration triggers the optimization of the composite
SaaS. One way to achieve this is by combining two or more
ACs into one VM. The placement reconfiguration needs to
consider the communication or dependencies between the
application components.

The problem is graphically displayed in Figure 1. The top
row indicates the ACs with their corresponding number, and
the bottom row indicates the corresponding VMs. What we
essentially have is an assignment problem where different ACs
are deployed within different VMs.

Fig. 1. Comparison of one run of GGA and IN

The optimization task is to assign the ACs to the VMs
so that a certain fitness criterion is minimized. The fitness

function of the composite SaaS consists of two parts: total
cost and migration cost and is calculated as follows:

F = w1 × F (TC) + w2 × F (MC) (1)

where w1 and w2 are weights for the different components,
F (TC) is the fitness of the total cost, and F (MC) is the
fitness of the migration cost. The fitness of the total cost is
calculated as:

F (TC) =

{
0, if TC > Cinit,
Cinit−TC

Cinit
, otherwise,

(2)

whereby Cinit is a predefined value, and the total cost, TC,
is calculated as follows:

TC =
∑

vm∈VM

Cvm (3)

where Cvm is the cost of running a particular virtual machine
vm from the pool of all available virtual machines VM , and
is calculated as:

Cvm =

{
Cvm, if vm is part of the SaaS,
0, otherwise.

(4)

The fitness of the migration cost F (MC) is normalized by:

F (MC) = 1− MC

N(AC)
(5)

where N(AC) is the number of ACs, and the migration cost
MC is calculated as follows:

MC =
∑

ac∈AC

Sac

max(SAC)× 2
+

Mac

max(MAC)× 2
(6)

where Sac is the size of the component, and Mac is its memory
requirement.

IV. PROPOSED APPROACH

Artificial Immune Systems (AIS) [17], [18], [19] are in-
spired by the natural immune system and the principles
and processes of natural immune systems are exploited. The
computational intelligent algorithms or AIS use the ideas of
the natural immune system’s characteristics of learning and
memory to solve particular problems in computer science and
engineering.

Computationally intelligent systems are inspired by the
principles and processes of the vertebrate immune system. The
algorithms typically exploit the immune system’s characteris-
tics of learning and memory to solve a problem.

Several different algorithms have been developed in the
past. These include Danger Theory Algorithm [20], Negative
Selection Algorithm [21], Clonal Selection Algorithm [22],
and Immune Network Algorithm [23].

The Danger Theory algorithm works as follows. The im-
mune system does not differentiate self from non-self, but
does differentiate between what is harmful and not harmful
to the body. According to the theory, an alarm signal called
a ‘danger signal’ is activated when harmful invaders enter the
body and therefore an adaptive immune response is triggered.



One of the first AIS algorithms was proposed in [21]
inspired by the negative selection occurring in the thymus on
T-cells during the T-cell maturation process.

The Clonal Selection algorithm is inspired by the B-cell
activation process that results in the generation of plasma
cells and antibodies that are released into the bloodstream in
order to capture similar antigens. The main components of
this algorithm are antibodies, cloning and hypermutation, and
affinity measure and selection.

The Immune Network algorithm is based on the fact that
antibodies trigger an immune response not only when they in-
teract with antigens but also with other antibodies. Antibodies
either respond positively (leads to cell activation and differen-
tiation) or negatively (leads to tolerance or suppression) to a
recognition signal. More details are provided in the following
subsection.

The different application domains in which the AIS al-
gorithms have been applied to include computer security
[24], [25], clustering/classification [26], [22], [27], [28], [29],
optimization [22], [30], and robotics [31], [32], [33], [34]. For
a detailed review of application areas the reader is referred to
[18].

A. Immune Network Algorithm

Jerne [23] suggested that antibodies trigger an immune re-
sponse not only when they interact with antigens but also when
they interact with other antibodies. This immune response
is known as the idiotype network, in which antibodies may
respond either positively or negatively to a recognition signal.
A positive response leads to cell activation, whereas a negative
response leads to suppression. This theory of natural immune
systems is used in the algorithm and known as the immune
network algorithm. The main idea is that the components of
an AIS not only interact with antigens but also with each other
to form a stable network.

Algorithm 1 Immune Network Algorithm
Input: populationSize p, noOfClones n, noRandom r,

affinityThreshold a
Output: bestCell b
population ⇐ InitializePopulation(p)
while (stoppingCriterion not met) do

EvaluatePopulation(population)
b ⇐ GetBestSolution(population)
progeny ⇐ ∅
population ⇐ AverageAffinityAndRemoval(population)
for (cell ∈ population) do

clones ⇐ CreateClones(cell,n)
for (clone ∈ clones) do

clone ⇐ Mutate(clone,cell)
end for
EvaluatePopulation(clones)
progeny ⇐ GetBestSolutions(clones)

end for
progeny ⇐ SuppressLowAffinityCells(progeny,a)
progeny ⇐ CreateRandomCells(r)
population ⇐ progeny

end while
return b

The immune network algorithm description is given in
Algorithm 1. The algorithm starts by randomly initializing the
population of cells. The iterative steps are as follows: First, the
affinity or fitness of each cell is evaluated, and a clone set is
created that is mutated. Afterwards, cells with an affinity value
below a certain threshold are removed. Then, a certain number
of clones with the highest affinity replace the old population.
Afterwards, the so-called network interactions are performed
thereby removing the lowest affinity cells. In addition, a certain
number of random cells are added to the population. The above
steps are repeated until the termination condition is reached
and the fittest cell is returned.

B. Immune Network Algorithm Implementation: IN Algorithm

In the SaaS composition problem, the selections of SaaSs
are grouped together to model a cell. The SaaSs are composed
of many application components (ACs), each with their own
processing-, memory-, storage-, and read/write requirements.
The sum of these requirements is the SLA for the SaaS.
VMs rest atop distributed physical machines that may reside
in different physical locations. These VMs can be paired
with any of the application components. VMs may also be
the sole resource provider for an application component or
the resource provider for many application components. An
arbitrary amount of cells are created with the same SaaSs,
ACs, and VMs, each with different pairings and placements.

A fitness evaluation is ascribed to each cell. The lower the
fitness the better, thus the fitness function is to be minimized.
The costs for VMs are determined by the amount of resources
that are being used. The more resources that are used, the more
the fitness degrades since then a VM has a larger workload.
Therefore, it is better for an AC to be paired with a VM that
has a lower workload. Thus, it is more likely the SLA for
the AC is adhered to. The fitness is also determined by the
storage and memory requirements of ACs. The reason is that
ACs with larger memory and storage requirements are more
costly to move to different VMs over a network. Therefore,
the larger the memory and storage requirements are, the more
fitness degrades in the cell.

The IN implementation closely follows the algorithm de-
scription given in Algorithm 1. The first step is the random
initialization of the population, i.e., the cells are encoded as
in Figure 1. Afterwards, the fitness value for each cell is
calculated using Equations 1-6 as well as the average fitness
of the population is determined. Next, the cloning of the
cells and the mutation steps occur. Again, the population (or
new mutated clones) are evaluated and the best solutions are
retained. Once this is done, during the suppression step, the
low affinity cells (the cells with the lowest fitness value) are
deleted and newly created cells are added to the population.
These steps repeat until a certain number of FEs are reached,
and the fittest cell is returned as the result.



V. EXPERIMENTS AND RESULTS

A. Comparison Algorithm: Grouping Genetic Algorithm -
GGA

The algorithm implemented for comparison is the Grouping
Genetic Algorithm (GGA) [1]. The GGA is modified from
standard Genetic Algorithm (GA) for solving grouping op-
timization problems such as the composite SaaS optimiza-
tion. The difference between GA and GGA mainly lies in
the way the chromosomes are evaluated. GGA divides the
chromosomes based on the relevant groupings and is evaluated
accordingly.

The GGA works as follows. First, all the cells are eval-
uated and those cells that do not adhere to the SLAs are
repaired, whereby the costs for the cells that are repaired
are recalculated. Then cells are selected from the population
based on the genetic algorithm’s roulette wheel selection.
After this, a crossover operation and a mutation operation are
probabilistically applied to the selected cells. New cells are
added to the population via the genetic algorithm’s crossover
operation. The cell with the best fitness will contain VMs with
a minimized load and the ACs will be placed in such a manner
that the storage and memory requirements are not overloading
the VMs. A more detailed description can be found in [1].

B. Experimental Setup

Table I shows the different configurations used for the
experiments. Configuration 1 has a variable setup of ACs but
fixed setup of the VMs, whereas Configurations 2-6 have a
fixed setup of ACs and VMs. Configuration 7 has a fixed
setup of ACs, but a variable setup of VMs, and Configuration
8 has both variable setups for ACs and VMs. Essentially,
all different scenarios are optimized in order to perform
thorough experimentation. The characteristics of the AC and
VM instances in terms of CPU (number of cores; 2.6-2.8GHz),
memory (measured in GiB), and storage (measured in GB) are
obtained from the Amazon website [35]. The problem setup
was configured as follows: w1 and w2 in Equation (1) were
set to 0.5; the number of components was set to 100 for both
ACs and VMs, and the number of SaaSs was 20.

C. Results

Two different experiments are conducted. The first exper-
iment investigates the affinity threshold of the IN algorithm,
and the second experiment compares the IN algorithm with
the GGA algorithm.

The parameter setup used for the GGA algorithms were:
• No. of chromosomes = 30
• Max. no. of iterations = 50
• Crossover rate = 0.7
• Mutation rate = 0.1

The parameter setup used for the IN algorithms were:
• No. of cells = 30
• Max. no. of iterations dependent on FEs of GGA
• Affinity threshold factor: alpha = 0.1-0.9 (Exp. 1); alpha

= 0.6 (Exp. 2)

• Affinity threshold = alpha * abs(bestFit-averageFit)
• Number of clones (per iteration) = 30
The first experiment investigates the effect of the affinity

threshold on the optimization of the IN algorithm. The dif-
ferent threshold factors that were investigated were 0.1 to
0.9 in increments of 0.1. The affinity threshold is calculated
as the difference between the best and average fitness of
the population multiplied by the threshold factor. The SaaS
configuration used was Configuration 7 as given in Table I.

Table II shows the effect on the fitness value for the different
threshold factors used as well as the number of new cells
added.

TABLE II
EFFECT OF AFFINITY THRESHOLD FACTOR ON FITNESS

Threshold Fitness Cells
factor added

0.1 0.26871699148207795±0.011390817079472893 428
0.2 0.25844564540259120±0.011604727234169044 351
0.3 0.24730482221067915±0.016548811886150625 282
0.4 0.23810788834736082±0.016465887044548210 203
0.5 0.23625232418390960±0.017846618521530000 145
0.6 0.22752460309513292±0.017833955125571930 91
0.7 0.22319969403289720±0.016287563069805173 54
0.8 0.22264649358441121±0.022019014355932197 32
0.9 0.22517136793958110±0.016659456416619235 24

The table shows that the fitness values are significantly
improving until the threshold factor reaches a value of 0.6. All
the higher values are similar also when looking at the asso-
ciated standard deviation values. Therefore, for the following
experiments the affinity threshold factor was set to 0.6.

The second experiment compares the IN algorithm with the
GGA algorithm. In order to guarantee that both algorithms
can be evaluated fairly, the number of Function Evaluations
(FEs) for the IN algorithm was fixed to be equal to the GGA
algorithm. For example, given a chromosome size of 30 and
the number of iterations to be executed is 50, the number of
FEs of the GGA algorithm was 1,500, and therefore, the IN
algorithm was stopped once 1,500 FEs had been reached.

The experiments were run 30 times and average results are
reported. The results of the optimization are shown in Table
III. The results show the best fitness achieved and the standard
deviation calculated after 1,500 FEs have elapsed. It can be
seen that for all 8 configurations, the proposed IN algorithm
achieves better results outperforming the GGA approach.

In order to show the convergence of both algorithms, the
following experiment was run with Configuration 1 as shown
in Table I. However, the parameters set for this experiment
were:
• Population size = number of cells = 50
• Maximum number of iterations of GGA = 200
• Number of FEs of IN = 10,000
• Number of components was set to 50 for both ACs and

VMs
• Number of SaaSs was 10
Figure 2 shows one optimization run for GGA and IN. The

figure clearly shows that the IN algorithm converges to the



TABLE I
AC AND VM SPECIFICATIONS FOR DIFFERENT CONFIGURATIONS

Configuration AC VM
CPU Memory Storage CPU Memory Storage

1 1-8 (incr. of 1) 1-15 (incr. of 1) 100-1000 (incr. of 100) 8 15 1000
2 1 2 125 8 15 1000
3 2 4 250 8 15 1000
4 3 6 375 8 15 1000
5 4 8 500 8 15 1000
6 5 10 625 8 15 1000
7 16 30 640 1,4,8,16,32 2,15,30,60 160,320,640
8 1-16 (incr. of 1) 1-30 (incr. of 1) 100-640 (incr. of 120) 1,4,8,16,32 2,15,30,60 160,320,640

TABLE III
RESULTS OF 8 OPTIMIZATION RUNS

Configuration GGA IN
1 0.29014569512910265±0.013766813558770480 0.26003501623467570±0.012698010015395455
2 0.29886779550208880±0.009525306680397881 0.26954338776377020±0.016747854056233430
3 0.26748592671216950±0.007601405885665940 0.26322945732398020±0.007284422954970293
4 0.21272085813931474±0.025360151355255750 0.14164378917416415±0.024851595058252040
5 0.20130537934903858±0.014431808584132006 0.14681527573377423±0.016670084298508320
6 0.34453974206241195±0.005122261819739397 0.33375416538522560±0.004465340093833100
7 0.28934530643446342±0.011623490453343462 0.27542572213946932±0.011834258781234767
8 0.25890645006913254±0.010094919455751951 0.23111801781516520±0.007740423912255129

optimal solution after 51 iterations, whereas it takes the GGA
algorithm 99 iterations to converge.

Fig. 2. Comparison of one run of GGA and IN

VI. CONCLUSION

This paper investigated the applicability of an immune
network algorithm applied to the SaaS configuration optimiza-
tion in Cloud data centers. The SaaS application components
and data components are placed onto computing servers and
storage servers, whereby the ACs are deployed within the
virtual machine (VM) for execution. A necessary condition
for the VM hosting the ACs is to have sufficient resources in
order to guarantee users’ service level agreement. Therefore,
this optimization problem is essentially an assignment problem

where different ACs are deployed within different VMs. The
fitness function of the composite SaaS includes the total cost
and migration cost.

In order to conduct a fair comparison, a comparison al-
gorithm GGA was implemented beside the proposed IN al-
gorithm and 8 different configurations were optimized with
varying parameters. The experiments revealed that the IN
algorithm converges much faster to the optimal solution than
the GGA algorithm as evident from the run conducted as
shown in Figure 2 as well as the results tabulated in Table
III. Thus, the preferred choice of algorithm for the composite
SaaS optimization is the IN algorithm.

As for future work, since the optimization takes quite a bit
of running time, and for even larger SaaS optimization con-
figurations, the parallelization of the IN algorithm becomes a
necessity. A possible solution would be to use the MapReduce
paradigm to speed up the optimization task.

REFERENCES

[1] Z. I. M. Yusoh, M. Tang, “Clustering composite SaaS components in
Cloud computing using a Grouping Genetic Algorithm,” 2012 IEEE
Congress on Evolutionary Computation (CEC), June 2012.

[2] T. Grandison, E. M. Maximilien, S. Thorpe, A. Alba, “Towards a Formal
Definition of a Computing Cloud,” 2010 6th World Congress on Services
(SERVICES), July 2010.

[3] C. A. Ardagna, E. Damiani, F. Frati, G. Montalbano, D. Rebeccani, M.
Ughetti, “A Competitive Scalability Approach for Cloud Architectures,”
2014 IEEE 7th International Conference on Cloud Computing (CLOUD),
July 2014.

[4] P. Mell, T. Grance, “The NIST Definition of Cloud Computing, September
2011.

[5] L. M. Vaquero, J. C. Luis Rodero-Merino, M. Lindner, “A break in
the clouds: towards a cloud definition.” ACM SIGCOMM Computer
Communication Review 39, no. 1, pp. 50-55, 2008.

[6] I. Foster, Y. Zhao, I. Raicu, I. S. Lu, “Cloud Computing and Grid Com-
puting 360-Degree Compared,” Grid Computing Environments Workshop,
2008. GCE’08, Nov. 2008.



[7] Google App Engine, “Google App Engine: Platform as a Service”, last
retrieved in March 2015, from: https://cloud.google.com/appengine/docs.

[8] M. Unuvar, Y. Doganata, M. Steinder, A. Tantawi, S. Tosi, “A Predictive
Method for Identifying Optimum Cloud Availability Zones,” 2014 IEEE
7th International Conference on Cloud Computing (CLOUD), July 2014.

[9] K. Tsakalozos, V. Verroios, Vasilis, M. Roussopoulos, A. Delis, “Time-
Constrained Live VM Migration in Share-Nothing IaaS-Clouds,” 2014
IEEE 7th International Conference on Cloud Computing (CLOUD), July
2014.

[10] D. F. Kassa, K. Nahrstedt, “SCDA: SLA-Aware Cloud Datacenter
Architecture for Efficient Content Storage and Retrieval,” 2014 IEEE 7th
International Conference on Cloud Computing (CLOUD), July 2014.

[11] Y. Yao, J. Wang, B. Sheng, J. Lin, N. Mi, “HaSTE: Hadoop YARN
Scheduling Based on Task-Dependency and Resource-Demand,” 2014
IEEE 7th International Conference on Cloud Computing (CLOUD), July
2014.

[12] G. F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, “QBROKAGE: A Ge-
netic Approach for QoS Cloud Brokering,” 2014 IEEE 7th International
Conference on Cloud Computing (CLOUD), July 2014.

[13] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, X. Zhu.
“Vmware distributed resource management: Design, implementation, and
lessons learned.” VMware Technical Journal 1, no. 1, pp. 45-64, 2012.

[14] H. Fu, Z. Li, C. Wu, X. Chu, “Core-Selecting Auctions for Dynamically
Allocating Heterogeneous VMs in Cloud Computing,” 2014 IEEE 7th
International Conference on Cloud Computing (CLOUD), July 2014.

[15] T. Groves, “Incentives in teams.” Econometrica: Journal of the Econo-
metric Society, 617-631, 1973.

[16] X. Lu, Z. Gu, “A load-adapative cloud resource scheduling model based
on ant colony algorithm,” 2011 IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS), Sept. 2011.

[17] D. Dasgupta and F. Gonzalez, “Artificial immune system (AIS) research
in the last five years,” Proceedings of the Congress on Evolutionary
Computation, pp. 123-130, 2003.

[18] E. Hart and J. Timmis, “Application area of AIS: The Past, The Present
and the Future,” Applied Soft Computing, Elsevier Science, Amsterdam,
vol. 8, 2008.

[19] J. E. Hunt and D. E. Cook, “Learning using an artificial immune system,”
Journal of Network and Computer Applications, vol. 19, pp. 189-212,
1996.

[20] P. Matzinger, “Tolerance, danger and the extended family,” Annual
Review of Immunology, vol. 12, pp. 991-1045, 1994.

[21] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, “Self-nonself
discrimination in a computer,” Proceedings - IEEE Computer Society
Symposium on Research in Security and Privacy, pp. 202-212, 1994.

[22] L. N. d. Castro and J. Zuben, “The Clonal Selection Algorithm with

Engineering Applications,” Workshop Proceedings of GECCO, Workshop
on Artificial Immune Systems and Their Applications, Las Vegas, pp. 36-
37, 2000.

[23] N. K. Jerne, “The Generative Grammar of the Immune System,” Nobel
Lecture, 8 December 1984, 1984.

[24] J. Kim, J. Greensmith, J. Twycross, and U. Aickelin, “Malicious
Code Execution Detection and Response Immune System inspired by
the Danger Theory,” Proceedings of Adaptive and Resilient Computing
Security Workshop (ARCS-05), 2005.

[25] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An
artificial immune system architecture for computer security applications,”
IEEE Transactions on Evolutionary Computation, vol. 6, pp. 252-280,
2002.

[26] L. N. d. Castro and J. Timmis, “Artificial immune system: a new
computational intelligence approach,” Springer, 2002.

[27] A. Watkins, J. Timmis, and L. Boggess, “Artificial Immune Recognition
System (AIRS): An Immune-Inspired Supervised Learning Algorithm,”
Journal of Genetic Programming and Evolvable Machines, vol. 5, pp.
291-317, 2004.

[28] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system for data
analysis”, Biosystems, vol. 55, pp. 143-150, 2000.

[29] M. Ayara, J. Timmis, R. d. Lemos, and S. Forrest, “Immunising
Automated Teller Machines,” Jacob et. al (Eds.): ICARIS 2005, LNCS
3627, pp. 404-417, 2005.

[30] A. Khaled, H. M. Abdul-Kader, and N. A. Ismail, “Artificial Immune
Clonal Selection Algorithm: A Comparative Study of CLONALG, opt-IA
and BCA with Numerical Optimization Problems,” International Journal
of Computer Science and Network Security, vol. 10, pp. 24-30, 2010.

[31] A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, “Idiotypic Immune
Networks in Mobile Robot Control,” IEEE Transactions on Systems, Man,
and Cybernetics - Part B: CYBERNETICS, vol. 37, pp. 1581-1598, 2007.

[32] A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, “The transfer of
evolved artificial immune system behaviours between small and large
scale robotic platforms,” Proceedings of the 9th international conference
on Artificial evolution (EA’09), 2009.

[33] A. M. Whitbrook, U. Aickelin, and J. M. Garibaldi, “An Idiotypic
Immune Network as a Short-Term Learning Architecture for Mobile
Robots,” 7th International Conference, ICARIS, LNCS: 5132, pp. 266-
278, 2008.

[34] H. Lau, I. Bate, and J. Timmis, “An Immuno-engineering Approach for
Anomaly Detection in Swarm Robotics,” 8th International Conference,
ICARIS 2009, LNCS: 5666, pp. 136-150, 2009.

[35] Amazon Compute and Storage Instances, “Amazon EC2 Instance De-
tails”, last retrieved in March 2015, from: http://aws.amazon.com/ec2/
instance-types/.


